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Abstract

Word alignment and machine translation are
two closely related tasks. Neural transla-
tion models, such as RNN-based and Trans-
former models, employ a target-to-source at-
tention mechanism which can provide rough
word alignments, but with a rather low accu-
racy. High-quality word alignment can help
neural machine translation in many different
ways, such as missing word detection, anno-
tation transfer and lexicon injection. Existing
methods for learning word alignment include
statistical word aligners (e.g. GIZA++) and re-
cently neural word alignment models. This pa-
per presents a bidirectional Transformer based
alignment (BTBA) model for unsupervised
learning of the word alignment task. Our
BTBA model predicts the current target word
by attending the source context and both left-
side and right-side target context to produce
accurate target-to-source attention (alignment).
We further fine-tune the target-to-source atten-
tion in the BTBA model to obtain better align-
ments using a full context based optimization
method and self-supervised training. We test
our method on three word alignment tasks and
show that our method outperforms both previ-
ous neural word alignment approaches and the
popular statistical word aligner GIZA++.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014; Vaswani et al., 2017) achieves state-
of-the-art results for various translation tasks (Bar-
rault et al., 2019, 2020). Neural translation models,
such as RNN-based (Bahdanau et al., 2014) and
Transformer (Vaswani et al., 2017) models, gen-
erally have an encoder-decoder structure with a
target-to-source attention mechanism. The target-
to-source attention in NMT can provide rough word
alignments but with a rather low accuracy (Koehn
and Knowles, 2017). High-quality word alignment

can be used to help NMT in many different ways,
such as detecting source words that are missing
in the translation (Lei et al., 2019), integrating an
external lexicon into NMT to improve translation
for domain-specific terminology or low-frequency
words (Chatterjee et al., 2017; Chen et al., 2020),
transferring word-level annotations (e.g. under-
line and hyperlink) from source to target for docu-
ment/webpage translation (Müller, 2017).

A number of approaches have been proposed to
learn the word alignment task, including both statis-
tical models (Brown et al., 1993) and recently neu-
ral models (Zenkel et al., 2019; Garg et al., 2019;
Zenkel et al., 2020; Chen et al., 2020; Stengel-
Eskin et al., 2019; Nagata et al., 2020). The pop-
ular word alignment tool GIZA++ (Och and Ney,
2003) is based on statistical IBM models (Brown
et al., 1993) which learn the word alignment task
through unsupervised learning and do not require
gold alignments from humans as training data. As
deep neural networks have been successfully ap-
plied to many natural language processing (NLP)
tasks, neural word alignment approaches have de-
veloped rapidly and outperformed statistical word
aligners (Zenkel et al., 2020; Garg et al., 2019).
Neural word alignment approaches include both su-
pervised and unsupervised approaches: supervised
approaches (Stengel-Eskin et al., 2019; Nagata
et al., 2020) use gold alignments from human an-
notators as training data and train neural models to
learn word alignment through supervised learning;
unsupervised approaches do not use gold human
alignments for model training and mainly focus on
improving the target-to-source attention in NMT
models to produce better word alignment, such
as performing attention optimization during infer-
ence (Zenkel et al., 2019), encouraging contiguous
alignment connections (Zenkel et al., 2020) or us-
ing alignments from GIZA++ to supervise/guide
the attention in NMT models (Garg et al., 2019).
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We propose a bidirectional Transformer based
alignment (BTBA) model for unsupervised learn-
ing of the word alignment task. Our BTBA model
predicts the current target word by paying atten-
tion to the source context and both left-side and
right-side target context to produce accurate target-
to-source attention (alignment). Compared to the
original Transformer translation model (Vaswani
et al., 2017) which computes target-to-source at-
tention based on only the left-side target context
due to left-to-right autoregressive decoding, our
BTBA model can exploit both left-side and right-
side target context to compute more accurate target-
to-source attention (alignment). We further fine-
tune the BTBA model to produce better alignments
using a full context based optimization method
and self-supervised training. We test our method
on three word alignment tasks and show that our
method outperforms previous neural word align-
ment approaches and also beats the popular statisti-
cal word aligner GIZA++.

