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Abstract

Natural language processing often faces the
problem of data diversity such as different
domains, themes, styles and so on. There-
fore, a single language model (LM) is insuffi-
cient to learn all knowledge from diverse sam-
ples. To solve this problem, we firstly pro-
pose an autoencoding topic model with mix-
ture prior (mATM) to perform clustering for
the data, where the clusters defined in seman-
tic space describe the data diversity. Having
obtained the clustering assignment for each
sample, we develop the ensemble LM (En-
sLM) with the technique of weight modula-
tion. Specifically, EnsLM contains a backbone
which is adjusted by a few modulated weights
to fit for different sample clusters. As a re-
sult, the backbone learns the shared knowledge
among all clusters while modulated weights
extract the cluster-specific features. EnsLM
can be trained jointly with mATM with flexi-
ble LM backbone. We evaluate the effective-
ness of both mATM and EnsLM on different
language understanding and generative tasks.

1 Introduction

It is common knowledge in modern natural lan-
guage processing (NLP) that natural language
varies greatly across domains, themes, styles, gen-
res and many other linguistic nuances (Van der
Wees et al., 2015; van der Wees, 2017; Niu et al.,
2017). Generally, we call such nature of language
as data diversity. Many existing works (Liu et al.,
2017; Cai and Wan, 2019; Hu et al., 2019) have
illustrated that data diversity will affect the perfor-
mance of LMs if we just train a single LM over
the entire dataset, even though fine-tuning a pre-
trained LM (that has been pre-training on a very
large corpus) such as Bert (Devlin et al., 2019) on
current task (Aharoni and Goldberg, 2020).

* Equal contribution. † Corresponding author.

(a) LDA (b) mATM

Figure 1: The distribution of samples on seman-
tic space on 4 domains (different products) of Ama-
zon dataset. The sample clustering characteristics of
mATM can reflect the data diversity (domain in this ex-
ample) in the corpus.

The domain diversity in dataset is a very com-
mon type of data diversity. In some cases, if we can
obtain a well-defined domain label for each sample,
some works (Jiang et al., 2020; Du et al., 2020;
Wright and Augenstein, 2020) try to consider the
multi-domain property of data in developing the
LMs. However, these pre-defined domain labels are
not always accurate or even available (Aharoni and
Goldberg, 2020), especially for the wild datasets,
in which data come from different sources, such as
internet news, product reviews, and daily conver-
sation. To this end, we hope to develop a LM that
can explore the diversity from data automatically.

Data selection is a commonly used strategy to
handle diversity in data (Moore and Lewis, 2010;
Axelrod et al., 2011; Duh et al., 2013; Silva et al.,
2018; Aharoni and Goldberg, 2020). This kind
of method is developed from an assumption that
samples belonging to the same cluster should own
similar characteristics. According to the cluster-
ing assignment, models can select suitable data for
training a LM for each cluster separately. Although,
to some extend, data selection is an efficient strat-
egy to alleviate the problem of data diversity, it
may bring two disadvantages as follows. Firstly,
the process of data selection is independent of the
LM learning. In other words, the gradient signal
generated by LM’s training loss can not affect the
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data selection. Secondly, data selection only tells
the hard cluster belongings of samples, ignoring a
fact that some samples may belong to more than
one clusters with soft (weighted) assignment.

Inspired by their works and to move beyond, in
this paper, we find the semantics learned by topic
modeling (Blei et al., 2003; Srivastava and Sut-
ton, 2017) can infer sample clusters to a certain
extent via K-means, but is not good enough, as
shown in Fig. 1a . To jointly consider the clus-
tering and topic modeling for better clustering (as
shown in Fig. 1b) and for joint training with the
following LM, we firstly introduce an autoencod-
ing topic model with mixture priors (mATM). For
each sample in the corpus, mATM can infer a soft
clustering assignment. In order to jointly consider
the learning of mATM with various LMs, we em-
ploy the weight modulation methods (Cong et al.,
2020; Wen et al., 2020). Specifically, as shown in
Fig. 3, given a LM as backbone, for each layer
(convolutional or fully-connected), we introduce
some modulated parameters. Guided by clustering
assignment inferred from mATM, these parameters
modulate the backbone single LM to multiple LMs,
corresponding to different clusters. Therefore, our
proposed model can be seen as a type of ensemble
learning, and hence we call it ensemble language
model (EnsLM).

Our proposed mATM and EnsLM enjoy the fol-
lowing distinguished properties:

• The mATM learns the mixture-prior latent se-
mantic space to define a soft clustering assign-
ment for each sample.

• Guided by clustering assignments that de-
scribe the data diversity, EnsLM learns both
shared and cluster-specific knowledge by
weight modulations.

• Joint training of mATM and EnsLM improves
the performance of both on many NLP tasks.

