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Abstract

Unsupervised machine translation, which uti-
lizes unpaired monolingual corpora as training
data, has achieved comparable performance
against supervised machine translation. How-
ever, it still suffers from data-scarce domains.
To address this issue, this paper presents a
novel meta-learning algorithm for unsuper-
vised neural machine translation (UNMT) that
trains the model to adapt to another domain
by utilizing only a small amount of training
data. We assume that domain-general knowl-
edge is a significant factor in handling data-
scarce domains. Hence, we extend the meta-
learning algorithm, which utilizes knowledge
learned from high-resource domains, to boost
the performance of low-resource UNMT. Our
model surpasses a transfer learning-based ap-
proach by up to 2-3 BLEU scores. Extensive
experimental results show that our proposed
algorithm is pertinent for fast adaptation and
consistently outperforms other baselines.

1 Introduction

Unsupervised neural machine translation (UNMT)
leverages unpaired monolingual corpora for its
training, without requiring an already labeled,
parallel corpus. Recently, the state of the art in
UNMT (Conneau and Lample, 2019; Song et al.,
2019; Ren et al., 2019) has achieved comparable
performances against supervised neural machine
translation (NMT) approaches. In contrast to super-
vised NMT, which uses a parallel corpus, training
the UNMT model requires a significant number of
monolingual sentences (e.g., 1M-3M sentences).
However, the prerequisite limits UNMT’s appli-
cability to low-resource domains, especially for
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domain-specific document translation tasks. Since
gathering or creating those documents requires do-
main specific knowledge, the monolingual data
themselves are scarce and expensive. In addition,
the minority languages (e.g., Uzbek and Nepali)
make the problem of data scarcity even worse.

Yet, UNMT for low-resource domains is not an
actively explored field. One naive approach is to
train a model on high-resource domains (e.g., econ-
omy and sports) while hoping the model will gen-
eralize on an unseen low-resource domain (e.g.,
medicine). However, recent studies have shown
that non-trivial domain mismatch can significantly
cause low translation accuracy on supervised NMT
tasks (Koehn and Knowles, 2017).

Another reasonable approach is transfer
learning—particularly, domain adaptation—which
has shown performance improvements in the su-
pervised NMT literature (Freitag and Al-Onaizan,
2016; Zeng et al., 2019). In this approach, the
model is first pretrained using data from existing
domains and then finetuned on a new domain.
However, this approach can suffer from overfitting
and catastrophic forgetting due to a small amount
of training data and a large domain gap.

As an effective method for handling a small
amount of training data, meta-learning has shown
its superiority in various NLP studies such as di-
alog generation, machine translation, and natural
language understanding (Qian and Yu, 2019; Gu
et al., 2018; Dou et al., 2019). In general, the meta-
learning approach is strongly affected by the num-
ber of different tasks where tasks are defined as lan-
guages or domains from the aforementioned stud-
ies. However, in practice, the previous studies may
struggle to gather data to define tasks because they
rely on a supervised model that requires labeled
corpora. In this respect, we argue that applying a
meta-learning approach to the unsupervised model
is more feasible and achievable than the supervised
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model because it can define multiple different tasks
with unlabeled corpora. Therefore, we introduce
a new meta-learning approach for UNMT, called
MetaUMT, for low-resource domains by defining
each task as a domain.

The objective of MetaUMT is to find the opti-
mal initialization for the model parameters that can
quickly adapt to a new domain even with only a
small amount of monolingual data. As shown in
Fig. 1 (a), we define two different training phases,
a meta-train and a meta-test phase, and simulate
the domain adaption process to obtain optimally
initialized parameters. Specifically, the meta-train
phase adapts model parameters to a domain while
the meta-test phase optimizes the parameters ob-
tained from the meta-train phase. After obtaining
optimally initialized parameters through these two
phases, we fine-tune the model using a target do-
main (i.e., a low-resource domain).

Although the initial parameters optimized
through MetaUMT are suitable for adapting to a
low-resource domain, these parameters may not
fully maintain the knowledge of high-resource
domains. Concretely, in the meta-test phase,
MetaUMT optimizes initial parameters using the
adapted parameters; however, it discards meta-train
knowledge used to update adapted parameters in
the meta-train phase. Therefore, instead of validat-
ing the same domain used in the meta-train phase,
we intend to inject generalizable knowledge into
the initial parameters by utilizing another domain
in the meta-test phase. This prevents overfitting
from the data scarcity issue.

As shown in Fig. 1 (b), we propose an improved
meta-learning approach called MetaGUMT for low-
resource UNMT by explicitly infusing common
knowledge across multiple source domains as well
as generalizable knowledge from one particular do-
main to another. In other words, we do not only
encourage the model to find the optimally initial-
ized parameters that can quickly adapt to a target
domain with low-resource data, but also encour-
age the model to maintain common knowledge
(e.g., general words such as determiners, conjunc-
tions, and pronouns) which is obtainable from mul-
tiple source domains. Furthermore, due to a small
amount of training data in a low-resource domain,
the model can suffer from overfitting; however, we
attempt to handle overfitting by leveraging general-
izable knowledge that is available from one domain
to another. Our proposed meta-learning approach

demonstrates consistent improvements over other
baseline models.

Overall, our contributions can be summarized as
follows:

• We apply a meta-learning approach for
UNMT. To the best of our knowledge, this is
the first study to use a meta-learning approach
for UNMT, where this approach is more suit-
able to a UNMT task than a supervised one.

