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Abstract

Incorporating syntax into neural approaches in
NLP has a multitude of practical and scientific
benefits. For instance, a language model that
is syntax-aware is likely to be able to produce
better samples; even a discriminative model
like BERT with a syntax module could be used
for core NLP tasks like unsupervised syntactic
parsing. Rapid progress in recent years was
arguably spurred on by the empirical success
of the Parsing-Reading-Predict architecture of
(Shen et al., 2018a), later simplified by the
Order Neuron LSTM of (Shen et al., 2019).
Most notably, this is the first time neural ap-
proaches were able to successfully perform un-
supervised syntactic parsing (evaluated by var-
ious metrics like F-1 score).

However, even heuristic (much less fully math-
ematical) understanding of why and when
these architectures work is lagging severely
behind. In this work, we answer representa-
tional questions raised by the architectures in
(Shen et al., 2018a, 2019), as well as some
transition-based syntax-aware language mod-
els (Dyer et al., 2016): what kind of syntac-
tic structure can current neural approaches
to syntax represent? Concretely, we ground
this question in the sandbox of probabilistic
context-free-grammars (PCFGs), and identify
a key aspect of the representational power
of these approaches: the amount and direc-
tionality of context that the predictor has ac-
cess to when forced to make parsing deci-
sion. We show that with limited context (either
bounded, or unidirectional), there are PCFGs,
for which these approaches cannot represent
the max-likelihood parse; conversely, if the
context is unlimited, they can represent the
max-likelihood parse of any PCFG.

1 Introduction

Neural approaches have been steadily making their
way to NLP in recent years. By and large however,

the neural techniques that have been scaled-up the
most and receive widespread usage do not explic-
itly try to encode discrete structure that is natural
to language, e.g. syntax. The reason for this is
perhaps not surprising: neural models have largely
achieved substantial improvements in unsupervised
settings, BERT (Devlin et al., 2019) being the de-
facto method for unsupervised pre-training in most
NLP settings. On the other hand unsupervised syn-
tactic tasks, e.g. unsupervised syntactic parsing,
have long been known to be very difficult tasks
(Htut et al., 2018). However, since incorporating
syntax has been shown to improve language model-
ing (Kim et al., 2019b) as well as natural language
inference (Chen et al., 2017; Pang et al., 2019; He
et al., 2020), syntactic parsing remains important
even in the current era when large pre-trained mod-
els, like BERT (Devlin et al., 2019), are available.

Arguably, the breakthrough works in unsuper-
vised constituency parsing in a neural manner were
(Shen et al., 2018a, 2019), achieving F1 scores 42.8
and 49.4 on the WSJ Penn Treebank dataset (Htut
et al., 2018; Shen et al., 2019). Both of these ar-
chitectures, however (especially Shen et al., 2018a)
are quite intricate, and it’s difficult to evaluate what
their representational power is (i.e. what kinds of
structure can they recover). Moreover, as subse-
quent more thorough evaluations show (Kim et al.,
2019b,a), these methods still have a rather large
performance gap with the oracle binary tree (which
is the best binary parse tree according to F1-score)
— raising the question of what is missing in these
methods.

We theoretically answer both questions raised
in the prior paragraph. We quantify the represen-
tational power of two major frameworks in neural
approaches to syntax: learning a syntactic distance
(Shen et al., 2018a,b, 2019) and learning to parse
through sequential transitions (Dyer et al., 2016;
Chelba, 1997). To formalize our results, we con-
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sider the well-established sandbox of probabilistic
context-free grammars (PCFGs). Namely, we ask:

When is a neural model based on a syntactic
distance or transitions able to represent the max-
likelihood parse of a sentence generated from a
PCFG?

We focus on a crucial “hyperparameter” com-
mon to practical implementations of both families
of methods that turns out to govern the representa-
tional power: the amount and type of context the
model is allowed to use when making its predic-
tions. Briefly, for every position t in the sentence,
syntactic distance models learn a distance dt to the
previous token — the tree is then inferred from this
distance; transition-based models iteratively con-
struct the parse tree by deciding, at each position t,
what operations to perform on a partial parse up to
token t. A salient feature of both is the context, that
is, which tokens is dt a function of (correspond-
ingly, which tokens can the choice of operations at
token t depend on)?

We show that when the context is either bounded
(that is, dt only depends on a bounded window
around the t-th token) or unidirectional (that is,
dt only considers the tokens to the left of the t-
th token), there are PCFGs for which no distance
metric (correspondingly, no algorithm to choose
the sequence of transitions) works. On the other
hand, if the context is unbounded in both directions
then both methods work: that is, for any parse, we
can design a distance metric (correspondingly, a
sequence of transitions) that recovers it.