2 Related work

For NLP, topic modeling (TM) (Blei et al., 2003;
Zhou et al., 2012) and LMs are two common
regimes with their own advantages. TM can dis-
cover the interpretable global semantics that are
topics, while with pre-training on large corpus,
LMs recently achieve the SOTA performance on
many NLP tasks with more focuses on local de-
pendencies. Therefore, some works consider to

combine them to obtain benefits from both. Dieng
et al. (2016) and Wang et al. (2020) incorporate the
TM with RNN-based model to capture the long-
range dependencies. To move beyond single-layer
TM for RNNs, Guo et al. (2020) propose the re-
current hierarchical topic-guided RNN with the
help of multi-layer TM (Zhou et al., 2015; Zhang
et al., 2018). To extract explicit document seman-
tics for summarization, Wang et al. (2020) propose
three different modules to plug knowledge from
TM into Transformer-based LMs (Vaswani et al.,
2017; Devlin et al., 2018). Our work can be seen
as a parallel work to combine their advantages to-
gether but focuses on dealing with data diversity
in NLP without the ground-truth information such
as domain labels. Meanwhile, our work can be
applied for different LMs including CNNs, RNNs,
and Transformer-based models.

3 Autoencoding topic model with
mixture prior

We firstly describe one of the most popular topic
models, latent Dirichlet allocation (LDA) (Blei
et al., 2003), and its autoencoding inference (Sri-
vastava and Sutton, 2017). Inspired by them, in
order to jointly consider topic learning and sam-
ple clustering, we propose the autoencoding topic
model with mixture prior (mATM).

3.1 LDA with autoencoding inference
For a document containing D words as w =
{wd}Dd=1, given K topics Φ = [φ1, · · · ,φK ]
where φk is a probability distribution over the vo-
cabulary, LDA defines the generative process of w
in Algorithm 1, where θ ∈ RK+ is the topic propor-
tion withα as the prior parameter. After collapsing

Algorithm 1 Generative process of LDA

for each document w do
Draw topic proportion θ ∼ Dirichlet(α)
for each word at position d do

Sample a topic id ∼ Multinomial(1,θ)
Sample a word wd ∼ Multinomial(1,φid)

id, given θ and Φ, we can represent the conditional
likelihood of wd as

wd|Φ,θ ∼ Multinomial(1,Φθ). (1)

Given Φ, a popular approximation for efficient
inference of LDA is mean-field variational infer-
ence, which tries to maximize the evidence lower
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bound (ELBO) of marginal data log likelihood as

ELBO = Eq(θ)[log p(w|θ,Φ)]−KL[q(θ)||p(θ)],
(2)

where q(θ) is the variational posterior. In particu-
lar, Srivastava and Sutton (2017) propose the au-
toencoding variational inference (AEVB) (Kingma
and Welling, 2013) for LDA by using Laplace ap-
proximation (Hennig et al., 2012) for the Dirichlet
prior, and building logistic-normal (LN) encoding
posterior.

As shown in Fig. 1, we find that running clus-
tering method such as K-means on semantic space
θ can not achieve satisfactory results. For jointly
considering the learning of topics and sample clus-
tering, we propose the mATM.

3.2 Generative process of mATM

Suppose the number of clusters is C, and the clus-
tering prior parameter is π = [π1, · · · , πC ] with∑C

c=1 πc = 1, shown in Fig. 2a, mATM defines
the generative process of w in Algorithm 2. Com-

Algorithm 2 Generative process of mATM

for each document w do
Draw cluster index z ∼ Categorical(π)
Draw topic proportion θ ∼ Dirichlet(αz)
for each word at position d do

Sample a topic id ∼ Multinomial(1,θ)
Sample a word wd ∼ Multinomial(1,φid)

pared with LDA, mATM has a mixture Dirichlet
prior with parameters {αc}Cc=1. In other words,
mATM assumes that the θ of different documents
may come from different clusters, which is the
basic thought to discover the data diversity from
corpus automatically.

3.3 Variational encoder of mATM

In order to infer the parameters in mATM and
further develop the EnsLM by mATM, we intro-
duce AEVB for mATM, whose detailed structure
is shown in Fig. 2b.

3.3.1 Laplace approximation for mixture
Dirichlet prior

Although Dirichlet prior of θ is important to learn
interpretable topics (Wallach et al., 2009), it is dif-
ficult to handle it within AEVB since AEVB needs
effective reparameterization (RT) function for dis-
tributions. Inspired by the success of the Laplace

approximation for Dirichlet distribution, we pro-
pose the mixture LN (mLN) distribution as the
approximation of mixture Dirichlet distribution.

Specifically, Srivastava and Sutton (2017) have
proved that a Dirichlet distribution p(θ|α) can be
well approximated by LN distribution as

p(θ|µ,Σ) = LN (µ,Σ), (3)

where the elements in mean vector µ and diagonal
covariance matrix Σ are

µk = logαk −
1

K

K∑
i=1

logαi

Σk =
1

αk

(
1− 2

K

)
+

1

K2

K∑
i=1

1

αi
. (4)

To go further, for inference of mATM, we construct
the mLN distribution as

p(θ|µ,Σ) =
C∑
c=1

πcLN (µc,Σc)

µck = logαck −
1

K

K∑
i=1

logαci

Σc
k =

1

αck

(
1− 2

K

)
+

1

K2

K∑
i=1

1

αci
, (5)

which is used to approximate the mixture Dirichlet
prior p(θ|{αc, πc}Cc=1) in mATM. Therefore, for
each document, the prior of θ can be written as∏C
c=1 LN (µc,Σc)zc . In practice, we build the µc

and Σc as

µc = fWc
µ
(z),Σc = fWc

σ
(z), (6)

where z = [z1, · · · , zC ]. Next, we build variational
posterior for latent variables with easy RT function.