• We empirically demonstrate that our enhanced
method, MetaGUMT, shows fast convergence
on both pre-training (i.e., meta-learning with
source domains) and finetuning (i.e., adapting
to a target domain).

• The model trained with MetaGUMT consis-
tently outperforms all baseline models includ-
ing MetaUMT. This demonstrates that find-
ing optimally initialized parameters that in-
corporate high-resource domain knowledge
and generalizable knowledge is significant in
handling a low-resource domain.

2 Related Work

Our study leverages two components from the
natural language processing (NLP) domain: low-
resource NMT and meta-learning. In this section,
we discuss previous studies by concentrating on
these two main components.

2.1 Low-Resource Neural Machine
Translation

Based on the success of attention-based mod-
els (Luong et al., 2015; Vaswani et al., 2017),
NMT obtains significant improvement in numer-
ous language datasets, even showing promising
results (Wu et al.) in different datasets. However,
the performance of NMT models depends on the
size of the parallel dataset (Koehn and Knowles,
2017). To address this problem, one conventional
approach is utilizing monolingual datasets.

Recent studies point out the difficulty of gather-
ing parallel data, whereas the monolingual datasets
are relatively easy to collect. To facilitate mono-
lingual corpora, several studies apply dual learn-
ing (He et al., 2016), back-translation (Sennrich
et al., 2016b), and pretraining the model with bilin-
gual corpora (Hu et al., 2019; Wei et al., 2020).
Furthermore, as a challenging scenario, recent stud-
ies propose the UNMT methods without using any
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Figure 1: An illustration of a high-level training process for both MetaUMT and MetaGUMT. In the case of
MetaGUMT, the training process is divided into two different phases, a meta-train phase and a meta-test phase.
The objective in the meta-train phase is to obtain adapted parameters (i.e., φ) by minimizing a meta-train loss (i.e.,
L[Dtr

N ]) from initial unadapted parameters. N represents the number of domains; Dtr indicates meta-train data.
In the meta-test phase, we optimize initial parameters θ through φ by minimizing the two losses, meta-train and
meta-test losses, i.e.,

∑
L[Dtr

N ] and
∑
L[Dts

N ;Dts
other]. Dts represents meta-test data; Dother is the domain data

other than DN .

parallel corpora (Lample et al., 2018a; Artetxe
et al., 2018; Yang et al., 2018). The UNMT mod-
els show comparable performances by extending
the back-translation method (Conneau et al., 2018)
and incorporating methods such as shared Byte
Pair Encoding (BPE) (Lample et al., 2018b) and
cross-lingual representations (Conneau and Lam-
ple, 2019), following those of the supervised NMT.
However, since these approaches require plenty of
monolingual datasets, they suffer in a low-resource
domain.

Transferring the knowledge from high-resource
domains to a low-resource domain is one alterna-
tive way to address this challenge. A few studies
concentrate on transferring the knowledge from
the rich-resource corpora into the low-resource
one. Several models (Chu and Wang, 2018; Hu
et al., 2019) show better performances than when
trained with the low-resource corpora only. How-
ever, these approaches are applicable in specific
scenarios where one or both of the source and tar-
get domains consist of a parallel corpus.

To address the issues, we define a new task as
the unsupervised domain adaptation on the low-
resource dataset. Our work is more challenging
than any other previous studies, since we assume
that both the low-resource target domain and the
source domain corpora are monolingual.

2.2 Meta Learning

Given a small amount of training data, most of
the machine learning models are prone to overfit-
ting, thus failing to find a generalizable solution. To
handle this issue, meta-learning approaches seek
for how to adapt quickly and accurately to a low-
resource task, and show impressive results in var-
ious domains (Finn et al., 2017; Javed and White,

2019). The meta-learning approaches aim to find
the optimal initialization of the model parameters
that adapts the model to a low-resource dataset in
a few iterations of training (Finn et al., 2017; Ravi
and Larochelle, 2016). Owing to the success of the
meta learning, recent studies apply the meta learn-
ing to low-resource NMT tasks, including multi-
lingual NMT (Gu et al., 2018) and the domain
adaptation (Li et al., 2020). These studies assume
that all the training corpora consist of the paral-
lel sentences. However, a recent work (Li et al.,
2018) utilizes the meta learning approach to find a
generalized model for multiple target tasks. How-
ever, it is not focused on adapting a specific target
task since its main goal is to handle the target task
without using any low-resource data.

Our study attempts to address the low-resource
UNMT by exploiting meta-learning approaches.
Moreover, we present two novel losses that encour-
age incorporating high-resource knowledge and
generalizable knowledge into the model parame-
ters. Our proposed approaches show significant
performance improvements in adapting to a low-
resource target domain.

3 Unsupervised Neural Machine
Translation

In this section, we first introduce the notation of
the general UNMT models. We then describe the
three steps for the UNMT task: initialization, lan-
guage modeling, and back-translation. On these
three steps, we illustrate how each step contributes
to improving the performance of UNMT.

