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Abstract

Automatic dialogue coherence evaluation has
attracted increasing attention and is crucial for
developing promising dialogue systems. How-
ever, existing metrics have two major limita-
tions: (a) they are mostly trained in a simpli-
fied two-level setting (coherent vs. incoherent),
while humans give Likert-type multi-level co-
herence scores, dubbed as “quantifiable”; (b)
their predicted coherence scores cannot align
with the actual human rating standards due to
the absence of human guidance during train-
ing. To address these limitations, we propose
Quantifiable Dialogue Coherence Evaluation
(QuantiDCE), a novel framework aiming to
train a quantifiable dialogue coherence metric
that can reflect the actual human rating stan-
dards. Specifically, QuantiDCE includes two
training stages, Multi-Level Ranking (MLR)
pre-training and Knowledge Distillation (KD)
fine-tuning. During MLR pre-training, a new
MLR loss is proposed for enabling the model
to learn the coarse judgement of coherence
degrees. Then, during KD fine-tuning, the
pretrained model is further finetuned to learn
the actual human rating standards with only
very few human-annotated data. To advo-
cate the generalizability even with limited fine-
tuning data, a novel KD regularization is intro-
duced to retain the knowledge learned at the
pre-training stage. Experimental results show
that the model trained by QuantiDCE presents
stronger correlations with human judgements
than the other state-of-the-art metrics. 1

1 Introduction

Dialogue coherence, which requires a response to
be fluent, consistent and context-related, is an es-
sential property for developing promising dialogue

∗Corresponding Author.
1The code and trained checkpoints are available at https:

//github.com/James-Yip/QuantiDCE.
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Context

Response

U1: I like animals, especially dogs. How about you?
U2: Haha, I like cats more.

I like cats more too and I work in a pet store.

U3: Do your work for a pet store?

V1

Very coherent?
Mostly coherent?
Mostly incoherent?

Very incoherent?

……

0 1

Coherent?

Incoherent?

……

Figure 1: Likert-type multi-level human rating vs. two-
level automatic evaluation. Human rating always con-
siders multiple coherence degrees, while most of the
existing automatic metrics only learn to distinguish the
coherence dialogues from the incoherent ones and give
relatively extreme coherence scores.

systems (Cervone et al., 2018). However, it is still
challenging to evaluate the coherence of a response
generated by a dialogue system. Although human
evaluation is always considered as the most accu-
rate way to evaluate the coherence, it is expensive
and high-latency, which cannot meet the evaluation
demand of the frequent development of dialogue
systems. Therefore, automatic evaluation metrics
are developed to serve as human proxies that can
rapidly compute the dialogue coherence and return
relatively accurate results.

The current widely used metrics measure the
lexical word-overlap between generated responses
and reference responses, such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004). However,
they have been demonstrated to be biased and cor-
relate poorly with human judgements since no se-
mantic information is considered (Liu et al., 2016;
Novikova et al., 2017). To overcome this issue,
researchers turned to develop learnable metrics
based on neural networks that incorporate the se-
mantic information, such as RUBER (Tao et al.,

https://github.com/James-Yip/QuantiDCE
https://github.com/James-Yip/QuantiDCE
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2018), BERT-RUBER (Ghazarian et al., 2019) and
GRADE (Huang et al., 2020). However, these met-
rics deviate from the actual human rating due to two
limitations. First, they simplify the coherence eval-
uation task in a two-level setting, i.e., coherent or
incoherent, by maximizing the differences between
the positive coherent dialogues and the negative in-
coherent ones obtained by some negative sampling
strategies. In contrast, humans usually adopt Likert
scaling and give coherence scores from multiple
levels like 1 to 5, as shown in Figure 1. Second, to
avoid relying on large-scale human-annotated data,
they are mostly trained in a purely unsupervised
manner and cannot align with the human rating
due to the absence of introducing the actual human
rating standards during training.