This is of considerable importance: in practi-
cal implementations the context is either bounded
(e.g. in Shen et al., 2018a, the distance metric is
parametrized by a convolutional kernel with a con-
stant width) or unidirectional (e.g. in Shen et al.,
2019, the distance metric is computed by a LSTM,
which performs a left-to-right computation).

This formally confirms a conjecture of Htut et al.
(2018), who suggested that because these models
commit to parsing decision in a left-to-right fash-
ion and are trained as a part of a language model,
it may be difficult for them to capture sufficiently
complex syntactic dependencies. Our techniques
are fairly generic and seem amenable to analyzing
other approaches to syntax. Finally, while the ex-
istence of a particular PCFG that is problematic
for these methods doesn’t necessarily imply that
the difficulties will carry over to real-life data, the
PCFGs that are used in our proofs closely track lin-

guistic intuitions about difficult syntactic structures
to infer: the parse depends on words that come
much later in the sentence.

2 Overview of Results

We consider several neural architectures that have
shown success in various syntactic tasks, most
notably unsupervised constituency parsing and
syntax-aware language modeling. The general
framework these architectures fall under is as fol-
lows: to parse a sentence W = w1w2...wn with a
trained neural model, the sentence W is input into
the model, which outputs ot at each step t, and fi-
nally all the outputs {ot}nt=1 are utilized to produce
the parse.

Given unbounded time and space resources, by a
seminal result of Siegelmann and Sontag (1992), an
RNN implementation of this framework is Turing
complete. In practice it is common to restrict the
form of the output ot in some way. In this paper,
we consider the two most common approaches, in
which ot is a real number representing a syntactic
distance (Section 2.1) (Shen et al., 2018a,b, 2019)
or a sequence of parsing operations (Section 2.2)
(Chelba, 1997; Chelba and Jelinek, 2000; Dyer
et al., 2016). We proceed to describe our results for
each architecture in turn.

2.1 Syntactic distance
Syntactic distance-based neural parsers train a neu-
ral network to learn a distance for each pair of
adjacent words, depending on the context surround-
ing the pair of words under consideration. The
distances are then used to induce a tree structure
(Shen et al., 2018a,b).

For a sentence W = w1w2...wn, the syntactic
distance between wt−1 and wt (2 ≤ t ≤ n) is
defined as dt = d(wt−1, wt | ct), where ct is the
context that dt takes into consideration 1. We will
show that restricting the surrounding context ei-
ther in directionality, or in size, results in a poor
representational power, while full context confers
essentially perfect representational power with re-
spect to PCFGs.

Concretely, if the context is full, we show:

Theorem (Informal, full context). For sentenceW
generated by any PCFG, if the computation of dt
has as context the full sentence and the position
index under consideration, i.e. ct = (W, t) and

1Note that this is not a conditional distribution—we use
this notation for convenience.
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dt = d(wt−1, wt | ct), then dt can induce the maxi-
mum likelihood parse of W .

On the flipside, if the context is unidirectional
(i.e. unbounded left-context from the start of
the sentence, and even possibly with a bounded
look-ahead), the representational power becomes
severely impoverished:

Theorem (Informal, limitation of left-to-right pars-
ing via syntactic distance). There exists a PCFG G
such that for any distance measure dt whose com-
putation incorporates only bounded context in at
least one direction (left or right), e.g.

ct = (w0, w1, ..., wt+L′)

dt = d(wt−1, wt | ct)

the probability that dt induces the max likelihood
parse is arbitrarily low.

In practice, for computational efficiency,
parametrizations of syntactic distances fall into the
above assumptions of restricted context (Shen et al.,
2018a). This puts the ability of these models to
learn a complex PCFG syntax into considerable
doubt. For formal definitions, see Section 4.2. For
formal theorem statements and proofs, see Section
5.

Subsequently we consider ON-LSTM, an archi-
tecture proposed by Shen et al. (2019) improving
their previous work (Shen et al., 2018a), which
also is based on learning a syntactic distance, but
in (Shen et al., 2019) the distances are reduced from
the values of a carefully structured master forget
gate (see Section 6). While we show ON-LSTM
can in principle losslessly represent any parse tree
(Theorem 3), calculating the gate values in a left
to right fashion (as is done in practice) is subject
to the same limitations as the syntactic distance
approach:

Theorem (Informal, limitation of syntactic dis-
tance estimation based on ON-LSTM). There ex-
ists a PCFG G for which the probability that the
syntactic distance converted from an ON-LSTM
induces the max likelihood parse is arbitrarily low.

For a formal statement, see Section 6 and in
particular Theorem 4.

2.2 Transition-based parsing

In principle, the output ot at each position t of
a left-to-right neural models for syntactic parsing
need not be restricted to a real-numbered distance
or a carefully structured vector. It can also be a

combinatorial structure — e.g. a sequence of tran-
sitions (Chelba, 1997; Chelba and Jelinek, 2000;
Dyer et al., 2016). We adopt a simplification of the
neural parameterization in (Dyer et al., 2016) (see
Definition 4.7).