Notations. We denote S and T as a source and
a target monolingual language dataset. x and y
represent the source and the target sentences from
S and T . We assume the NMT model is parame-
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Figure 2: Overall training process of our proposed MetaGUMT. (A) A single domain (e.g., Law) is first chosen to
compute LDi

ag with model parameters θ in the meta-train phase and LDi

cd−out′ with temporary model parameters φi

in the meta-test phase. (B) Another domain (e.g., IT) is sampled to compute LDi

cd−other based on φi in the meta-test
phase. (C) Temporary model parameters φi is updated from θ to learn the knowledge of high-resource domains.
(D) Cross-domain and aggregated meta-train loss functions are computed across all out-domain datasets. (E) The
optimal initialization θ is obtained by minimizing Lag and Lcd.

terized by θ. We also denote Ms→s and Mt→t as
language models in a source and a target language,
respectively, while denotingMs→t andMt→s as the
machine translation models from the source to the
target language and vice versa.

Initialization. A recent UNMT model (Lample
et al., 2018b) is based on a shared encoder and de-
coder architecture for the source and the target lan-
guage. Due to the shared encoder and decoder for
each language, initializing the model parameters
of the shared encoder and decoder is an important
step for competitive performances (Conneau et al.,
2018; Lample et al., 2018a; Artetxe et al., 2018;
Yang et al., 2018). Conneau and Lample (2019)
propose the XLM (cross-lingual language model)
to initialize parameters, showing significantly im-
proved performances for UNMT. Among various
initialization methods, we leverage the XLM as our
initialization method.

Language modeling. We use a denoising auto-
encoder (Vincent et al., 2008) to train the UNMT
model, reconstructing an original sentence from
a noisy one in a given language. The objective
function is defined as follows:

Llm =Ex∼S [− logMs→s(x|C(x))]+

Ey∼T [− logMt→t(y|C(y))],
(1)

where C is a noise function described in (Lam-
ple et al., 2018b), which randomly drops or swaps
words in a given sentence. By reconstructing the
sentence from the noisy sentence, the model learns
the language modeling in each language.

Back-translation. Back-translation helps the
model learn the mapping functions between the
source and the target language by using only the
monolingual sentences. For example, we sample
a sentence x and y from source language S and
target language T . To make pseudo-pair sentences
from the sampled source sentence, we deduce the
target sentence from the source sentence, such that
y′ = Ms→t (x), resulting in the pseudo parallel
sentence, i.e., (x, y′). Similarly, we obtain (x′, y),
where x′ is the translation of a target sentence, i.e.,
Mt→s (y). We do not back-propagate when we gen-
erate the pseudo-parallel sentence pairs. In short,
the back-translation objective function is

Lbt =Ey∼T [−logMs→t
(
y | x′

)
]+

Ex∼S [−logMt→s
(
x | y′

)
].

(2)

4 Proposed Approach

This section first explains our formulation of a low-
resource unsupervised machine translation task
where we can apply a meta-learning approach.
Afterwards, we elaborate our proposed methods,
MetaUMT and MetaGUMT. We utilize the meta-
learning approach to address a low-resource chal-
lenge for unsupervised machine translation. More-
over, we extend MetaUMT into MetaGUMT to
explicitly incorporate learned knowledge from mul-
tiple domains.

4.1 Problem Setup
Finn et al. (2017) assume multiple different tasks to
find the proper initial parameters that can quickly
adapt to a new task using only a few training
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examples. In this paper, we consider tasks in
the meta-learning as domains, where Dout =
{D0

out, ...,Dnout} represents n out-domain datasets
(i.e., source domain datasets), and Din indicates
an in-domain dataset (i.e., a target domain dataset),
which can be the dataset in an arbitrary domain
not included in Dout. Each domain in both Dout
and Din is assumed to be composed of unpaired
language corpora, and we create Din as a low-
resource monolingual dataset 1. To adapt our model
to the low-resource in-domain data, we finetune the
UNMT model by minimizing both the losses de-
scribed in Eqs. (1) and (2) with Din.

4.2 MetaUMT

In order to obtain an optimal initialization of the
model parameters, allowing the model to quickly
adapt to a new domain with only a small number
of monolingual training data, MetaUMT uses two
training phases, the meta-train phase and the meta-
test phase. During the meta-train phase, the model
first learns domain-specific knowledge by updating
initial model parameters θ to temporary model pa-
rameters φi, i.e., adapted parameters. Then, in the
meta-test phase, the model learns the adaptation by
optimizing θ with respect to φi. From the domain
adaption perspective, two phases simulate the do-
main adaption process. The model first adapts to a
specific domain through the meta-train phase, and
this adaption is evaluated in the meta-test phase.

Meta-train phase. We obtain φi for each i-th
out-domain dataset by using one-step gradient de-
scent, i.e.,

φi= θ − α∇θLs
Di

out
(θ), (3)

where LsDi
out

is represented as

LsDi
out

= Llm
Di

out
(θ) + Lbt

Di
out

(θ). (4)

Diout is the i-th out-domain dataset, and α is the
learning rate for the meta-train phase. As previ-
ously discussed in Section 3, the language mod-
eling and back-translation losses are essential in
facilitating the unsupervised machine translation.
Hence, Ls consists of Llm and Lbt, where each loss
function is computed with Diout.

Meta-test phase. The objective of the meta-test
phase is to update θ using each φi learned from the

1We randomly sample the 5,000 tokens (∼ 300 sentences)
from the in-domain training dataset.

meta-train phase by using each Ls
Di

out′

2. We call

this update as a meta-update, defined as

θ ← θ − β∇θ
n∑
i=0

Ls
Di

out′
(φi), (5)

where β is another learning rate in the meta-test
phase. Since Eq. (5) requires the second-order gra-
dient, the equation is simplified with the first-order
gradient by replacing the second-order term. Finn
et al. (2017) showed that the first-order approxi-
mation of the meta-learning maintains the perfor-
mance while minimizing the computational cost.