To address the above limitations, we propose a
novel dialogue coherence metric training frame-
work, named as Quantifiable Dialogue Coherence
Evaluation (QuantiDCE). This framework consists
of two training stages: Multi-Level Ranking (MLR)
pre-training and Knowledge Distillation (KD) fine-
tuning. At the MLR pre-training stage, a new multi-
level ranking (MLR) loss is proposed for learning
the coarse judgement of coherence degrees. Specif-
ically, the MLR loss separates the context-response
pairs with different coherence levels and compacts
the pairs within the same level in one-dimensional
score space. As a result, the pretrained model is
able to distinguish different coherence-level dia-
logue responses for a given context and predicts
more accurate coherence scores. At the KD fine-
tuning stage, the pretrained model is further fine-
tuned to learn the actual human rating standards
with only very few human-annotated coherence
scores. To mitigate overfitting into the scarce an-
notated data during fine-tuning, a novel knowledge
distillation regularization loss is introduced to re-
tain the knowledge learned at the pre-training stage,
where the pretrained model (teacher) provides the
soft targets for the model during fine-tuning (stu-
dent). Experimental results show that the metric
trained by our QuantiDCE obviously outperforms
the other state-of-the-art metrics in terms of the
Pearson, Spearman and Kendall correlations with
human judgements by around 5% points on aver-
age. To summarize our contributions:

1) We propose QuantiDCE, a novel quantifiable
training framework for dialogue coherence eval-
uation, which aims to align the automatic scores
with the actual human rating standards via MLR

pre-training and KD fine-tuning. To the best of
our knowledge, it is the first attempt to consider
the quantifiable problem for dialogue coherence
evaluation.

2) Extensive experiments demonstrate the ef-
fectiveness of our QuantiDCE, which enables the
trained metric to have obviously stronger correla-
tions with human judgements than the other state-
of-the-art metrics.

2 Related Work

Automatic Coherence Evaluation. The widely
used automatic metrics, such as BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005)
and ROUGE (Lin, 2004), use statistical rules to
measure the degree of lexical word-overlap be-
tween generated responses and reference responses.
However, these metrics have been demonstrated to
correlate poorly with human judgments due to the
absence of semantic information (Liu et al., 2016;
Novikova et al., 2017). Therefore, the subsequent
metrics are considered to incorporate the seman-
tic information. For instance, BERTScore (Zhang
et al., 2020) turns to measure the soft semantic
word-overlap rather than the hard lexical word-
overlap like BLEU. Moreover, learnable metrics
encoding the semantic information have been at-
tracting interests recently, which are trained in a su-
pervised manner with large-scale human-annotated
data, such as ADEM (Lowe et al., 2017), or trained
in an unsupervised manner with automatically con-
structed data, such as RUBER (Tao et al., 2018)
and BERT-RUBER (Ghazarian et al., 2019). Fur-
thermore, the recently proposed coherence met-
ric, GRADE (Huang et al., 2020), introduces the
graph information of dialogue topic transitions
and achieves the current state-of-the-art results.
Note that these learnable metrics are trained in a
two-level training objective to separate the coher-
ent dialogues from the incoherent ones, while our
QuantiDCE models the task in a multi-level setting
which is closer to the actual human rating.

Knowledge Distillation. Knowledge distillation
(KD) is a method that transfers the knowledge from
a large trained teacher model to a smaller student
model by using the soft targets provided by the
teacher (Hinton et al., 2015). In recent years, KD
has been applied to many specific tasks (Sun et al.,
2020; Wei et al., 2019; Kim and Rush, 2016; Sourty
et al., 2020). Unlike these previous works, we use
KD to retain knowledge learned at the pre-training



2720

Stage One: MLR Pre-training

𝓛𝑚𝑙𝑟BERT M
LP

BERT M
LPHuman rating

Stage Two: KD Fine-tuning

𝓁𝑘𝑑

𝓁𝑚𝑠𝑒

Teacher model

KD

Student model

Level-1 Centroid Score Level-2 Centroid Score Level-3 Centroid Score＜ ＜

Level-1 Scores

𝒊𝒕𝒉Dialogue Example 

Context

Level-1

Level-2

Level-3

Response

separation

compactness 

Level-2 Scores

Level-3 Scores

𝓛kd_𝑚𝑠𝑒

＜ ＜

Separation  loss

Compactness Loss

Ordering Loss

Concat

…
…

…
…

…
…

Concat

Concat

Figure 2: The overall pipeline of our QuantiDCE, consisting of two training stages which are marked by the
blue and the black one-way arrows. Each input dialogue example contains one context with three-level candidate
responses and five responses for each level, shown as red, orange and green rectangles respectively. The solid
circle represents the centroid score for each level of the ith dialogue. At MLR pre-training stage, the context-
response pairs are encoded with BERT and transformed into the coherence scores through the MLP prediction
network, and then MLR loss is applied to optimize the network. The dotted two-way arrows indicate that both
ends should be separated, while the solid two-way arrows indicate that both ends should be compact. And at the
KD fine-tuning stage, the student model is first initialized with the teacher model and optimized by KD-MSE loss.

stage during fine-tuning and do not compress the
model size of the student model.