3.3.2 Variational encoding posterior
After collapsing {id}Dd=1 in mATM as (1) in LDA,
given topics Φ, for document w, there are two
latent variables that need to be inferred: θ and z.

LN posterior for θ. We build the variational pos-
terior of θ as LN distribution q(θ) = LN (µ′,Σ′)
with µ′ = fWθ

µ
(x), Σ′ = diag(fWθ

σ
(x)), where

diag converts a vector to a diagonal matrix, fWθ
µ
(·)

and fWθ
σ
(·) are two encoding networks, and x is a

type of representation for documentw such as orig-
inal words or bag of words (Bow) vector. Morevoer,
LN distribution has easy RT function as Normal
distribution.
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(a) Generation in mATM (b) Inference in mATM

Figure 2: Graphical model for the mATM, where the
circle with white color, the circle with gray color and
the rectangle denotes local latent variables, observa-
tions, and global parameters in mATM.

Gumbel softmax (GS) posterior for z. As cate-
gorical variable, z is difficult to build variational
posterior under AEVB with accurate RT function.
Instead, we employ GS distribution (Jang et al.,
2016) as the variational posterior of z for efficient
gradient propagation.

Specifically, suppose the posterior of z is
Categorical(π′), after obtaining C i.i.d samples
{g1, · · · , gC} drawn from Gumbel(0, 1), then z
can be sampled as

z = arg max
c

exp ((log(π′c) + gc)/τ)∑O
o=1 exp ((log(π′o) + go)/τ)

(7)

where τ is the temperature parameter. In order
to build encoder for π′, we let π′ = fWπ(θ,w).
For efficient gradient propagation, rather than sam-
pling z from arg max as (7), we obtain the vari-
ational posterior of soft assignment vector z =
[z1, · · · , zC ] as q(z):

[q(z)]c =
exp ((log(π′c) + gc)/τ)∑O
o=1 exp ((log(π′o) + go)/τ)

. (8)

Besides the benefit of efficient gradient back-
propagation, the soft assignment in (8) provides
clustering belonging weights. In the following En-
sLM, this property is useful for some ambiguous
samples that may belong to different clusters.

3.3.3 ELBO of mATM
We obtain the ELBO of mATM as

ELBO = Eq(θ)q(z)[log p(w|θ,Φ, z)]

−KL[q(θ)||p(θ|z)]−KL[q(z)|p(z|π)]
(9)

Similarly with Srivastava and Sutton (2017), in-
stead of sampling Φ from Dirichlet posterior in

LDA, we parameterize it as Φ = softmax(Wt),
where Wt = [w1, · · · ,wK ] and softmax is op-
erated for each topic {wk}Kk=1 to ensure them
on a probability simplex. Therefore, as shown
in Fig. 2, all the parameters of mATM are
Θ1 = {Wθ

µ,W
c
µ,W

θ
σ,W

c
σ,Wπ,Wt} that can

be learned by maximizing the ELBO in (9).

4 Ensemble language model

Recently, various advanced LMs for language un-
derstanding and generation have been introduced,
most of which do not consider the data diversities
in the corpus. In this paper, having obtained the
clustering assignment vector z from mATM, given
a single LM as backbone, we propose the ensemble
LM (EnsLM) via z-guided weight modulation. In
other words, the EnsLM can modulate the back-
bone single LM to fit for different clusters.

4.1 Efficient weight modulation

Although LMs have many different types, basically,
all of them build on convolutional (such as in CNN
(Johnson and Zhang, 2015)) or fully-connected
(such as in Transformer (Vaswani et al., 2017))
operations (ignoring the bias) as

Convolution : H2 = f(W ∗H1)

Fully-connection : H′2 = f(W′TH′1). (10)

where, H1 ∈ RIx×Iy×Cin and H′1 ∈ RCin are
the input features, W ∈ Rkx×ky×Cin×Cout and
W′ ∈ RCin×Cout are the convolutional kernel or
full-connected weights1. Suppose the number of
clusters (domains) in mATM is C, given a LM as
backbone, we introduce a few modulation parame-
ters to modulate the original parameters W or W′

for different clusters.
Specifically, shown in Fig. 3, for a convolutional

or fully-connected layer in (10), suppose that there
are two dictionaries of modulation parameters as:

A = [α1, · · · ,αC ] ∈ RCin×C

B = [β1, · · · ,βC ] ∈ RCout×C , (11)

where {αc}Cc=1 ∈ RCin and {βc}Cc=1 ∈ RCout . For
a documentw whose feature at current layer is H1,
after archiving its domain assignment z ∈ RC×1

1Fully-connected layer can be also seen as a convo-
lution layer where the convolutional kernel is W′ ∈
R1×1×Cin×Cout (Ix = Iy = 1)
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Base
parameters

Modulated
parameters

Figure 3: Illustration of weight modulation in EnsLM.

from (8), we feed H1 into the modulated layer as

Convolution : H2 = f((W � Γ) ∗H1)

Fully-connection : H′2 = f((W′T � Γ)H′1),
(12)

where Γ = αβT , α = Az ∈ RCin×1, β = Bz ∈
RCout×1, and � denotes matrix element-wise prod-
uct (with broadcasting for convolution).