4.3 MetaGUMT

To handle a data scarcity issue from a meta-learning
perspective, it is critical to be able to make the ini-
tialized model to adapt to a data-scarce domain.
However, since a small amount of training data in
the new domain may cause the model to overfit and
prevent utilizing high-resource domain knowledge,
it is important to incorporate high-resource domain
knowledge and generalizable knowledge into the
model parameters. To address this issue, we extend
the existing meta-learning approach via two novel
losses, which we call an aggregated meta-train loss
and a cross-domain loss. The former contributes
to incorporating high-resource domain knowledge
into the model parameters, while the latter encour-
ages our model, after trained using a particular
domain, to still generalize well to another domain,
i.e., cross-domain generalization.

Meta-train phase. As shown in Fig. 2 (C), via
Eqs. (3) and (4), we obtain φi from each i-th out-
domain datasets. Since this phase is exactly same
with the meta-train phase of MetaUMT, we leave
out the details.

Meta-test phase. The aggregated meta-train
loss, which refers to Fig. 2 (D), is computed us-
ing all out-domain datasets, i.e.,

Lag =

n∑
i=0

Ls
Di

out
(θ). (6)

This loss term allows the model to learn the source
domain knowledge that is potentially applicable to
a target domain. Moreover, to alleviate the overfit-
ting after adapting to the low-resource domain, we

2Ls
Di

out
and Ls

Di
out′

indicate different batch sampled data

from same Di.
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Model
Dout

Medical Law EUB Medical Law EUB Subtitles Law EUB GV Europarl EUB
Koran IT GV Koran IT GV Europarl IT GV Subtitles Medical Koran

Din
Subtitles Europarl Medical Law

De-En En-De epoch De-En En-De epoch De-En En-De epoch De-En En-De epoch
Unadapted 9.46 7.54 - 22.31 15.82 - 21.30 19.23 - 31.1 25.35 -
Transfer 10.92 9.18 4 22.96 16.78 3 22.77 19.78 6 31.69 25.59 4
Mixed 11.77 9.96 15 22.99 17.05 5 22.98 19.99 8 31.69 25.74 6
MetaUMT 12.95 10.58 3 24.53 18.59 2 24.6 21.86 4 32.51 27.22 3
MetaGUMT 13.45 10.89 2 25.13 18.95 2 25.32 22.79 4 34.26 29.37 2
Supervised NMT 2.24 2.49 8 1.88 1.52 7 7.71 9.80 11 11.29 10.07 13
Unsupervised NMT 1.26 0.94 5 1.53 0.76 23 3.37 2.72 9 6.07 4.73 11

Table 1: BLEU scores on various out-domain (Dout) and in-domain (Din) combinations for the language pairs
of De-En and En-De. The ”epoch” column indicates the converged number of epochs for each in-domain dataset.
Since the unadapted model does not have any additional finetuning step, we leave the epoch column as blank. The
bold represents the significant difference (p < 0.05) with others. Each BLEU score represents the average of ten
trials.

introduce a cross-domain loss, which is in Fig. 2
(D), as

Lcd =
n∑
i=0

Ls
Di

cd
(φi), (7)

where Ls
Di

cd
= Ls

Di
out′

(φi)+Ls
Di

other
(φi), i.e., com-

puting the cross-domain loss with the data from
Diout′ as well as those from other domains Diother .

To obtain the optimal initialization θ for model
parameters, we define our total loss function, which
is Fig. 2 (E), as the sum of the two of our losses,
i.e.,

θ ← θ − β∇θ(Lcd + Lag). (8)

In summary, our aggregated meta-train and cross-
domain losses encourage our model to accurately
and quickly adapt to an unseen target domain. The
overall procedure is described in Algorithm A.1.

5 Experiments

This section first introduces experiment settings
and training details. Afterwards, we show empirical
results in various scenarios.

5.1 Dataset and Preprocessing

We conduct our experiments on eight different
domains 3(Appendix T.2). Each domain dataset
is publicly available on OPUS 4 (Tiedemann,
2012). We utilize the eight domains for out-domain
(Dout) and in-domain datasets (Din). To build the
monolingual corpora of in-domain and out-domain
datasets, we sample data from the parallel corpus.
We made sure to include at most one sentence from
each pair of parallel sentences. For instance, we
sample the first half of the sentences as unpaired

3Acquis (Law), EMEA (Medical), IT, Tanzil (Koran), Sub-
titles, EUbookshop (EUB), Europarl, and GlobalVoices (GV)

4http://opus.nlpl.eu/

source data and the other half as truly unpaired
target data. Consequently, the sampled monolin-
gual corpora contain no translated sentence in each
language. Each of the two monolingual corpora
contains the equal number of sentences for each
language (e.g., English and German). For our low-
resource scenarios, we sample 5,000 tokens from
a selected in-domain corpus for each language.
Note that the out-domain dataset represents the
full monolingual corpora.

5.2 Experimental Settings
As our base model, we use a Transformer (Vaswani
et al., 2017), which is initialized by a masked lan-
guage model from XLM (Conneau and Lample,
2019) using our out-domain datasets. All the mod-
els consist of 6 layers, 1,024 units, and 8 heads.