2 Background

2.1 Word Alignment Task

The goal of the word alignment task (Och and Ney,
2003) is to find word-level alignments for paral-
lel source and target sentences. Given a source
sentence sI−10 = s0, ..., si, ..., sI−1 and its parallel
target sentence tJ−10 = t0, ..., tj , ..., tJ−1, the word
alignment G is defined as a set of links that link the
corresponding source and target words as shown in
Equation 1.

G ⊆ {(i, j) : i = 0, ..., I − 1; j = 0, ..., J − 1} (1)

The word alignment G allows one-to-one, one-to-
many, many-to-one, many-to-many alignments and
also unaligned words (Och and Ney, 2003). Due to
the lack of labelled training data (gold alignments
annotated by humans) for the word alignment task,
most word alignment methods learn the word align-
ment task through unsupervised learning (Brown
et al., 1993; Zenkel et al., 2020; Chen et al., 2020).

2.2 Neural Machine Translation

Neural translation models (Bahdanau et al., 2014;
Vaswani et al., 2017) generally have an encoder-
decoder structure with a target-to-source attention
mechanism: the encoder encodes the source sen-
tence; the decoder generates the target sentence
by attending the source context and performing

left-to-right autoregressive decoding. The target-to-
source attention learned in NMT models can pro-
vide rough word alignments between source and
target words. Among various translation models,
the Transformer translation model (Vaswani et al.,
2017) achieves state-of-the-art results on various
translation tasks and is based solely on attention:
source-to-source attention in the encoder; target-to-
target and target-to-source attention in the decoder.
The attention networks used in the Transformer
model are called multi-head attention which per-
forms attention using multiple heads as shown in
Equation 2.

MultiHead (Q,K, V )
= Concat (head0, ..., headN−1)W

o

Headn = An · Vn

An = softmax
(

QnKT
n√

dk

)
Qn = QWQ

n ,Kn = KWK
n , Vn = VWV

n

(2)

where Q, K and V are query, keys, values for
the attention function; W o, WQ

n , WK
n and W V

n

are model parameters; dk is the dimension of the
keys. Based on parallelizable attention networks,
the Transformer can be trained much faster than
RNN-based translation models (Bahdanau et al.,
2014).

3 Related Work

3.1 Statistical Alignment Models

Word alignment is a key component in traditional
statistical machine translation (SMT), such as
phrase-based SMT (Koehn et al., 2003) which ex-
tracts phrase-based translation rules based on word
alignments. The popular statistical word alignment
tool GIZA++ (Och and Ney, 2003) implements the
statistical IBM models (Brown et al., 1993). The
statistical IBM models are mainly based on lexical
translation probabilities. Words that co-occur fre-
quently in parallel sentences generally have higher
lexical translation probabilities and are more likely
to be aligned. The statistical IBM models are
trained using parallel sentence pairs with no word-
level alignment annotations and therefore learn the
word alignment task through unsupervised learn-
ing. Based on a reparameterization of IBM Model
2, Dyer et al. (2013) presented another popular sta-
tistical word alignment tool fast align which can be
trained faster than GIZA++, but GIZA++ generally
produces better word alignments than fast align.
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3.2 Neural Alignment Models

With neural networks being successfully applied
to many NLP tasks, neural word alignment ap-
proaches have received much attention. The first
neural word alignment models are based on feed-
forward neural networks (Yang et al., 2013) and
recurrent neural networks (Tamura et al., 2014)
which can be trained in an unsupervised manner by
noise-contrastive estimation (NCE) (Gutmann and
Hyvärinen, 2010) or in a supervised manner by us-
ing alignments from human annotators or existing
word aligners as labelled training data.