With full context, Dyer et al. (2016) describes
an algorithm to find a sequence of transitions to
represent any parse tree, via a “depth-first, left-
to-right traversal” of the tree. On the other hand,
without full context, we prove that transition-based
parsing suffers from the same limitations:

Theorem (Informal, limitation of transition-based
parsing without full context). There exists a PCFG
G, such that for any learned transition-based
parser with bounded context in at least one direc-
tion (left or right), the probability that it returns
the max likelihood parse is arbitrarily low.

For a formal statement, see Section 7, and in
particular Theorem 5.
Remark. There is no immediate connection be-
tween the syntactic distance-based approaches (in-
cluding ON-LSTM) and the transition-based pars-
ing framework, so the limitations of transition-
based parsing does not directly imply the stated
negative results for syntactic distance or ON-
LSTM, and vice versa.

2.3 The counterexample family
Most of our theorems proving limitations on
bounded and unidirectional context are based on a
PCFG family (Definition 2.1) which draws inspi-
rations from natural language already suggested in
(Htut et al., 2018): later words in a sentence can
force different syntactic structures earlier in the
sentence. For example, consider the two sentences:
“I drink coffee with milk.” and “I drink coffee with
friends.” Their only difference occurs at their very
last words, but their parses differ at some earlier
words in each sentence, too, as shown in Figure 1.

To formalize this intuition, we define the follow-
ing PCFG.

Definition 2.1 (Right-influenced PCFG). Let m ≥
2, L′ ≥ 1 be positive integers. The grammar Gm,L′

has starting symbol S, other non-terminals

Ak, Bk, A
l
k, A

r
k, B

′
k for all k ∈ {1, 2, ...,m},

and terminals

ai for all i ∈ {1, 2, ...,m+ 1 + L′},

cj for all j ∈ {1, 2, ...,m}.
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Figure 1: The parse trees of the two sentences: “I drink coffee with milk.” and “I drink coffee with friends.”. Their
only difference occurs at their very last words, but their parses differ at some earlier words in each sentence

Figure 2: The structure of the parse tree of string lk = a1a2...am+1+L′ck ∈ L(Gm,L′). Note that any lk1
and lk2

are almost the same except for the last token: the prefix a1a2...am+1+L′ is shared among all strings in L(Gm,L′).
However, their parses differ with respect to whereAk is split. The last token ck is unique to lk and hence determines
the correct parse according to Gm,L′ .

The rules of the grammar are

S → AkBk,∀k ∈ {1, 2, . . . ,m} w. prob.1/m

Ak → Al
kA

r
k w. prob. 1

Al
k →∗ a1a2...ak w. prob. 1

Ar
k →∗ ak+1ak+2...am+1 w. prob. 1

Bk →∗ B′kck w. prob. 1

B′k →∗ am+2am+3...am+1+L′ w. prob. 1

in which→∗ means that the left expands into the
right through a sequence of rules that conform
to the requirements of the Chomsky normal form
(CNF, Definition 4.4). Hence the grammar Gm,L′

is in CNF.
The language of this grammar is

L(Gm,L′)={lk=a1a2...am+1+L′ck : 1 ≤ k ≤ m}.

The parse of an arbitrary lk is shown in Figure 2.
Each lk corresponds to a unique parse determined
by the choice of k. The structure of this PCFG is

such that for the parsing algorithms we consider
that proceed in a “left-to-right” fashion on lk, be-
fore processing the last token ck, it cannot infer the
syntactic structure of a1a2...am+1 any better than
randomly guessing one of the m possibilities. This
is the main intuition behind Theorems 2 and 5.

Remark. While our theorems focus on the limita-
tion of “left-to-right” parsing, a symmetric argu-
ment implies the same limitation of “right-to-left”
parsing. Thus, our claim is that unidirectional con-
text (in either direction) limits the expressive power
of parsing models.

3 Related Works

Neural models for parsing were first successfully
implemented for supervised settings, e.g. (Vinyals
et al., 2015; Dyer et al., 2016; Shen et al., 2018b).
Unsupervised tasks remained seemingly out of
reach, until the proposal of the Parsing-Reading-
Predict Network (PRPN) by Shen et al. (2018a),
whose performance was thoroughly verified by ex-
tensive experiments in (Htut et al., 2018). The
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follow-up paper (Shen et al., 2019) introducing
the ON-LSTM architecture simplified radically the
architecture in (Shen et al., 2018a), while still ulti-
mately attempting to fit a distance metric with the
help of carefully designed master forget gates. Sub-
sequent work by Kim et al. (2019a) departed from
the usual way neural techniques are integrated in
NLP, with great success: they proposed a neural
parameterization for the EM algorithm for learning
a PCFG, but in a manner that leverages semantic
information as well — achieving a large improve-
ment on unsupervised parsing tasks.2