3 QuantiDCE Framework

In this section, we present QuantiDCE, a two-stage
framework for dialogue coherence metric learn-
ing, consisting of Multi-Level Ranking (MLR)
pre-training and Knowledge Distillation (KD) fine-
tuning. As illustrated in Figure 2, given a met-
ric model M (Section 3.1), QuantiDCE enables
M to learn multi-level representations for context-
response pairs with different levels of coherence
degrees during the pre-training stage (Section 3.2),
and further to learn the rating standards of humans
with only a fraction of data during the fine-tuning
stage (Section 3.3). After these two training stages,
the quantifiable gap between automatic metrics and
humans can be obviously reduced.

3.1 Model Architecture

In our QuantiDCE framework, the metric modelM
is composed of: (1) an encoder network for encod-
ing the input context-response pairs into features
and (2) a predictor network for transforming the en-
coded features into coherence scores. Specifically,
we adopt BERT (Devlin et al., 2019) as the encoder

network and a multi-layer perceptron (MLP) as the
predictor network.

Given a context c = {c1, · · · , cm} and a
response r = {r1, · · · , rn} where ci and ri
are tokens of the context and the response
respectively, the c and r are concatenated
as {[CLS], c1, · · · , cm, [SEP], r1, · · · , rn, [SEP]},
denoted as [c; r]. Then the coherence score ŝ of
the response r w.r.t. the context c is predicted by:

ŝ =MLP (BERT ([c; r])), (1)

where MLP is a three-layer fully-connected net-
work in which the activation functions of the three
layers are two exponential linear units (Clevert
et al., 2016) and a sigmoid function, respectively.

3.2 MLR Pre-Training

For learning the coarse judgement of coherence
degrees without the direct supervision of score an-
notations, the model M is first pretrained by mini-
mizing a new multi-level ranking (MLR) loss on a
large-scale dialogue dataset. Concretely, the MLR
loss is composed of a separation loss, a compact-
ness loss and an ordering loss.

Formally, given a training dataset Dpt =
{(ci,Ri)}N1

i=1 where ci is a dialogue context and
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Ri = {(rji,1, · · · , r
j
i,K)}Lj=1 is a response set with

L coherence levels2 andK responses for each level,
the model M is trained by minimizing the follow-
ing MLR loss:

Lmlr =
1

N1

N1∑
i=1

(`sepi + `comi + `ordi ), (2)

where `sepi , `comi , and `ordi refer to the separation
loss, the compactness loss and the ordering loss of
the ith example, respectively.

The separation loss aims to separate the fea-
tures of context-response pairs with different coher-
ence levels by separating the coherence scores of
the different pairs3. Moreover, to efficiently com-
pute the loss, we first compute the centroids of
the context-response pairs belonging to the same
coherence level for the ith dialogue example, i.e.,
ei = {eji =

∑K
k=1 ŝ

j
i,k|j ∈ [1, L], eji ∈ R} where

ŝji,k is the coherence score of the context-response

pair (ci, r
j
i,k), and the separation loss between the

centroids is then computed as follows:

`sepi =
L−1∑
j=1

L∑
l=j+1

max(0, w ∗ λ− d(eji , e
l
i)), (3)

where d(·) is the L1 distance, λ is the lower bound
for the distance between two centroids, and w =
l− j is the distance weight used for amplifying the
lower bound w.r.t. the coherence-level gap.

The compactness loss aims to compact the pairs
within the same level, which served as a regular-
ization role to avoid the occurrence of outliers for
each coherence level. Specifically, the coherence
score ŝji,k is forced to be closer to the corresponding

centroid eji as follows:

`comi =
L∑

j=1

K∑
k=1

max(0,d(eji , ŝ
j
i,k)− µ), (4)

where µ is the upper bound for the distance be-
tween the centroid of a certain coherence level and
the score within this level.

2The coherence level is in ascending order, i.e., the re-
sponse in a higher level is more coherent than the lower one.

3We also tried to directly restrict the features of different-
level pairs to be separated, but the performance dropped com-
pared with restricting the scores.