As NMT (Bahdanau et al., 2014; Vaswani et al.,
2017) achieves great success, the target-to-source
attention in NMT models can be used to infer rough
word alignments, but with a rather low accuracy.
A number of recent works focus on improving the
target-to-source attention in NMT to produce better
word alignments (Garg et al., 2019; Zenkel et al.,
2019; Chen et al., 2020; Zenkel et al., 2020). Garg
et al. (2019) trained the Transformer translation
model to jointly learn translation and word align-
ment through multi-task learning using word align-
ments from existing word aligners such as GIZA++
as labelled training data. Chen et al. (2020) pro-
posed a method to infer more accurate word align-
ments from the Transformer translation model by
choosing the appropriate decoding step and layer
for word alignment inference. Zenkel et al. (2019)
proposed an alignment layer for the Transformer
translation model and they only used the output
of the alignment layer for target word prediction
which forces the alignment layer to produce bet-
ter alignment (attention). Zenkel et al. (2019) also
proposed an attention optimization method which
directly optimizes the attention for the test set to
produce better alignment. Zenkel et al. (2020) pro-
posed to improve the attention in NMT by using a
contiguity loss to encourage contiguous alignment
connections and performing direct attention opti-
mization to maximize the translation probability
for both the source-to-target and target-to-source
translation models. Compared to these methods
that infer word alignments based on NMT target-to-
source attention which is computed by considering
only the left-side target context, our BTBA model
can exploit both left-side and right-side target con-
text to compute better target-to-source attention
(alignment).

There are also a number of supervised neural
approaches that require gold alignments from hu-

mans for learning the word alignment task (Stengel-
Eskin et al., 2019; Nagata et al., 2020). Because
gold alignments from humans are scarce, Stengel-
Eskin et al. (2019); Nagata et al. (2020)’s models
only have a small size of task-specific training data
and exploit representations from pre-trained NMT
and BERT models. Compared to these supervised
methods, our method does not require gold human
alignments for model training.

4 Our Approach

We present a bidirectional Transformer based align-
ment (BTBA) model for unsupervised learning of
the word alignment task. Motivated by BERT
which learns a masked language model (Devlin
et al., 2019), we randomly mask 10% of the words
in the target sentence and then train our BTBA
model to predict the masked target words by pay-
ing attention to the source context and both left-
side and right-side target context. Therefore, our
BTBA model can exploit both left-side and right-
side target context to compute more accurate target-
to-source attention (alignment) compared to the
original Transformer translation model (Vaswani
et al., 2017) which computes the target-to-source
attention based on only the left-side target context
due to left-to-right autoregressive decoding. We
further fine-tune the target-to-source attention in
the BTBA model to produce better alignments us-
ing a full context based optimization method and
self-supervised training.

4.1 Bidirectional Transformer Based
Alignment (BTBA)

Figure 1 shows the architecture of the proposed
BTBA model. The encoder is used to encode the
source sentence1 and has the same structure as
the original Transformer encoder (Vaswani et al.,
2017). The input of the decoder is the masked
target sentence and 10% of the words in the tar-
get sentence are randomly masked2. As shown in
Figure 1, the target sentence contains a masked
word <x>. The decoder contains 6 layers. Each
of the first 5 layers of the decoder has 3 sub-layers:

1Following Och and Ney (2003)’s work, we add a <bos>
token at the beginning of the source sentence for target words
that are not aligned with any source words.

2During training, we randomly mask 10% of the words in
the target sentences for each training epoch, i.e., one target
sentence is masked differently for different training epochs.
If a target sentence contains less than 10 words, then we just
randomly mask one word in this sentence.
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Figure 1: Architecture of our BTBA model.

a multi-head self-attention sub-layer, a target-to-
source multi-head attention sub-layer and a feed
forward sub-layer, like a standard Transformer de-
coder layer except that the self-attention sub-layer
in the standard Transformer decoder can only at-
tend left-side target context while the self-attention
sub-layer in our BTBA decoder can attend all target
words and make use of both left-side and right-side
target context to compute better target-to-source
attention (alignment). The last layer of the BTBA
decoder contains a self-attention sub-layer and a
target-to-source attention sub-layer like the first 5
layers of the BTBA decoder but without the feed-
forward sub-layer. We use the output of the last
target-to-source attention sub-layer for predicting
the masked target words and we use the attention of
the last target-to-source attention sub-layer for in-
ferring word alignments between source and target
words. Our design that only uses the last target-
to-source attention sub-layer output for predicting
the masked target words is motivated by the align-
ment layer of Zenkel et al. (2019) in order to force

Original the cake is very delicious
<x> cake is very delicious
the <x> is very delicious

Masked the cake <x> very delicious
the cake is <x> delicious
the cake is very <x>

Table 1: Masking target sentences in the test set.

the last target-to-source attention sub-layer to pay
attention to the most important source words for
predicting the target word and therefore produce
better word alignments.