Explanation of (12). Intuitively, W and W′ act
as the backbone parameters in the original single
LM, and Γ is the modulated parameters, which
moves the backbone to fit different domains. If z
is drawn from (7) that means z is a one-hot vec-
tor, then it denotes that α and β are chosen from
the dictionaries A and B, correspondingly. If z is
drawn from (8) that means z is a soft assignment
vector, then it denotes that α and β are weighted
summation of all elements in A and B, correspond-
ingly. In practice, we use the soft assignment vector
since i) it brings efficient gradient propagation dur-
ing joint training of mATM and EnsLM, and ii)
it considers the fact that there are some domain
ambiguous samples in the dataset.

It is interesting to note that although EnsLM is
developed for the problem that ground-truth priors
of data diversity (such as domain label) is unavail-
able, it can be also used when we know the priors.
For this scenario, rather than inferring the cluster-
ing assignment z from mATM via (8), we directly
set z as the real one-hot assignment vector, which
is illustrated in experiment in Sec. 5.2.

4.2 Joint training of mATM and EnsLM

Different from some strategies such as data selec-
tion that separate the calculation of assignment and
the training of LM, our proposed mATM and En-
sLM can be jointly trained in one framework.

Specifically, given a training set containing N
sample {wn}Nn=1, suppose that there is a label
{yn}Nn=1 for each sample. It should be noted that
labels {yn}Nn=1 can be different for different tasks,
such as labels for document classification, golden
summarization for abstractive summarization, or
document itself for generation. As a result, the
loss for joint training of mATM and EnsLM can be
written as

L =

N∑
n=1

Eq(θn)q(zn)[log p(wn|θn,Φ, zn)]

− Eq(zn)[LLM (wn,yn, zn)]

−KL[q(θn)||p(θn)]−KL[q(zn)|p(zn)],
(13)

where, without loss of generality, LLM de-
notes the loss for LM. All learnable parame-
ters are i) parameters of mATM: ΘmATM =
{Wθ

µ,W
θ
σ,W

u
µ ,W

u
σ ,Wπ} and ii) parameters of

LM: ΘLM . These parameters can be jointly trained
by stochastic gradient descend with low-variance
gradient estimation since LN and GS distributions
have easy RT function.

5 Experiments

In this section, we evaluate the effectiveness and ef-
ficiency of our proposed mATM and EnsLM on dif-
ferent NLP tasks including document clusters, text
classification, language generation and abstractive
document summarization. Our code is available at
https://github.com/BoChenGroup/EnsLM

5.1 Document clusters

The basic idea of mATM and EnsLM is that mATM
can automatically discover the sample clusters
which describe the data diversity. Therefore, we
firstly evaluate the document clustering perfor-
mance of mATM.

Datasets Following Yao et al. (2019), we con-
sider two widely used document clustering datasets,
20News and R8 . This two datasets2 can be
found in the open source code of Yao et al. (2019).

2https://github.com/yao8839836/text gcn

https://github.com/BoChenGroup/EnsLM
https://github.com/yao8839836/text_gcn
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20News has 20 classes and consists of 18,846 docu-
ments with a vocabulary size of 61,188, partitioned
into a training set of 11,314 documents and a test
set of 7,532 ones. R8 is a subset of the Reuters
21578 dataset, which has 8 classes and was split
into 5,485 training and 2,189 test documents. For
these two datasets, we remove the stop words and
use the 2,000 most frequent terms as the vocabu-
lary. For all methods, we set the number of clusters
as the number of classes.

Comparison models and implementation de-
tails To verify the effectiveness of mATM
for clustering, three types of document clus-
tering models are compared. i) Raw+kmeans
performs K-means on raw BoW vectors, and
PCA+kmeans uses PCA extract low-dimensional
features and then uses K-means for clustering;
ii) Train a topic model and then perform K-
means for clustering on topic proportions, where
we consider LDA+kmeans (Blei et al., 2003),
AVITM+kmeans (Srivastava and Sutton, 2017),
and PFA+kmeans (Zhou et al., 2012); iii) Deep
neural network based clustering methods, in-
cluding Deep clustering (Xie et al., 2016), and
DCN (Yang et al., 2017), which jointly consider
the feature extracting and clustering. Besides
Raw+kmeans performing clustering on original in-
puts, others are on a latent feature space (For topic
modeling, feature is the topic proportion). Fol-
lowing (Xie et al., 2016; Yang et al., 2017), the
dimension of feature space equals to the number of
clusters.

Table 1: Results of AC and NMI for document cluster-
ing task.

Model 20News R8

AC NMI AC NMI

Base+kmeans 30.2 37.0 40.1 30.2
PCA+kmeans 33.1 39.1 44.1 32.1

LDA+kmeans 37.4 38.1 53.8 36.9
PFA+kmeans 38.4 39.2 54.7 37.6

AVITM+kmeans 40.2 41.2 56.3 38.3

DeepCluster 42.2 43.5 58.23 41.02
DCN 44.8 48.4 59.34 43.2

mATM 46.44 49.86 62.15 48.12

Results Following Yang et al. (2017), since we
know the ground-truth label and set the clustering
number as the number of classes, we measure the

clustering performance by accuracy (AC) and nor-
malized mutual information (NMI), both of which
are the higher the better. The results are shown
in Table 1. Compared with the Base+kmeans,
PCA+kmeans performs better since it extracts ef-
fective principal components. Benefiting from the
learning of semantics for documents, the second
group including three types of topic modeling out-
performs PCA. Compared with the first two groups,
the third group jointly considers the feature learn-
ing and clustering, thus achieving higher AC and
NMI. Combined the advantages of topic modeling
in extracting efficient features from documents and
joint learning of feature extractor and clustering,
mATM gets the SOTA performance for document
clustering tasks on these two datasets.