We establish and evaluate various baseline mod-
els as follows:

• UNMT model is trained with only the in-
domain monolingual data, composed of 5,000
words for each language.

• Supervised neural machine translation
model (NMT) is trained with in-domain par-
allel datasets, which we arrange in parallel
with the two in-domain monolingual corpora.

• Unadapted model is pretrained with only the
out-domain datasets and evaluated on the in-
domain datasets.

• Transfer learning model is a finetuned
model, which is pretrained with the out-
domain datasets and then finetuned with a
low-resource in-domain dataset.

• Mixed finetuned model (Chu et al., 2017)
is similar to the transfer learning model, but

http://opus.nlpl.eu/


2894

(A) (B) (C)

      

                    

 

 

 

 

 

  

  

  

 
 
 
 

                 

               

 

   

   

   

 
 
 
 
 
  
 
  
  
 
  
  
 
 
 

                 

               

  

  

  

  
 
 
 
 

Figure 3: Results of the models that are first pretrained on Medical, Law, EUbookshop, Koran, IT, and GlobalVoices
datasets and then finetuned on a Subtitles dataset. (A) is a performance comparison with respect to the number of
words for adaptation. (B) is the number of iterations until the convergence during the finetuning stage with respect
to the number of words. (C) is the number of iterations until convergence, where the BLEU is validating scores
calculated by the average of En-De and De-En.

it utilizes both in-domain and out-domain
datasets for finetuning. That is, the training
batch is sampled evenly from in-domain and
out-of-domain datasets.

5.3 Experimental Results
In order to verify that leveraging the high-resource
domains (i.e., the source domains) effects to handle
the low-resource domains (i.e., the target domain),
we compare the unsupervised and supervised mod-
els with ours and other baseline models.

As shown in Table 1, the unsupervised model
trained on in-domain data suffers from data scarcity
because it only uses low-resource in-domain data.
Although the unsupervised and supervised mod-
els are initialized by XLM, those models show the
worst performance in all the cases. This result in-
dicates that when the small size of an in-domain
corpus is given, it is appropriate to utilize the out-
domain datasets rather than to train only with low-
resource data. In addition, the performance of the
unadapted model is far behind compared to other
models, such as the mixed finetuned model, trans-
fer learning model, MetaUMT, and MetaGUMT.
This implies that we need an adequate strategy of
leveraging the high-resource domains to improve
the performance.

We further compare the performance between
our proposed approaches (i.e., MetaUMT and
MetaGUMT) and the other two finetuning mod-
els (i.e., the transfer learning and the mixed fine-
tuned ones). Our methods exhibit the leading per-
formances in both directions of translation (en↔
de), and consistently achieve improvements of 2-
3 BLEU score in most of settings. Furthermore,
MetaGUMT consistently obtains better BLEU
scores and converges faster than MetaUMT. We
assert that our proposed losses (i.e., the aggregated

meta-train and the cross-domain losses) help the
model not only to perform well even on the un-
seen in-domain dataset but also to accelerate the
convergence speed.

5.4 Performances and Adaptation Speed in
Finetuning Stage

As shown in Fig. 3 (A), we compare our proposed
methods with the transfer learning approach by
varying the sizes of an in-domain monolingual cor-
pus. The smaller the size of training data is, the
wider the performance gap between the two ap-
proaches and the transfer learning model becomes.
It means that meta-learning is an effective approach
to alleviate the performance degradation, prevent-
ing the model from overfitting to the low-resource
data.

Compared to the transfer learning model,
MetaUMT demonstrates a better performance
than other methods in various settings. However,
MetaGUMT exhibits even better performances con-
sistently in all settings owing to our proposed losses
(Eq. (8)). The transfer learning approach shows the
worst performance except for the unadapted model,
even though it exploits the in-domain corpus after
being pretrained with the out-domain datasets.

Additionally, we analyze the number of itera-
tions required for a model to converge given an
in-domain dataset. As shown in Fig. 3 (B), the meta-
learning approaches rapidly converge after only a
few iterations, even faster than the transfer learn-
ing one does. As the number of in-domain training
words increases, the transfer learning approach re-
quires a much larger number of iterations until con-
vergence than our meta-learning approaches. It can
be seen that MetaUMT and MetaGUMT rapidly
adapt to an unseen domain. Moreover, owing to the
encapsulated knowledge from the high-resource do-
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Parameter Initial θ Finetuned θ

D
Dout Din Unseen

Meidcal Law Koran EUB IT GV Subtitles Europarl
De-En En-De De-En En-De De-En En-De De-En En-De De-En En-De De-En En-De De-En En-De De-En En-De

Transfer 30.98 26.96 34.8 30.28 13.72 11.59 12.32 10.01 20.98 17.74 17.4 14.25 10.92 9.18 22.31 16.58
Mixed finetuned - - - - - - - - - - - - 11.77 9.96 22.84 16.92
MetaUMT 33.0 23.39 27..74 15.4 4.89 0.79 6.78 2.59 9.45 4.68 2.77 1.06 12.95 10.58 23.91 18.7
MetaGUMT 37.37 31.63 42.73 37.3 18.2 13.84 13.72 11.8 24.0 19.24 21.24 17.38 13.45 10.89 24.44 19.31

Table 2: BLEU scores evaluated on out-domain and in-domain data with initial θ and finetuned θ, respectively. ”D”
denotes the domain, ”Unseen” indicates the new domain evaluated with finetuned θ. Since the transfer and mixed
finetuned models use the same initial θ, we leave its corresponding row as ”-”.

mains, MetaGUMT converges within a relatively
earlier iteration than MetaUMT does.