In Figure 1, Aijn is the attention value of the
jth target word paying to the ith source word using
the nth head in the last target-to-source multi-head
attention sub-layer. V0, V1, V2, V3, V4 are the out-
puts of the decoder for the 5 target words and V1

is used to predict the masked target word “cake”.
Because V1 is used to predict “cake”, the attention
value A21n should be learned to be high in order
to make V1 contain the most useful source infor-
mation (“kuchen”). Therefore, Aijn can be used
to infer word alignment for the target word “cake”
effectively. However, Aijn cannot provide good
word alignments for unmasked target words such
as “delicious” in Figure 1 because V4 is not used to
predict any target word and A54n is not necessarily
learned to be high.

Because Aijn can only be used to infer accu-
rate word alignment for masked target words but
we want to get alignments for all target words in
the test set, we mask a target sentence tJ−10 in the
test set J times and each time we mask one target
word as shown in Table 1. Each masked target sen-
tence is fed into the BTBA model together with the
source sentence and then we collect the attention
Aijn for the masked target words. Suppose the j′th
target word is masked, then we compute the source
position that it should be aligned to as,

i′ = argmax
i

N−1∑
n=0

Aij′n (3)

4.2 Full Context Based Optimization

In Equation 3, the attention Aij′n for the j′ tar-
get word is computed by considering both left-side
and right-side target context, but information about
the current target word is not used since the j′ tar-
get word is masked. For example in Figure 1, the
BTBA model does not know that the second target
word is “cake” because it is masked, therefore the
BTBA model computes the attention (alignment)
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for “cake” only using the left-side and right-side
context of “cake” without knowing that the word
that needs to be aligned is “cake”. We propose a
novel full context based optimization method to use
full target context, including the current target word
information, to improve the target-to-source atten-
tion in the BTBA model to produce better align-
ments. That is for the last 50 training steps of the
BTBA model, we do not mask the target sentence
any more and we only optimize parameters WQ

n

and WK
n in the last target-to-source multi-head at-

tention sub-layer. As shown in Equation 2, WQ
n

and WK
n are parameters that are used to compute

the attention values in multi-head attention. Opti-
mizing WQ

n and WK
n based on full target context

can help the BTBA model to produce better atten-
tion (alignment) while at the same time freezing
other parameters can make the BTBA model keep
the knowledge learned from masked target word
prediction. After full target context based optimiza-
tion, we do not need to mask target sentences in
the test set as shown in Table 1 any more. We
can directly feed the original source and target test
sentences into the BTBA model and compute atten-
tion (alignment) for all target words in the sentence.
The full context based optimization method can be
seen as a fine-tuning of the original BTBA model,
i.e. we fine-tune the two parameters WQ

n and WK
n

in the last target-to-source attention layer based on
full target context to compute more accurate word
alignments.

4.3 Self-Supervised Training

The BTBA model learns word alignment through
unsupervised learning and does not require labelled
data for the word alignment task. We train two
unsupervised BTBA models, one for the forward
direction (source-to-target) and one for the back-
ward direction (target-to-source), and then sym-
metrize the alignments using heuristics such as
grow-diagonal-final-and (Och and Ney, 2003) as
the symmetrized alignments have better quality
than the alignments from a single forward or back-
ward model. After unsupervised learning, we use
the symmetrized word alignments Ga inferred from
our unsupervised BTBA models as labelled data to
further fine-tune each BTBA model for the word
alignment task through supervised training using
the alignment loss in Equation 4 following Garg

et al. (2019)’s work.3 During supervised train-
ing, the BTBA model is trained to learn the align-
ment task instead of masked target word prediction,
therefore the target sentence does not need to be
masked.