The ordering loss is finally introduced to assure
that the rank order of the predicted scores satisfies
the pre-defined order of coherence degrees, i.e.,
ŝji,k < ŝj+1

i,k , j ∈ [1, L−1], k ∈ [1,K]. It is critical
since the separation loss only restricts the scores
of the pairs from different coherence levels to be
separated and this restriction is also satisfied when
the scores of the highest level are lower than the
scores of the lowest level. Similar to the separation
loss, the ordering loss is also computed between
each two centroids as follows:

`ordi =

L−1∑
j=1

L∑
l=j+1

max(0, eli − e
j
i ). (5)

3.3 KD Fine-Tuning
The model M pretrained by the MLR loss is fur-
ther trained at the KD fine-tuning stage to directly
learn the actual human rating standards with only a
fraction of annotated data.

Formally, given a training dataset Dft =

{(ci, ri, si)}N2
i=1 where ci, ri and si are the dia-

logue context, the corresponding response and the
human-annotated coherence score of ri w.r.t. ci
respectively, the previous fine-tuning approach for
the scoring task usually optimizes the model M
with an MSE loss between the predicted score ŝi
and the human score si:

`mse
i = (si − ŝi)2. (6)

However, by minimizing `mse
i for each exam-

ple, the model M will be easily over-fitting on
the very few annotated data, and thus the model
generalizability will be dramatically reduced. To
overcome this issue, a novel knowledge distillation
(KD) regularization is introduced for retaining the
knowledge learned at the MLR pre-training stage.
Concretely, the pretrained model M is treated as
the teacher model that provides the soft targets for
the student model M̂ which is entirely copied from
M . And we adopt the distillation objectives of
TinyBERT (Jiao et al., 2020), including the distil-
lations of the embedding layer, the Transformer
layers and the prediction layer. The KD loss is then
formulated as:

`kdi =

T+1∑
t=0

||Ot
i − Ôt

i ||22 +
T∑
t=1

||At
i − Ât

i||22, (7)

where || · ||22 indicates the squared L2 norm, T is the
number of the Transformer layers, Ot

i and Ôt
i are
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Algorithm 1 Training Procedure of QuantiDCE
Input: training datasets Dpt and Dft, metric

model M
Output: student model M̂
1: initialize M with BERTBASE

2: for all (ci,Ri) ∈ Dpt do
3: Si =M(ci,Ri)
4: compute the centroids ei for Si
5: compute `sepi and `ordi for ei
6: compute `comi between ei and Si
7: compute Lmlr

8: update M to minimize Lmlr

9: end for
10: initialize M̂ with M
11: for all (ci, ri, si) ∈ Dft do
12: Oi, Ai =M(ci, ri)
13: ŝi, Ôi, Âi = M̂(ci, ri)
14: compute `mse

i between si and ŝi
15: compute `kdi between Oi, Ai and Ôi, Âi

16: compute Lkd mse

17: update M̂ to minimize Lkd mse

18: end for
19: return student model M̂

the tth layer outputs of M and M̂ respectively, At
i

and Ât
i are the attention matrices of the tth trans-

former layer. Note that the layer 0 and the layer
T+1 refer to the embedding layer and the prediction
layer respectively.

Overall, the loss function for KD fine-tuning,
named as KD-MSE loss, is the weighted sum of
`mse
i and `kdi across the whole training dataset Dft:

Lkd mse =
1

N2

N2∑
i=1

(α ∗ `mse
i + β ∗ `kdi ), (8)

where α and β are hyperparameters, and we empir-
ically found that α = 1 and β = 5 performs well.

The overall training procedure is summarized in
Algorithm 1.

4 Experiments

4.1 Experimental Setup

Baseline Metrics. We compare the metric model
trained by our QuantiDCE with eight popu-
lar automatic dialogue metrics, including three
lexical word-overlap metrics: BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005), one seman-
tic word-overlap metric, BERTScore (Zhang et al.,

2020), and four learnable metrics: ADEM (Lowe
et al., 2017), BERT-RUBER (Ghazarian et al.,
2019), BLEURT (Sellam et al., 2020) and
GRADE (Huang et al., 2020).

Evaluation. Our QuantiDCE and the baselines
are evaluated by computing the correlations be-
tween the model-predicted scores and the human-
rated scores. Specifically, we adopt Pearson, Spear-
man and Kendall as the correlation measures and a
large-scale human judgement benchmark (Huang
et al., 2020) to provide the human-rated scores.
This benchmark contains 1,200 unique (context, re-
sponse, human-rated score) triplets for metric eval-
uation where the contexts were randomly selected
from the test set of three chit-chat datasets includ-
ing DailyDialog (Li et al., 2017), ConvAI2 (Dinan
et al., 2019) and EmpatheticDialogues (Rashkin
et al., 2019), and the responses were produced by
both the retrieval-based dialogue models and the
generation-based ones to assure response diversity.