In summary, the meta-learning-based methods
quickly converge in the low-resource domain, im-
proving the performances over the transfer learning
method in various low-resource settings. This in-
dicates that the meta-learning-based approaches
are suitable to alleviate the data deficiency issue in
scarce domains. Furthermore, our losses in Eq. (8)
enhance the capabilities of aggregating domain gen-
eral knowledge and finding adequate initialization.

5.5 Number of Iterations until Convergence
in Pretraining Stage

An advantage of our meta-learning approaches is
that they can find an optimal initialization point
from which the model can quickly adapt to a low-
resource in-domain dataset. The transfer learn-
ing model requires twice more iterations until
convergence than ours does. As shown in Fig. 3
(C), MetaUMT and MetaGUMT not only con-
verge quickly but also outperform the other base-
line methods. Specifically, compared to MetaUMT,
MetaGUMT is effective in achieving an optimized
initialization at an earlier iteration. These results
indicate that our additional losses (i.e., the cross-
domain and aggregated meta-train losses) are ben-
eficial in boosting up the ability for finding an op-
timal initialization point when training the model
with the out-domain datasets.

5.6 Analysis of MetaGUMT losses

We assume that the domain generalization ability
and high-resource domain knowledge are helpful
for the UNMT model to translate the low-resource
domain sentences. First, to identify whether the
model encapsulates the high-resource knowledge
from multiple sources, we evaluate our model on
out-domain datasets (i.e., Dout) with initial θ. As
shown in Table. 2, MetaGUMT shows remarkable
performances over MetaUMT in all domains, even
better than the transfer learning models. In other
words, MetaUMT demonstrates poor performances

Cross-domain Aggregated meta-train De-En En-De Average ∆

7 7 27.09 24.6 25.85
X 7 27.37 24.76 26.06 +0.21
7 X 27.54 24.90 26.22 +0.37
X X 27.85 25.06 26.46 +0.61

Table 3: Effectiveness of each cross-domain and aggre-
gated meta-train loss.

in Dout, compared to MetaGUMT. This can be
explained as MetaGUMT uses an aggregated meta-
train loss such that MetaGUMT is able to encap-
sulate the high-resource domain knowledge. As
shown in Table. 1, MetaGUMT achieves superior
performances, showing that MetaGUMT is capable
of leveraging the encapsulated knowledge when
finetuning the low-resource target domain.

Secondly, our cross-domain loss encourages
the model to have a generalization capability
after adapting to the low-resource target do-
main. As shown in ”Unseen” column in Table. 2,
MetaGUMT outperforms the other models. It can
be seen that our model has the domain general-
ization ability after the finetuning stage due to the
cross-domain loss in the meta-test phase.

5.7 Performance of Unbalanced Monolingual
Data in Finetuing Stage

In UNMT, data unbalancing is often the case in
that source language (e.g., English) data are abun-
dant and the target language (e.g., Nepali) data
are scarce (Kim et al., 2020). We extend our ex-
periment to the unbalanced scenarios to examine
whether our proposed model shows the same ten-
dency. In this scenario, the low-resource target do-
main dataset consists of monolingual sentences
from one side with two times more tokens than the
monolingual sentences from the other. As shown
in Table. 4, MetaGUMT outperforms in all unbal-
anced data cases. It shows that MetaGUMT is fea-
sible to a practical UNMT scenario where the num-
ber of sentences is different in the source and target
languages. The only difference against the main
experiment setting 5.1 is the condition that the in-
domain corpus is unbalanced. We also include the
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# tokens Mixed MetaUMT MetaGUMT
En De En-De De-En En-De De-En En-De De-En
5k 10k 26.04 31.90 28.80 32.65 29.43 34.28
8k 16k 26.09 32.01 27.84 32.93 29.62 34.39
16k 32k 26.44 32.37 27.92 32.96 30.10 34.44
32k 64k 27.39 32.84 28.67 33.52 29.83 34.77

Table 4: Results on the unbalanced monolingual Law
domain data during the finetuning stage, where Dout is
GV, Euorparl, EUB, Subtitles, Medical and Koran.

result of the transfer learning model in Table. T.4.

5.8 Ablation Study

We empirically show the effectiveness of the cross-
domain and aggregated meta-train losses, as shown
in Table 3 5. First, compared to MetaUMT which
does not use any of the two losses, incorporating
the cross-domain loss improves the average BLEU
score by 0.21. The cross-domain loss acts as a reg-
ularization function that prevents the model from
overfitting during the finetuning stage. Second, the
aggregated meta-train loss, another critical compo-
nent of our model, allows the model to utilize the
high-resource domain knowledge in the finetuning
stage. This also improves the average BLEU score
by 0.37 from MetaUMT. Lastly, combining both
cross-domain and aggregated meta-train losses sig-
nificantly enhances the result in both directions of
translation (En ↔ De), indicating that they are
complementary to each other.