La (A) = − 1

|Ga|
∑

(p,q)∈Ga

N−1∑
n=0

log (Apqn) (4)

Note that we apply byte pair encoding (BPE)
(Sennrich et al., 2016) for both source and tar-
get sentences before we feed them into the BTBA
model. Therefore the alignments inferred from
the BTBA model is on BPE-level. We convert4

BPE-level alignments to word-level alignments be-
fore we perform alignment symmetrization. Af-
ter alignment symmetrization, we want to use
the symmetrized alignments to further fine-tune
each BTBA model through supervised learning and
therefore we convert5 the word-level alignments
back to BPE-level for supervised training of the
BTBA models.

5 Experiments

5.1 Settings

In order to compare with previous work, we used
the same datesets6 as Zenkel et al. (2020)’s work
and conducted word alignment experiments for
three language pairs: German ↔ English (DeEn),
English ↔ French (EnFr) and Romanian ↔ En-
glish (RoEn). Each language pair contains a test
set and a training set: the test set contains paral-
lel sentences with gold word alignments annotated
by humans; the training set contains only parallel
sentences with no word alignments. Table 2 gives
numbers of sentence pairs contained in the train-
ing and test sets. Parallel sentences from both the
training set and the test set can be used to train

3We optimize all model parameters during supervised fine-
tuning.

4To convert BPE-level alignments to word-level align-
ments, we add an alignment between a source word and a
target word if any parts of these two words are aligned. Align-
ments between the source <bos> token and any target word
are deleted; alignments between the last source word “.” (full
stop) and a target word which is not the last target word are
also deleted.

5To convert word-level alignments to BPE-level align-
ments, we add an alignment between a source BPE token
and a target BPE token if the source word and the target word
that contain these two BPE tokens are aligned; we add an
alignment between the source <bos> token and a target BPE
token if the target word that contains this target BPE token is
not aligned with any source words.

6https://github.com/lilt/alignment-scripts
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DeEn EnFr RoEn
TRAIN 1.91M 1.13M 447k
TEST 508 447 248

Table 2: Numbers of sentence pairs in the datasets.

unsupervised word alignment models. We use BPE
(Sennrich et al., 2016) to learn a joint source and tar-
get vocabulary of 40k. After BPE, we train BTBA
models to learn the word alignment tasks. We use
a word embedding size of 512. The feed forward
layer contains 2048 hidden units. The multi-head
attention layer contains 8 heads. We use the Adam
(Kingma and Ba, 2014) algorithm for optimiza-
tion and set the learning rate to 0.0002. We use a
dropout of 0.3. Each training batch contains 40k
masked target words. Since the word alignment
tasks do not provide validation data, we trained
all BTBA models for a fixed number of training
epochs: 50 for DeEn, 100 for EnFr and 200 for
RoEn.7 For the last 50 training steps of each BTBA
model, we performed full context based optimiza-
tion.

For each language pair, we trained two BTBA
models, one for the forward direction and one
for the backward direction, and then symmetrized
the alignments. We tested different heuristics for
alignment symmetrization, including the standard
Moses heuristics, grow-diagonal, grow-diagonal-
final, grow-diagonal-final-and. We also tested an-
other heuristic grow-diagonal-and which is slightly
different from grow-diagonal: the grow-diagonal-
and heuristic only adds a new alignment (i, j)
when both si and tj are unaligned while grow-
diagonal adds a new alignment (i, j) when any
of the two words (si and tj) are unaligned. We find
that the Moses heuristic grow-diagonal-final-and
generally achieved the best results for symmetriz-
ing the BTBA alignments, but grow-diagonal-and
worked particularly good for the EnFr task.