Training Datasets. We use two datasets, Daily-
Dialog++4 and DailyDialogEVAL5, to support the
pre-training and fine-tuning of QuantiDCE, respec-
tively. The DailyDialog++ dataset (Sai et al., 2020)
contains over 11K conversations, which augments
the original DailyDialog dataset with multiple re-
sponses of different quality levels including five
golden reference responses, five adversarial irrele-
vant responses and five random selected responses
for each context. Therefore, in this work, we set
the number of coherence levels L = 3 where the
pairs containing the random responses, the adver-
sarial responses and the reference responses respec-
tively belong to the levels from 1 to 3. As to the
fine-tuning data, we use the DailyDialog human
judgement dataset, denoted as DailyDialogEVAL,
which is a subset of the adopted evaluation bench-
mark (Huang et al., 2020), with 300 human rating
data in total, and randomly split the data into train-
ing (90%) and validation (10%) sets.

Implementation Details. We use BERTBASE

to initialize the encoder network, which is in line
with the current SOTA metric, GRADE. For the
MLR pre-training, we pretrain our model for 5
epochs with batch size 3 and learning rate 2e-5
where the lower bound for the separation loss λ =
0.3 and the upper bound for the compactness loss

4https://github.com/iitmnlp/
Dialogue-Evaluation-with-BERT

5https://github.com/li3cmz/GRADE

https://github.com/iitmnlp/Dialogue-Evaluation-with-BERT
https://github.com/iitmnlp/Dialogue-Evaluation-with-BERT
https://github.com/li3cmz/GRADE
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Metric Pearson Spearman Kendall Average
ConvAI2

BLEU 0.003 * 0.128 0.088 0.073
ROUGE 0.136 0.140 0.097 0.124
METEOR 0.145 0.181 0.123 0.15
BERTScore 0.225 0.225 0.154 0.201
ADEM 0.026 * 0.037 * 0.049 * 0.037
BERT-RUBER 0.266 0.266 0.185 0.239
BLEURT 0.152 0.149 0.103 0.135
GRADE 0.496 0.503 0.356 0.452
QuantiDCE 0.554 0.554 0.395 0.501

EmpatheticDialogues
BLEU -0.051 * 0.002 * 0.005 * -0.015
ROUGE 0.029 * -0.013 * -0.010 * 0.002
METEOR 0.118 0.055 * 0.04 * 0.071
BERTScore 0.046 * 0.033 * 0.021 * 0.033
ADEM 0.007 * 0.009 * 0.040 * 0.019
BERT-RUBER -0.022 * -0.040 * -0.029 * -0.030
BLEURT 0.203 0.192 0.13 0.175
GRADE 0.350 0.344 0.243 0.312
QuantiDCE 0.412 0.393 0.274 0.360

Table 1: Correlations between automatic evaluation
metrics and human judgements on two datasets (Con-
vAI2 and EmpatheticDialogues). The star * indicates
results with p-value > 0.05, which are not statistically signifi-
cant.

µ = 0.1. For the KD fine-tuning, we further fine-
tune the pretrained model for 20 epochs with batch
size 10 and learning rate 5e-6. For all the training,
BERTAdam is used as the optimizer with β1 = 0.9
and β2 = 0.999. For the Transformer-layer distilla-
tion, we distill all the Transformer layers since the
model architectures of the teacher and the student
are exactly the same.

4.2 Experimental Results

Metric Performance. The correlation results of
QuantiDCE and the other baseline metrics on the
large-scale human judgement benchmark are pre-
sented in Table 1, including the ConvAI2 and the
EmpatheticDialogues datasets.6 For a fair com-
parison, the learnable baseline metrics, ADEM,
BERT-RUBER and GRADE, are trained on the
training dataset we adopted, i.e., DailyDialog++.7

Generally, QuantiDCE achieves an absolute aver-
aged correlation improvement by around 5% points
over the current SOTA, GRADE. Besides, all the
results of QuantiDCE are statistically significant
with p-value <0.01.

6The DailyDialogEVAL dataset was not used for evalua-
tion since we used it for fine-tuning.

7BLEURT was not trained on DailyDialog++ since this
dataset is not suitable for the BLEURT pre-training strategy.
Instead, we trained BLEURT with the fine-tuning data we used.
The training details of these baseline metrics are provided in
Appendix A.