The clustering results support our motivation
of using mATM to discover the data diversity. In
the following experiments, we evaluate the perfor-
mance of both mATM and EnsLM on different
language understanding and generation tasks.

5.2 Multi-domain sentiment classification

Sentiment classification (positive or negative) for
different products is a fundamental language un-
derstanding task in NLP. For this task, the data di-
versity mainly arises from different domains (prod-
ucts) (Blitzer et al., 2007), which brings the prob-
lem that data from different domains may have
different distributions.

Datasets To evaluate the performance of mATM
and EnsLM in capturing the multi-domain property
for sentiment classification, following Cai and Wan
(2019), we perform experiments on the dataset re-
leased by Liu et al. (2017), which consists of prod-
uct and movie reviews in 16 different domains. The
data in each domain is randomly split into training
set, development set and test set according to the
proportion of 70%, 10%, 20%, whose statistics of
the 16 datasets are listed in Appendix A.1.

Comparison models and implementation de-
tails Following (Cai and Wan, 2019), we firstly
consider three base models, BiLSTM (Adhikari
et al., 2019), TextCNN (Kim, 2014) and BERT
(Devlin et al., 2019), which perform classifica-
tion on every domains separately. Secondly, com-
bining data from different domains together, we
train the above three models named as BiLSTM-
mix, TextCNN-mix and DocBERT-mix. Hav-
ing obtained the ground-truth domain label, the
previous works regard the multi-domain problem
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as the multi-task learning (MTL) including DA-
MTL (Zheng et al., 2018), ASP-MTL (Liu et al.,
2017),and MDAE (Cai and Wan, 2019). All these
works are developed from BiLSTM model. For
our proposed EnsLM, we use TextCNN, BiLSTM
and DocBERT as the backbone of EnsLM. We
perform experiments on two types of EnsLM: i)
with ground-truth (GT) domain label, we directly
set z as the one-hot assignment vector (do not in-
fer z from mATM), which is named as BiLSTM-
EnsLM-GT, TextCNN-EnsLM-GT, and BERT-
EnsLM-GT; ii) without GT domain label, we use
mATM to infer z , which is named as BiLSTM-
EnsLM-mATM, TextCNN-EnsLM-mATM, and
BERT-EnsLM-mATM. For model using mATM,
we set the number of topics as 16. More detailed
settings and implementation details can be found
in Appendix B.1.

Table 2: Accuracy of sentiment classification.

Models ACC Models ACC

TextCNN 84.3 TextCNN-Mix 85.3
BiLSTM 83.7 BiLSTM-Mix 86.6

BERT 88.1 BERT-Mix 91.3

TextCNN-EnsLM-GT 88.2 DA-MTL 88.2
BiLSTM-EnsLM w-GT 89.4 ASP-MTL 87.2

BERT-EnsLM w-GT 92.9 MDAE 90.1

TextCNN-EnsLM-mATM 88.8
BiLSTM-EnsLM-mATM 90.2 - -

BERT-EnsLM-mATM 93.5

Results The results of averaged accuracy on all
domains are given in Table 2, where the results
except ours are obtained from Cai and Wan (2019).
Comparing results on the first row, we can see that
joint training models on all domains outperform
separate training on each domain. Compared with
BiLSTM-mix, having obtained the GT domain la-
bel, DA-MTL, ASP-MTL and MDAE (all of them
are developed based on BiLSTM) consider the real
domain knowledge in word embedding, feature
extractor and attention layers, achieving higher ac-
curacy. Similarly, with GT domain label, three
models equipped with our proposed EnsLM per-
forms better than their basic counterparts with a
large margin. Assuming that GT domain labels
are unavailable, we use mATM to infer the clus-
tering assignment to guide the learning of EnsLM,
which obtains the SOTA performance on all three
basic models, even better than the models using GT
domain label. We attribute it to the fact that com-

Table 3: Comparison of perplexity on four datasets.

Methods APNEWS IMDB BNC COCO

LSTM 60.13 65.16 95.73 21.34
Transformer-XL 58.73 60.11 97.14 19.32

TGVAE 48.73 57.11 87.86 -
rGBN-RNN 42.71 51.36 79.13 -

GPT-2 35.78 44.71 46.04 13.58

GPT-2-EnsLM-mATM 23.67 35.48 40.79 12.45

pared with the hard GT domain label, mATM infers
the soft clustering assignment, which not only re-
flect the domain characteristic of samples but also
describe the samples having confused domain char-
acteristics. For example samples from DVD may
be similar with the ones from Electronics.

5.3 Language generation

Datasets In order to verify the effectiveness of
our model on datasets of different lengths, we con-
sider four publicly available corpora: APNEWS,
IMDB, BNC, and COCO. Following Lau et al.
(2017), we tokenize words and sentences using
Stanford CoreNLP (Klein and Manning, 2003),
lowercase all word tokens, and filter out word to-
kens that occur less than 10 times. For the topic
model, we additionally exclude stopwords. All
these corpora are partitioned into training, valida-
tion, and testing sets, whose summary statistics are
provided in Appendix A.2.