Finally, we used the symmetrized alignments
inferred from our unsupervised BTBA models as
labelled data to further fine-tune each BTBA model
to learn the alignment task through supervised train-
ing. We fine-tuned each BTBA model for 50 train-
ing steps using the alignment loss in Equation 4.
In addition, we also tested to use alignments from
GIZA++ instead of alignments inferred from our

7The training time (time of one training epoch × number
of training epochs) of one BTBA model for different tasks
(DeEn, EnFr and RoEn) is roughly the same, 30 hours using 4
GPUs.

Method DeEn EnFr RoEn
Zenkel et al. (2019) 21.2% 10.0% 27.6%
Garg et al. (2019) 16.0% 4.6% 23.1%
Zenkel et al. (2020) 16.3% 5.0% 23.4%
Chen et al. (2020) 15.4% 4.7% 21.2%
GIZA++ 18.4% 5.2% 24.2%

Ours

BTBA-left 30.3% 20.2% 33.0%
BTBA-right 32.3% 14.9% 38.6%
BTBA 17.8% 9.5% 22.9%

+ FCBO 16.3% 8.9% 20.6%
+ SST 14.3% 6.7% 18.5%
+ GST 14.5% 4.2% 19.7%

Table 3: AER Results. FCBO: full context based opti-
mization; SST: self-supervised training; GST: GIZA++
supervised training.

unsupervised BTBA models as labelled data for
supervised fine-tuning of the BTBA models.

5.2 Results

Table 3 gives alignment error rate (AER) (Och and
Ney, 2000) results of our BTBA model and com-
parison with previous work. Table 3 also gives
results of BTBA-left and BTBA-right: BTBA-left
means that the BTBA decoder only attends left-
side target context; BTBA-right means that the
BTBA decoder only attends right-side target con-
text. As shown in Table 3, the BTBA model, which
uses both left-side and right-side target context,
significantly outperformed BTBA-left and BTBA-
right. Results also show that the performance of
our BTBA model can be further improved by full
context based optimization (FCBO) and supervised
training including both self-supervised training and
GIZA++ supervised training. For DeEn and RoEn
tasks, the self-supervised BTBA (S-BTBA) model
achieved the best results, outperforming previous
neural and statistical methods. For the EnFr task,
as the statistical aligner GIZA++ performed well
and achieved better results than our unsupervised
BTBA model, the GIZA++ supervised BTBA (G-
BTBA) model achieved better results than the S-
BTBA model and also outperformed the original
GIZA++ and previous neural models.

Tables 4, 5 and 6 give results of using differ-
ent heuristics for symmetrizing alignments pro-
duced by BTBA, GIZA++ and G-BTBA, respec-
tively. For our unsupervised and self-supervised
BTBA models, grow-diagonal-final-and achieved
the best results on DeEn and RoEn tasks while
grow-diagonal-and achieved the best results on the
EnFr task. For GIZA++ and G-BTBA, the best
heuristics for different language pairs are quite dif-
ferent, though grow-diagonal-final-and generally



289

DeEn EnFr RoEn
BTBA +FCBO +SST BTBA +FCBO +SST BTBA +FCBO +SST

forward 20.2% 18.3% 14.3% 13.6% 12.8% 7.3% 24.7% 22.4% 20.5%
backward 23.8% 23.3% 17.2% 14.6% 13.3% 7.5% 27.3% 26.1% 22.0%
union 20.6% 18.3% 14.5% 15.7% 14.3% 7.5% 24.1% 21.2% 18.9%
intersection 23.7% 23.9% 17.1% 11.6% 11.2% 7.4% 28.3% 27.9% 24.0%
grow-diagonal 19.9% 18.5% 14.3% 11.2% 10.7% 6.9% 23.6% 21.6% 18.6%
grow-diagonal-and 21.0% 20.6% 17.3% 9.5% 8.9% 6.7% 26.1% 25.4% 23.6%
grow-diagonal-final 19.5% 17.3% 14.4% 14.4% 13.4% 7.4% 23.4% 20.8% 18.6%
grow-diagonal-final-and 17.8% 16.3% 14.3% 11.9% 11.2% 7.0% 22.9% 20.6% 18.5%

Table 4: Comparison of different heuristics for symmetrizing the BTBA alignments. FCBO: full context based
optimization. SST: self-supervised training.