Loss Pearson Spearman Kendall Average
ConvAI2

BCE 0.505 0.505 0.361 0.457
Ranking 0.507 0.504 0.360 0.457
SupCon 0.495 0.523 0.367 0.462
FAT 0.516 0.521 0.371 0.469
Vanilla MLR 0.522 0.536 0.379 0.479
MLR (ours) 0.554 0.554 0.395 0.501

EmpatheticDialogues
BCE 0.354 0.353 0.243 0.317
Ranking 0.399 0.389 0.272 0.353
SupCon 0.332 0.315 0.22 0.289
FAT 0.381 0.358 0.245 0.328
Vanilla MLR 0.403 0.387 0.267 0.352
MLR (ours) 0.412 0.393 0.274 0.360

Table 2: Correlations between human judgements and
the metric models trained with different losses during
pre-training and the same KD-MSE loss during fine-
tuning. Ranking represents the margin ranking loss.

Pre-Training Objective. To verify the superior-
ity of our pre-training objective, namely the MLR
loss, we investigated the performance of several ex-
isting loss functions for pre-training compared with
ours. Specifically, two categories of loss functions
used for metric training are adopted, including (a)
the two-level setting and (b) the multi-level setting.
The binary cross entropy (BCE) loss and the margin
ranking loss are adopted for the two-level setting,
while another three loss functions are adopted for
the multi-level setting, including the supervised
contrastive (SupCon) loss (Khosla et al., 2020), the
fast-approximated triplet (FAT) loss (Yuan et al.,
2019) and the vanilla MLR loss (Lin et al., 2020) 8.
As shown in Table 2, the performance of our MLR
loss is the best among all the pre-training objec-
tives. And we also found that the multi-level set-
ting losses perform better than the two-level ones,
especially on the ConvAI2 dataset. Moreover, in
order to more intuitively analyze the performances
of these pre-training objectives, we also visualize
the encoded features and the predicted scores of
the model M after being pretrained by the above
loss functions on the DailyDialog++ dataset with-
out fine-tuning.9 As shown in Figure 3, (a) the
BCE loss cannot separate the level-1 scores from
the level-2 ones and the corresponding features are
also mixed; (b) the FAT loss, on the other hand,
separates the features of different levels well, but
does not consider the relative gaps where the dis-
tances between the level-1 and level-3 features are

8The details of these pre-training loss fucntions are pro-
vided in Appendix B.

9The visualization results of the ranking loss, SupCon loss
and Vanilla MLR loss are provided in Appendix C.
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(c) MLR (ours)(a) BCE (b) FAT

Figure 3: Visualizations of features (the scatter plots in the upper row) and scores (the violin plots in the lower row)
on the dailydialog++ dataset. The features and scores in each of the three columns are obtained from the metric
model M only pretrained with the BCE loss, the FAT loss and our MLR loss, respectively.

Loss Pearson Spearman Kendall Average
ConvAI2 (best epoch)

MSE 0.272 0.369 0.255 0.299
MSE (fix encoder) 0.477 0.477 0.337 0.430
KD-MSE (ours) 0.554 0.554 0.395 0.501

EmpatheticDialogues (best epoch)
MSE 0.278 0.276 0.187 0.247
MSE (fix encoder) 0.384 0.367 0.253 0.335
KD-MSE (ours) 0.412 0.393 0.274 0.360

DailyDialogEVAL (last epoch)
MSE 0.934 0.945 0.867 0.915
MSE (fix encoder) 0.379 0.402 0.281 0.354
KD-MSE (ours) 0.804 0.832 0.678 0.771

Table 3: Correlations between human judgements and
the metric model M further trained with different fine-
tuning losses after MLR pre-training.

not larger than those between level-1 and level-2;
(c) in contrast, our MLR loss separates both the
features and the scores well and also considers the
relative gaps between different levels.

Fine-Tuning Objective. Furthermore, we also
verified the effectiveness of our KD-MSE loss dur-
ing fine-tuning by comparing with other fine-tuning
losses, including the pure MSE loss without KD
regularization as shown in Equation 6 and the same
MSE loss except for freezing the encoder network
and only finetuning the predictor network i.e. the
MLP, denoted as MSE (fix encoder). As the results
shown in Table 3, compared with the other two
losses, the model finetuned by our KD-MSE loss
has the highest correlation results on both ConvAI2
and EmpatheticDialogues. Moreover, by compar-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Score

3

2

1

Le
ve

l

Figure 4: Score visualization on the dailydialog++
dataset where the scores are predicted by our Quan-
tiDCE after KD fine-tuning.