5.9 Impact of the Number of Source Domains

We examine how the performances change against
the different number of source domains for each
approach. As shown in Table. 5 6, MetaGUMT
consistently outperforms the transfer, the mixed-
finetune, and MetaUMT approaches. As the size
of the source domains increases, so does the per-
formance gap between ours and the transferring
based models, i.e., transferring and mixed-finetune
models. This indicates that the meta-learning based
approaches are highly effected by the size of the do-
mains in the meta-train phase, and also, if the num-
ber of source domains is large enough to capture
the general knowledge, the meta-learning based ap-
proaches are suitable to handle the low-resource tar-
get task (i.e., machine translation in a low-resource
domain).

5The models are pretrained on Subtitles, Law, EUB, Eu-
roparl, IT, and GV and then finetuned on the Medical data.

6The 4 case contains the Medical, Law, Koran and EUB
domains. 5 and 6 additionally utilize one more domain(i.e.,
IT) and two more domains(i.e.,IT and GV), respectively.

# Dout
MetaGUMT MetaUMT Transfer Mixed

En-De De-En En-De De-En En-De De-En En-De De-En
4 5.97 7.47 5.87 7.24 5.75 7.17 5.87 7.22
5 7.58 9.49 7.33 9.01 7.17 8.08 7.20 8.68
6 10.89 13.45 10.58 12.95 9.18 10.92 9.96 11.77

Table 5: Effectiveness of the different number of source
domains between meta-learning based approaches and
the transfer learning approach, where #Dout represents
the number of out-domain datasets in the pretraining
stage.

6 Conclusions

This paper proposes a novel meta-learning ap-
proach for low-resource UNMT, called MetaUMT,
which leverages multiple source domains to quickly
and effectively adapt the model to the target do-
main even with a small amount of training data.
Moreover, we introduce an improved method called
MetaGUMT, which enhances cross-domain gen-
eralization and maintains high-resource domain
knowledge. We empirically show that our proposed
approach consistently outperforms the baseline
methods with a nontrivial margin. We believe that
our proposed methods can be extended to semi-
supervised machine translation as well. In the fu-
ture, we will further analyze other languages, such
as Uzbek and Nepali, instead of languages like
English and German.
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A Implementation Details

In order to preprocess datasets, We utilize
Moses (Koehn et al., 2007) to tokenize the sen-
tences. We then use byte-pair encoding (BPE) (Sen-
nrich et al., 2016a) to build a shared sub-word vo-
cabulary using fastBPE7 with 60,000 BPE codes.
Based on this shared sub-word vocabulary, con-
structed from the out-domain datasets, we split
words into sub-word units for the in-domain dataset.
We implement all of the models using PyTorch li-
brary 8, and then train them in four nvidia V100
gpus for pretraining and finetuning. We evaluate all
the experiments based on the BLEU script 9. The
number of convergence iteration of each algorithm
is defined based on the best validation epoch, which
shows no more improvement on validation score
after we run 10 more epochs. Moreover, we have
conducted comprehensive experiments to obtain
our main result table (Table. 1 and Table. T.1 ) on
different domains by training the model with 10
different sampled words each time.

For optimizing each algorithms, we choose the
Adam optimizer (Kingma and Ba) for pretrain-
ing stage, as well as the Adam warmup opti-
mizer (Vaswani et al., 2017) for finetuning stage.
The learning rate is set to 10−4, optimized within
the range of 10−2 to 10−5. In all experiments, the
number of tokens per batch is set as 1,120 and
the dropout rate is set as 0.1. In meta-learning ap-
proaches, we set the learning rates of alpha and
beta commonly as 0.0001 in all experiments.

In the pretraining stage, we follow the same stop-
ping criterion as Gu et al. (2018). For instance,
among different target domains, we randomly se-
lect one as a validation domain. We utilize early
stopping, i.e., stopping training if the validation
BLEU score does not increase within the ten sub-
sequent epochs. Similarly in the finetuning stage,
we apply early stopping using a validation dataset
from the target domain.

B Additional Results on Different
Domain Combinations

Since the combination of Dout and Din can consist
differently, this section provides additional results.
As shown in Table. T.1, our proposed approaches

7https://github.com/glample/fastBPE
8https://pytorch.org/
9https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

                 

               

  

  

  

  

  

  

 
 
 
 

        

       

        

   

Figure C.1: A performance comparison with respect to
the number of words for adaptation on a Law domain.

                 

               

 

   

   

   

   

   

   

   

   

 
 
 
 
 
  
 
  
  
 
  

  
 
 
 

        

       

        

   

Figure C.2: Number of iterations until the convergence
during the finetuining stage with respect to the number
of words on a Law domain.

still significantly outperform other baseline models
in different domain combination settings.

C Perfomances and Adaptation Speed in
Finetuning Stage for a Law Domain

As shown in Fig C.1 and Fig C.2, MetaGUMT con-
sistently outperforms other methods even though
the number words are increasing. Through this ex-
periment, we attempt to show the robustness of our
methods (i.e., MetaUMT and MetaGUMT) against
others (i.e., transferring and mixed-finetune mod-
els). The models are pretrained on Subtitles, EU-
bookshop, Europarl, GlobalVoices, Medical, and
Koran datasets and then finetuned on a Law dataset.