DeEn EnFr RoEn
forward 19.0% 10.3% 25.6%
backward 22.5% 9.1% 29.7%
union 22.1% 12.9% 27.5%
intersection 19.0% 5.2% 27.8%
grow-diagonal 18.4% 7.7% 24.5%
grow-diagonal-and 18.9% 5.7% 26.1%
grow-diagonal-final 21.1% 11.7% 26.0%
grow-diagonal-final-and 18.9% 8.5% 24.2%

Table 5: Comparison of different heuristics for sym-
metrizing GIZA++ alignments.

16
18
20
22
24
26
28
30

0 10 20 30 40 50 60

freeze

no freeze

AE
R

Training step

Figure 2: DeEn test AER per training step during
FCBO with/without parameter freezing.

obtained good (best or close to best) results on
DeEn and RoEn tasks while grow-diagonal-and
generally obtained good (close to best) results on
the EnFr task.

FCBO with/without Parameter Freezing As
we explained in Section 4.2, during full context
based optimization (FCBO), we only optimize
WQ

n and WK
n in the last target-to-source attention

sub-layer and freeze all other parameters so the
BTBA model can keep the knowledge learned from
masked target word prediction. We also tested
to optimize all parameters of the BTBA model
without parameter freezing during FCBO. Figure 2
shows how the AER results on the DeEn test set
changed during FCBO with and without param-
eter freezing. Without freezing any parameters

DeEn EnFr RoEn
forward 14.5% 5.8% 21.4%
backward 17.6% 4.2% 21.9%
union 15.1% 5.3% 19.9%
intersection 17.2% 4.7% 23.6%
grow-diagonal 14.7% 4.6% 19.7%
grow-diagonal-and 17.5% 4.4% 23.7%
grow-diagonal-final 15.1% 5.3% 19.8%
grow-diagonal-final-and 14.8% 4.7% 19.8%

Table 6: Comparison of different heuristics for sym-
metrizing G-BTBA alignments.

during FCBO, the AER result (the red curve) first
increased a little, then decreased sharply, and soon
increased again. In contrast, when we freeze most
of the parameters, the AER result (the blue curve)
decreased stably and eventually got better results
(16.3%) than no parameter freezing (16.7%). Note
that the results in Figure 2 are computed based
on full target context, i.e., the target sentence is
not masked. As we explained in Section 4.1, the
BTBA model without FCBO should only be used
to infer word alignments for masked target words.
Without FCBO, using the BTBA model to infer
word alignments for unmasked target words pro-
duces poor AER results (26.9% as shown in Fig-
ure 2) compared to using the BTBA model to infer
word alignments for masked target words (17.8%
as shown in Table 3). FCBO can quickly improve
the results of using the BTBA model for inferring
word alignments for unmasked target words, and
eventually after FCBO, the BTBA model can effec-
tively use full target context to compute better word
alignment compared to the original BTBA model
without FCBO (16.3% versus 17.8% as shown in
Table 3).

Training Data for Supervised Learning Be-
cause the symmetrized BTBA alignments have bet-
ter quality compared to alignments from a single
unidirectional (forward or backward) BTBA model
as shown in Table 4, we used the symmetrized
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Figure 3: An example of gold alignments and alignments produced by our S-BTBA model.
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Figure 4: AER results of the forward BTBA model dur-
ing self-supervised training. UNI: using unidirectional
BTBA alignments as labelled training data. SYM: us-
ing symmetrized BTBA alignments as labelled training
data.