ing the results of MSE and KD-MSE, we can find
that introducing KD regularization leads to obvi-
ous averaged correlation improvements by 20.2%
points on ConvAI2 and 11.3% points on Empa-
theticDialogues, which verifies the effectiveness
of the KD loss. Besides, we also reported the last-
epoch correlation results on the training dataset,
DailyDialogEVAL. And the results of MSE and
MSE (fix encoder) indicate the phenomena of over-
fitting and under-fitting into DailyDialogEVAL re-
spectively, which explain the reasons of their low
performance on the two evaluation datasets. In
contrast, our KD-MSE loss enables the model to
learn the actual human rating standards from the
scarce annotated data and avoid overfitting it si-
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Metric Pearson Spearman Kendall Average
QuantiDCE 0.554 0.554 0.395 0.501
w/o MLR pre-training 0.373 0.357 0.246 0.325

w/o separation loss 0.388 0.416 0.289 0.364
w/o compactness loss 0.526 0.550 0.390 0.489
w/o ordering loss -0.494 -0.522 -0.371 -0.462

w/o KD fine-tuning 0.531 0.540 0.381 0.484

Table 4: Ablation studies on the ConvAI2 dataset by re-
moving one of the component in QuantiDCE, including
the MLR loss (w/o MLR pre-training), the KD+MSE
loss (w/o KD fine-tuning), and three secondary losses
of the MLR loss.
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Figure 5: The performance trends when changing the
number of annotated data used for different fine-tuning
objectives. Each point in the line chart indicates the av-
eraged correlation of Pearson, Spearman and Kendall.

multaneously. Finally, in Figure 4, we present the
visualization of the scores predicted by our Quan-
tiDCE after KD fine-tuning. Compared with the
score distributions before fine-tuning in Figure 3(c),
the finetuned score distributions of the level-1 and
level-3 are wider and partly overlap with the level-
2 distribution. It is predictable as the judgements
of coherence are always subjective and humans
tend to give vague and middle scores instead of
extremely high or low scores.

4.3 Ablation Studies

Component Analysis. To verify the contribu-
tions of the core components in our QuantiDCE, we
further conducted ablation studies on the ConvAI2
dataset. As shown in Table 4, both the MLR pre-
training and KD fine-tuning contribute to the better
performance of QuantiDCE. Besides, we also con-
ducted ablations by removing one of the secondary
loss during MLR pre-training, including the sepa-
ration loss, the compactness loss and the ordering
loss. The results show that the performance ben-
efits from all these losses in which the separation
loss and the ordering loss are crucial for training a
metric with strong and positive human correlations.

U1: I need to book a plane ticket to London.
U2: Round-trip or one-way?
R: Round trip or one way trip?
Coherence Score (Human / QuantiDCE / GRADE) : 2.10 / 2.85 / 4.52
U1: Yum. You will find me in the kitchen and if not i am fishing.
U2: Wow that’s pretty cool what else you do for fun?
R: Probably fish it is great.
Coherence Score (Human / QuantiDCE / GRADE) : 2.50 / 3.94 / 4.27

Table 5: Two representative examples to show the
strength and weakness of our QuantiDCE where U1
and U2 are two utterances of the context and R is the
corresponding response.

Number of Data for Fine-Tuning. Moreover,
we also investigated how the scale of data for fine-
tuning effects the model performance by increas-
ing the number of fine-tuning data 5% each time
from zero. The trend of the model performance is
presented in Figure 5. We observed that minimiz-
ing our KD-MSE loss made the correlation results
have a gradually increasing trend after an initial de-
crease.10 More specifically, the result achieved the
standard before fine-tuning at around the 70% data
scale and continued increasing until 100% with a
final improvement by around 2% points. For com-
parison, the performance trends of MSE and MSE
(fix encoder) are also provided. And the results
present overall decreasing trends of the model per-
formance, which indicates that the model trained
by MSE or MSE (fix encoder) cannot benefit from
the increasing of data scale, due to the severe over-
fitting or under-fitting. Therefore, to effectively
utilize the limited data, it is important to enable
the update of the entire network and add some con-
straints to avoid over-fitting, such as our proposed
KD regularization.

4.4 Case Study

To illustrate the performance of QuantiDCE, two
representative examples are shown in Table 5 . The
first example shows the strength of QuantiDCE
where the coherence score given by ours is closer
to the human rating score compared with the ex-
tremely high score given by GRADE. However,
in the second example, both our QuantiDCE and
GRADE deviate from the human score, possibly
because the number of coherence levels we adopted
in this work (L = 3) is insufficient as humans usu-
ally consider more levels of dialogue coherence.