D Comparison between MetaGUMT and
MetaUMT Algorithms

As shown in Algorithms. A.1, we provide an over-
all algorithm of MetaGUMT. The only difference

https://pytorch.org/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Model
Dout

Medical Law Koran Medical Law Koran GV Europarl EUB
Subtitles EUB Europarl Subtitles EUB Europarl Subtitles Medical Koran

Din
IT GV IT

De-En En-De epoch De-En En-De epoch De-En En-De epoch
Unadapted 18.62 14.89 - 19.27 16.65 - 16.10 15.30 -
Transfer 19.80 16.35 4 19.99 16.90 3 19.31 16.13 5
Mixed 19.75 16.49 7 20.03 16.95 5 19.39 16.18 8
MetaUMT 21.08 18.05 4 22.36 18.91 3 20.5 17.06 4
MetaGUMT 21.37 18.42 3 22.76 19.24 2 20.74 17.74 4
Supervised NMT 3.48 3.33 15 0.97 0.85 14 3.53 3.59 10
Unsupervised NMT 1.83 0.86 22 0.51 0.18 20 0.51 0.55 7

Table T.1: Extended results on various domain settings. The column ‘epoch’ indicates the converged number of
epochs for each in-domain dataset. Since the unadapted model does not involve an additional finetuning step, we
leave the epoch column as blank.

Algorithm A.1 MetaGUMT
Require: α, β: step sizes

1: Pretrain θ by using XLM
2: while not done do
3: for all Diout do
4: Evaluate ∇θLlm

Di
out

(θ) with respect to
source and target language sentences
from Diout

5: Back-translation generates source and
target language sentences using the cur-
rent translation model

6: Evaluate ∇θLbt
Di

out
(θ) with using pseudo-

generated sentences
7: Sum each gradient:

∇θLsDi
out

= ∇θLlm
Di

out
(θ) +∇θLbt

Di
out

(θ)

8: Compute adapted parameters with one-
step gradient descent:
φi = θ − α∇θLs

Di
out

(θ)

9: end for
10: Update θ ← θ − β∇θ(Lcd + Lag)
11: end while

between MetaUMT and MetaGUMT is the meta-
test phase in line 10. While MetaUMT computes
the loss using Eq. (5), MetaGUMT utilizes Eq. (8).

E Performance of Semi-Superivsed
Machine Translation in Finetuning
Stage

The proposed algorithms, MetaUMT and
MetaGUMT, show promising results on low-
resource monolingual data. However, some may
argue that creating parallel sentences from a small
number of unpaired monolingual sentences (e.g.,
5k tokens) is also feasible. Hence, we additionally

Corpus
Words

Sentences
W/S

EN DE EN DE
Acquis (Law) 9.2M 8M 0.7M 12.93 11.30
EMEA (Medical) 7.5M 6.3M 1.1M 6.81 5.75
IT 1.7M 1M 0.3M 9.08 5.32
Tanzil (Koran) 5.6M 5.3MS 0.5M 10.66 10.08
Subtitles 92.7M 87.6M 22.5M 4.11 3.89
EUbookshop (EUB) 115.4M 100M 9.3M 12.37 10.72
Europarl 27.3M 25.7M 1.9M 13.99 13.18
GlobalVoices (GV) 0.6M 0.6M 0.05M 10.67 10.88

Table T.2: Statistics of each corpora.

conduct an experiment of semi-supervised machine
translation in the finetuning stage. For instance, we
follow the same pretraining stage, but we utilize
both monolingual and parallel sentences while
finetuning the model on a low-resource domain.
The number of tokens for each monolingual and
parallel data is 5k. To finetune the model in the
semi-supervised setting, we compute the loss as
sum of Lct and Lbt, where Lct is the conventional
translation loss in the supervised NMT, i.e.,

Lct =E(x,y)∼P [−logMs→t (y | x)]+

E(x,y)∼P [−logMt→s (x | y)].
(9)

As shown in Table T.3, we observe that
MetaGUMT demonstrates the promising perfor-
mance against others, even if we only utilize the
monolingual out-domain datasets to pretrain the
model.

F Statistics of Datasets

As shown in Table. T.2, we present the overall num-
ber of sentences and words for each domain, where
W/S indicates the number of words per sentence in
a domain.
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# tokens Transfer MetaUMT MetaGUMT
Parallel Monolingual De-En En-De De-En De-En En-De De-En
5k 5k 28.04 32.74 30.31 34.31 31.21 35.90
8k 8k 28.86 33.14 30.51 35.22 31.78 36.25
16k 16k 29.62 33.88 31.49 36.62 32.51 37.05
32k 32k 30.55 35.35 33.25 37.25 34.60 38.58

Table T.3: Results of semi-supervised machine translation in the finetuning stage. “# tokens” indicates the number
of tokens for both monolingual and parallel datasets. Each model is first pretrained on Medical, Law, EUbookshop,
Koran, IT, and GlobalVoices and then finetuned to the low-resource domain (i.e., Law).

# tokens Transfer Mixed MetaUMT MetaGUMT
En De De-En En-De En-De De-En En-De De-En En-De De-En
5k 10k 25.84 31.67 26.04 31.90 28.80 32.65 29.43 34.28
8k 16k 25.95 31.83 26.09 32.01 27.84 32.93 29.62 34.39
16k 32k 25.96 32.03 26.44 32.37 27.92 32.96 30.10 34.44
32k 64k 27.34 32.64 27.39 32.84 28.67 33.52 29.83 34.77

Table T.4: Results on unbalanced monolingual data. This is the same results of Table 4 but included the additional
baseline model, Transfer.