word alignments inferred from our unsupervised
BTBA models as labelled data to further fine-tune
each unidirectional BTBA model for the alignment
task through supervised training. We also tested
to use unidirectional BTBA alignments instead of
symmetrized BTBA alignments as labelled data
for supervised training. Figure 4 (the blue curve)
shows how the performance of the forward BTBA
model of the DeEn task changes during supervised
training when using unidirectional alignments in-
ferred from itself (the forward BTBA model) as
labelled training data, which demonstrates that
the forward BTBA model can be significantly im-
proved through supervised training even when the
training data is inferred from itself and not im-
proved by alignment symmetrization. Figure 4 also
shows that using symmetrized alignments for su-
pervised training (the red curve) did achieve better
results than using unidirectional alignments for su-
pervised training. In addition, it is worth noting that
supervised training can improve the BTBA model
even if the quality of the labelled training data is
somewhat worse than the BTBA model itself, e.g.
for the RoEn task, using the GIZA++ alignments
for fine-tuning the forward BTBA model through
supervised training improved the result of the for-
ward BTBA model (22.4% → 21.4% as shown in

DeEn EnFr RoEn
S-BTBA FF 12.3 11.3 18.2

CC 6.1 3.3 7.8
FC 44.4 12.8 41.1

G-BTBA FF 13.2 5.1 18.6
CC 7.1 2.9 8.3
FC 43.3 9.3 46.1

Table 7: AER for different types of alignments.

Table 4 and Table 6) even though GIZA++ pro-
duced worse alignments (24.2% in Table 3) than
the forward BTBA model.

Alignment Error Analysis We analyze the
alignment errors produced by our system and find
that most of the alignment errors are caused by
function words. As shown in the alignment exam-
ple in Figure 3, source and target corresponding
content words (e.g. “definiert” and “defines”) are
all correctly aligned by our model, but function
words such as “the”, “im” and “wird” are not cor-
rectly aligned. To give a more detailed analysis, we
compute AER results of our model for 3 different
types of alignments: FF (alignments between two
function words), CC (alignments between two con-
tent words) and FC (alignments between a function
word and a content word).8 Table 7 shows that our
models achieved significantly better results for CC
alignments than for FF and FC alignments. Func-
tion words are more difficult to align than content
words most likely because content words in a paral-
lel sentence pair usually have very clear correspond-
ing relations (such as “defines” clearly corresponds
to “definiert” in Figure 3), but function words (such
as “the”, “es” and “im”) are used more flexibly and
frequently do not have clear corresponding words
in parallel sentences, which increases the alignment
difficulty significantly.

8For each language, we judge whether a word is a function
word or a content word using a list of stopwords from nltk,
https://www.nltk.org/
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de→en en→de
SHIFT-AET 34.8 28.0
Ours 35.1 28.7

Table 8: Translation results (BLEU) for dictionary-
guided NMT.

5.3 Dictionary-Guided NMT via Word
Alignment

For downstream tasks, word alignment can be used
to improve dictionary-guided NMT (Song et al.,
2020; Chen et al., 2020). Specifically, at each de-
coding step in NMT, Chen et al. (2020) used a
SHIFT-AET method to compute word alignment
for the newly generated target word and then re-
vised the newly generated target word by encour-
aging the pre-specified translation from the dictio-
nary. The SHIFT-AET alignment method adds a
separate alignment module to the original Trans-
former translation model (Vaswani et al., 2017)
and trains the separate alignment module using
alignments induced from the attention weights
of the original Transformer. To test the effec-
tiveness of our alignment method for improving
dictionary-guided NMT, we used the alignments
inferred from our BTBA models as labelled data
for supervising the SHIFT-AET alignment module
and performed dictionary-guided translation for the
German↔English language pair following Chen
et al. (2020)’s work. Table 8 gives the translation re-
sults of dictionary-guided NMT and shows that our
alignment method led to higher translation quality
compared to the original SHIFT-AET method.

6 Conclusion

This paper presents a novel BTBA model for unsu-
pervised learning of the word alignment task. Our
BTBA model predicts the current target word by
paying attention to the source context and both
left-side and right-side target context to produce
accurate target-to-source attention (alignment). We
further fine-tune the target-to-source attention in
the BTBA model to obtain better alignments using
a full context based optimization method and self-
supervised training. We test our method on three
word alignment tasks and show that our method out-
performs both previous neural alignment methods
and the popular statistical word aligner GIZA++.
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