10The initial decrease probably attributes to the randomness
of data sampling where the smaller the sampling ratio is, the
higher the probability that noisy samples dominate the sam-
pled data will be. And overfitting into the noisy samples leads
to the performance decrease.
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5 Conclusion

In this paper, we propose QuantiDCE, a novel train-
ing framework aiming to bridge the gap between
the training objective and the actual human rating
and train a quantifiable dialogue coherence met-
ric. In general, QuantiDCE includes two training
stages, MLR pre-training for learning the coarse
human judgements of dialogue coherence degrees,
and KD fine-tuning for learning the actual human
rating standards. Experimental results show that
the metric trained by QuantiDCE presents strong
correlations with human judgements. For future
work, it is interesting to investigate a more efficient
way to obtain multi-level data and extend the multi-
level setting into the general evaluation for natural
language generation.
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samples and both level-1 and level-2 pairs as neg-
ative samples, except that the former use cross-
entropy loss while the latter use ranking loss; c)
BLEURT was initialized with the official recom-
mended checkpoint BLEURT-Base and finetuned
on DailyDilaogEVAL by following the office guide-
lines11.

B Details of the Pre-Training Losses

BCE Loss. The binary cross entropy (BCE) loss
is adopted for the experiments of the two-level
setting, where both the adversarial irrelevant re-
sponses and random selected responses of the dai-
lydialog++ dataset (Sai et al., 2020) are treated as
negative samples and labeled as 0, while the golden
reference responses are treated as positive samples
and labeled as 1.

Margin Ranking Loss. Similarly, the margin
ranking loss simplifies the evaluation task as a
two-level setting and maximizes the differences
between the positive coherent dialogues and the
negative incoherent ones. As the name suggests,
the focus of the margin ranking loss is ranking,
which aims at ranking the scores of positive co-
herent dialogues ahead of the negative incoherent
ones.

SupCon Loss. The supervised contrastive (Sup-
Con) loss (Khosla et al., 2020), which pulls the pos-
itive anchors closer and pushes the negatives farther
away in representation space, can be adopted for
the multi-level setting. Here, for our multi-level
setting, we consider the dialogues of level-1, level-
2, and level-3 as positive anchors successively, and
the remaining two levels as corresponding nega-
tives.

FAT Loss. The fast-approximated triplet (FAT)
loss (Yuan et al., 2019) replaces the traditional
point-to-point distances of the triplet loss with
point-to-cluster distances, through an upper bound
relaxation of the triplet form, which is first applied
for the classification task and obviously reduces
the computation cost. To use FAT loss in our eval-
uation task, we consider the different coherence
levels as different classes and perform the FAT loss
to separate the context-response pairs with different
coherence levels.

11https://github.com/google-research/
bleurt

Vanilla MLR Loss. The vanilla MLR loss (Lin
et al., 2020) is the extension of the margin ranking
loss to a multi-level version by repeatedly applying
the original margin ranking loss between different
levels, which can be directly applied to our evalua-
tion task.

C Visualizations of the Pre-Training
Losses

We have already compared the visualization results
of the BCE loss and the FAT loss. For a supple-
ment, here we mainly introduce the visualizations
of the margin ranking loss, the SupCon loss and
the vanilla MLR loss in detail.

As we can see in Figure 6, (a) the margin rank-
ing loss cannot separate the level-1 scores from
the level-2 ones and the corresponding features are
also mixed, which is similar to the BCE loss; (b)
the SupCon loss, on the other hand, can distinguish
the features and scores of the three levels to some
extent, and the scores of different levels are also
separated but do not follow the real rank order, i.e.,
level-1 < level-2 < level-3; (c) the final vanilla
MLR loss can separate the context-response pairs
with different coherence level in feature space and
the predicted scores also follow the actual rank
order. However, its score distributions are not com-
pact enough for the level-1 and level-3.

https://github.com/google-research/bleurt
https://github.com/google-research/bleurt
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(c) Vanilla MLR(b) SupCon(a) Ranking

Figure 6: Visualizations of features (the scatter plots in the upper row) and scores (the violin plots in the lower row)
on the dailydialog++ dataset. The features and scores in each of the three columns are obtained from the metric
model M only pretrained with the margin ranking loss, the SupCon loss and the vanilla MLR loss, respectively.