Comparison models and implementation de-
tails We consider the following baseline mod-
els: LSTM, A standard LSTM language
model (Hochreiter and Schmidhuber, 1997);
Tansnsformer-XL enables learning dependency
beyond a fixed length by introducing a recurrence
mechanism and a novel position encoding scheme
into the Transformer architecture (Dai et al., 2019);
TGVAE (Wang et al., 2019), combines a varia-
tional auto-encoder based natural sequence model
with a neural topic model; rGBN-RNN (Guo et al.,
2020), extracts recurrent hierarchical semantic
structure via a dynamic deep topic model to guide
natural language generation; GPT-2 (Radford et al.,
2019) is a generative pre-training of a Transformer-
based LM on a diverse set of unlabeled text. For
our proposed model, GPT-2-EnsLM-mATM first
uses mATM to infer semantic clusters for each sam-
ple, and then introduce this diversity information to
pre-trained GPT2 by efficient weight modulation
naturally. In the experiments, we use the Adam op-
timizer (Kingma and Ba, 2014) with learning rate
10−6. The length of an input sample is limited to
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Cluster # Representive topics Original sentences Generated sentences

1
['kite', 'flying', 'sky’, 'air’, 'holding’]

['man', 'child', 'people', 'person', 'young’]
['beach’, 'water', 'outside', 'near’, 'park']

A child flying a pink kite on the beach.
Person flying a kite high over a sea inlet.
The bird is on a branch on the tree.

A man in a yellow and white outfit flying a kite.
A young child flying a kite with a frisbee in the air. 
A person flying a kite near the water in a body of water. 

2
['cake', 'slice', 'piece', 'chocolate', 'cream’]

['table', 'plate', 'fork', 'cup', 'eaten’]
['white’, 'large', 'small’, 'blue', ‘red']

A women receives a cake that is blue.
A piece of a chocolate cake on a plate. 
A small bird perched on a thin branch.

Two cakes with frosting on top sit on a red plate.
A sandwich on a platter with a pickle and some fruit.
A cake that has various decorations on it.

5
['baseball', 'bat', 'player', 'ball', 'game’]

['man', 'holding', 'batter', 'swinging', 'field’] 
['pitch', 'boy', 'plate', 'catcher', 'swing’]

A baseball player stands with a baseball bat.
A baseball player is holding a baseball bat.
A baseball player is swinging a baseball bat.

A man on a baseball field swinging a bat.
A baseball player swinging a bat on a field.
A batter is getting ready to hit the ball.

Figure 4: Example topics and their segment clusters inferred by a mATM from the COCO corpus, and the generated
sentences under segment cluster guidance. For each cluster, top topics are shown in the column 2 respectively,
original sentence are shown in the column 3 , and generated sentences are shown in the column 4.

1024. We set the mini-batch size as 8, the number
of training epochs as 5. The clustering number of
mATM is set to 64 for the first three datasets, while
80 for COCO dataset. More detailed settings and
implementation details can be found in Appendix
B.2

Results For fair comparison, we use standard
language model perplexity as the evaluation met-
ric. The results of all models on four datasets
are given in Table 3, where the results of exist-
ing models are obtained from Guo et al. (2020).
In the first group, Transformer-XL gets better re-
sult, which shows that the transformer-based model
have better modeling capabilities. In terms of cap-
turing the document global semantic information,
the second group can improve performance sig-
nificantly, which indicates that the topic model is
effective in capturing document global information.
Pre-training on massive data, the GPT-2 can ob-
tains better results compared with above models.
Although GPT-2 gets a good result, the GPT-2-
EnsLM-mATM can improve performance signif-
icantly by capturing data diversity. It illustrates
that even pre-training on large scale of corpus, En-
sLM can further improve the performance of pre-
trained LM via exploring data diversity. A similar
phenomenon also appeared in the experiments con-
ducted by Gururangan et al. (2020)

Sentence generation of EnsLM Given the
learned GPT-2-EnsLM-mATM, we can sample the
sentences conditioned on semantic clusters. Shown
in the in Fig. 5, we select the top-3 topics to rep-
resent this cluster, and select original sentences
according to the clustering results. we can see that
most of the generated sentences conditioned on a
semantic clusters are highly related to the given
topics in terms of their semantic meanings but not
necessarily in key words, indicating the LM is suc-
cessfully guided by the cluster assignment. These

Table 4: ROUGE scores on CNN/DM and Xsum test
set, where the results are cited from Liu and Lapata
(2019) and Wang et al. (2020)

.
Model CNN/DM XSUM

R1 R2 RL R1 R2 RL

PTGEN 36.44 15.66 33.42 29.70 9.21 23.24
PTGEN+Cov 39.53 17.28 36.38 28.10 8.02 21.72
Transformer 40.21 17.76 37.09 29.41 9.77 23.01

BertSUM 42.13 19.60 39.18 38.81 16.50 31.27
BertSUM+TA 43.06 20.58 39.67 39.77 17.39 32.39

BertSUM+EnsLM 43.34 20.78 39.83 40.01 17.62 32.57

observations suggest that GPT-2-EnsLM-mATM
has successfully captured syntax and global seman-
tics simultaneously for natural language generation.
Similar to Fig. 5, we also provide other semantic
clusters generated sentences in Appendix C.

5.4 Abstractive summarization

Datasets We evaluate the effectiveness and ef-
ficiency of proposed model on two benchmark
datasets, including the CNN/DailyMail (CNN/DM)
(Hermann et al., 2015) and the XSum (Narayan
et al., 2018). The summary styles of these datasets
varies from highlights, composed of several sen-
tences, to very brief one sentence. See more
detailed descriptions in Appendix A.3. We per-
form data pre-processing following Liu and Lapata
(2019).

Comparison models and implementation de-
tails We consider some baseline models, in-
cluding LSTM based models PTGEN and PT-
GEN+Cov (See et al., 2017); Transformer based
models Tansformer, BertSUM (Liu and Lapata,
2019); and BertSUM+TA which combine pre-
trained model with topic model (Wang et al., 2020).
We combine EnsLM with BertSUM on the abstrac-
tive summarization task. The clustering number of
mATM is set to 64 for all datasets. Given BertSUM
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checkpoints3 on CNN/DM and XSum provided by
Liu and Lapata (2019), we further fine-tune Bert-
SUM+EnsLM. Besides, we adopt the settings in
the BertSUM. Following Liu and Lapata (2019), in
the test stage, we use beam search with size 5, se-
lect the top-3 checkpoints based on their evaluation
loss on the validation set, and report the averaged
results on the test set. More detailed settings and
implementation details can be found in Appendix
B.3.

Results ROUGE scores on CNN/DM, XSum
have been exhibited in Tables 4, respectively. Fo-
cusing on the models without pre-training in the
first group, Transformer achieves better perfor-
mance compared with LSTM-based model, at-
tributing to stronger sequence modeling capabil-
ities. Further, the outperformance of BertSUM
illustrates the fact that the combination of a pre-
trained Bert encoder and a Transformer decoder is
a better choice of sequence-to-sequence structure.
Despite owning the same structure as the BertSUM,
the BertSUM+TA employs a topic model to cap-
ture global document segment diversity, and achiev-
ing higher scores. Different from BertSUM+TA
that introduces document semantic diversity by
adding topic information, BertSUM+mATM com-
bines BertSUM with EnsLM model, result in a
better performance. Compared with BertSUM+TA,
the performance improvement of our model is not
enough promising is because they have been incor-
porated the topical information into the BertSum
model which considering the segment diversity and
contextual information. Note that the performance
of our model improves significantly compared with
BertSum, which can prove the effectiveness of our
model.

6 Conclusion

In this paper, we first propose mATM to infer latent
semantic clusters from raw text corpus, and then
combine it with LM with efficient weight modula-
tion, resulting in a more powerful EnsLM, which
can be naturally extended to other LMs. In the fu-
ture, we will study the effectiveness of EnsLM on
other NLP tasks, such as the multi domain transla-
tion, and investigate whether EnsLM can be applied
to the pre-training stage of Transformer.

3https://github.com/nlpyang/PreSumm
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Appendix

A Dataset descriptions

A.1 Multi-domain sentiment classification
Dataset:

we perform experiments on the dataset4 released
by Liu et al. (2017), which consists of product
and movie reviews in 16 different domains. The
data in each domain is randomly split into training
set, development set and test set according to the
proportion of 70%, 10%, 20%. Statistics of the 16
datasets is shown in Table. 5.

A.2 Language Generation Datasets
In experiments, we evaluate the models on four
benchmark language generation datasets. They
are the APNEWS, IMDB, BNC, and COCO Cap-
tion. APNEWS is a collection of Associated Press
news articles from 2009 to 2016. IMDB is a set
of movie reviews collected by Maas et al. (2011).
BNC is the written portion of the British National
Corpus (British National Corpus, 2007), which
contains documents from journals, books,letters,
essays, memoranda, news and other types of text.
COCO Caption has 80 object categories, and there
are caption to describe the scene of the image (Lin
et al., 2014). All these corpora are partitioned into
training, validation, and testing sets, whose sum-
mary statistics are provided in Table. 6. The AG-
NEWS, IMDB and BNC datasets can be found in
the release code5 of ?. And for COCO dataset, we
will give processed dataset in our release code.

A.3 Abstractive Summarization Dataset
In experiments, we evaluate the models on two
benchmark summarization datasets. The datasets6

4https://github.com/FrankWork/fudan mtl reviews
5https://github.com/jhlau/

topically-driven-language-model
6https://github.com/nlpyang/PreSumm

can be fround in the release code of Liu and La-
pata (2019) They are the CNN/DailyMail news
(CNN/DM) (Hermann et al., 2015) and XSum
(Narayan et al., 2018).

CNN/DM CNN/DM consists of news and asso-
ciated sentence highlights, that is a brief overview
composed of a few sentences. Following the stan-
dard training/validation/testing splits in Hermann
et al. (2015) without anonymizing entities, we per-
form our experiments. We splits sentences using
the Stanford CoreNLP toolkit7 and pre-process the
dataset following Liu and Lapata (2019). .

XSum XSum includes 226, 711 news ar-
ticles, each of which is associated with
a one-sentence summary. We use the
standard training/validation/testing splits
(204, 045/11, 332/11, 334) and follow the
pre-processing in Narayan et al. (2018). To satisfy
the maximum capacity of the encoder in the base
model, such as 512 for BertSUM, we use truncated
document as the encoder input. Statistics of
summarization datasets is shown in Table. 7.

B Implementation Details

B.1 Multi-domain sentiment classification
Models

Note that we remove stop words to obtain the bag-
of-word (BOW) vector for each document, and then
use the BOW vectors to infer the mATM model.

CNN/BiLSTM-EnSLM-mATM: To reduce
both computation and storage costs, we introduce
a learnable key vector as W (t), which can
be combined with mATM by efficient weight
modulation, leading to a CNN/BiLSTM-EnSLM-
mATM. More specifically, we adopt 1-layer
CNN/BiLSTMCNN with the channel/hidden size
of 150 in CNN/BiLSTM-EnSLM-mATM equipped
with 300-dimensional word embedding vecotrs.
For optimization, the Adam optimizer is utilized
here (Kingma and Ba, 2014) with a learning rate of
0.001. To avoid overfitting, we utilize the dropout
and set its rate as 0.5. We set the size of minibatch
as 50 in all experiments.

Bert-EnsLM-mATM: As a transformer-based
model, the main component of Bert is query, key
and value layer. And these component as MLP
layer, we can combine Bert with mATM by effi-
cient weight modulation easily. Specially, to re-

7https://stanfordnlp.github.io/CoreNLP/

https://github.com/FrankWork/fudan_mtl_reviews
https://github.com/jhlau/topically-driven-language-model
https://github.com/jhlau/topically-driven-language-model
https://github.com/nlpyang/PreSumm
https://stanfordnlp.github.io/CoreNLP/
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Table 5: Statistics of the 16 datasets. The columns 2-4 denote the number of samples in training, development, and
test sets. The last two columns represent the average length and vocabulary size of corresponding dataset.

Dataset Train Dev. Test Avg.L Vocab Dataset Train Dev. Test Avg.L Vocab

Books 1400 200 400 159 62K Toys 1400 200 400 90 28K
Elec. 1398 200 400 101 30k Video 1400 200 400 156 57K
DVD 1400 200 400 173 69K Baby 1300 200 400 104 26K

Kitchen 1400 200 400 89 28K Mag. 1370 200 400 117 30K

Apparel 1400 200 400 57 21K Soft. 1315 200 400 129 26K
Camera 1397 200 400 130 26K Sports. 1400 200 400 94 30K
Health 1400 200 400 81 26K IMDB 1400 200 400 269 44K
Music 1400 200 400 136 60K MR 1400 200 400 21 12K

Table 6: Statistics of data for language generation task.

Collection Training Development Test

Docs Tokens Docs Tokens Docs Tokens

AGNEWS 50K 15M 2K 0.6M 2K 0.6M
IMDB 75K 20M 12.5K 0.3M 12.5K 0.3M
BNC 15K 18M 1K 1M 1K 1M

COCO 400K 4.1M 14K 0.2M 202K 2.1M

Table 7: Statistics of summarization datasets.

Datasets Train Dev. Test Doc Avg.L Sum.Avg.L

CNN 90,266 1,220 1,093 760.50 45.70
DM 196,961 12,148 10,396 8080.04 54.65

XSUM 204,045 11,332 11,334 431.07 23.26

duce the amount of new parameters, we only intro-
duce segment diversity information to query layer.
For optimization, the Adam optimizer is utilized
here (Kingma and Ba, 2014) with a learning rate
of 0.00001. To avoid overfitting, we utilize the
dropout and set its rate as 0.3. We set the size of
minibatch as 16 in all experiments.

B.2 Language Generation Models

For language generation, we propose GPT-2-
EnsLM-mATM which combine mATM with pre-
trained model GPT-2. And we introduce segment
diversity information to query, key and value for
each layer. We use the Adam optimizer (Kingma
and Ba, 2014) with learning rate 10−6. The length
of an input sample is limited to 1024. We set the
mini-batch size as 8, the number of training epochs
as 5. The clustering number of mATM is set to
64 for the first three datasets, while 80 for COCO
dataset.

B.3 Abstractive Summarization Models:

For abstractive summarization, we combine Bert-
Sum with mATM, which include a pretrained en-
coder and a transformer decoder. Specially, we
introduce segment diversity information to query,
key and value for each layer. We set the hyper-
parameters following the original papers and their
public codes, where BertSUM8 is referred to Liu
and Lapata (2019). We fine-tune all models in four
Nvidia GeForce RTX2080 TI GPUs. The experi-
ments are performed with mini-batch size including
200 summary tokens with gradient accumulation
every six iterations. Model checkpoints were saved
and evaluated on the validation set every 1000 up-
dates. Totally, we update the model 250, 000 times.
Following Liu and Lapata (2019), we select the top-
3 checkpoints based on their evaluation loss on the
validation set, and report the averaged results on
the test set. During decoding we used beam search

8https://github.com/nlpyang/BertSUM

https://github.com/nlpyang/BertSUM
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Figure 5: Example topics and their segment clusters inferred by a mATM from the COCO corpus, and the generated
sentences under segment cluster guidance. For each cluster, original sentence are shown in the column 2, and
generated sentence are shown in the column 3.

with size 5, and tuned the α for the length penalty
between 0.6 and 1 on validation set. It is worth
noting that our decoder applies neither a copy nor
a coverage mechanism, despite their popularity in
abstractive summarization.

C More Generation Examples

As shown in Fig. 5, we provide semantic clusters
generated sentences by GPT-2-EnsLM-mATM on
the coco corpus.