In addition to constituency parsing, dependency
parsing is another common task for syntactic pars-
ing, but for our analyses on the ability of various
approaches to represent the max-likelihood parse
of sentences generated from PCFGs, we focus on
the task of constituency parsing. Moreover, it’s
important to note that there is another line of work
aiming to probe the ability of models trained with-
out explicit syntactic consideration (e.g. BERT) to
nevertheless discover some (rudimentary) syntactic
elements (Bisk and Hockenmaier, 2015; Linzen
et al., 2016; Choe and Charniak, 2016; Kuncoro
et al., 2018; Williams et al., 2018; Goldberg, 2019;
Htut et al., 2019; Hewitt and Manning, 2019; Reif
et al., 2019). However, to-date, we haven’t been
able to extract parse trees achieving scores that
are close to the oracle binarized trees on standard
benchmarks (Kim et al., 2019b,a).

Methodologically, our work is closely related to
a long line of works aiming to characterize the rep-
resentational power of neural models (e.g. RNNs,
LSTMs) through the lens of formal languages and
formal models of computation. Some of the works
of this flavor are empirical in nature (e.g. LSTMs
have been shown to possess stronger abilities to
recognize some context-free language and even
some context-sensitive language, compared with
simple RNNs (Gers and Schmidhuber, 2001; Suz-
gun et al., 2019) or GRUs (Weiss et al., 2018; Suz-
gun et al., 2019)); some results are theoretical in
nature (e.g. Siegelmann and Sontag (1992)’s proof
that with unbounded precision and unbounded time
complexity, RNNs are Turing-complete; related re-
sults investigate RNNs with bounded precision and
computation time (Weiss et al., 2018), as well as

2By virtue of not relying on bounded or unidirectional
context, the Compound PCFG (Kim et al., 2019a) eschews the
techniques in our paper. Specifically, by employing a bidirec-
tional LSTM inference network in the process of constructing
a tree given a sentence, the parsing is no longer “left-to-right”.

memory (Merrill, 2019; Hewitt et al., 2020). Our
work contributes to this line of works, but focuses
on the task of syntactic parsing instead.

4 Preliminaries

In this section, we define some basic concepts and
introduce the architectures we will consider.

4.1 Probabilistic context-free grammar
First recall several definitions around formal lan-
guage, especially probabilistic context free gram-
mar:
Definition 4.1 (Probabilistic context-free grammar
(PCFG)). Formally, a PCFG (Chomsky, 1956) is a
5-tuple G = (Σ, N, S,R,Π) in which Σ is the set
of terminals, N is the set of non-terminals, S ∈ N
is the start symbol, R is the set of production rules
of the form r = (rL → rR), where rL ∈ N , rR
is of the form B1B2...Bm, m ∈ Z+, and ∀i ∈
{1, 2, ...,m}, Bi ∈ (Σ ∪ N). Finally, Π : R 7→
[0, 1] is the rule probability function, in which for
any r = (A→ B1B2...Bm) ∈ R,
Π(r) is the conditional probability

P (rR = B1B2...Bm | rL = A).

Definition 4.2 (Parse tree). Let TG denote the set
of parse trees that G can derive. Each t ∈ TG is
associated with yield(t) ∈ Σ∗, the sequence of
terminals composed of the leaves of t and PT (t) ∈
[0, 1], the probability of the parse tree, defined by
the product of the probabilities of the rules in the
derivation of t.
Definition 4.3 (Language and sentence). The lan-
guage of G is

L(G) = {s ∈ Σ∗ : ∃t ∈ TG,yield(t) = s}.

Each s ∈ L(G) is called a sentence in L(G), and
is associated with the set of parses TG(s) = {t ∈
TG |yield(t) = s}, the set of max likelihood
parses, arg maxt∈TG(s) PT (t), and its probability
PS(s) =

∑
t∈TG(s) PT (t).

Definition 4.4 (Chomsky normal form (CNF)). A
PCFG G = (Σ, N, S,R,Π) is in CNF (Chomsky,
1959) if we require, in addition to Definition 4.1,
that each rule r ∈ R is in the form A → B1B2

where B1, B2 ∈ N \ {S}; A → a where a ∈
Σ, a 6= ε; or S → ε which is only allowed if the
empty string ε ∈ L(G).

Every PCFGG can be converted into a PCFGG′

in CNF such that L(G) = L(G′) (Hopcroft et al.,
2006).
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4.2 Syntactic distance
The Parsing-Reading-Predict Networks (PRPN)
(Shen et al., 2018a) is one of the leading approaches
to unsupervised constituency parsing. The parsing
network (which computes the parse tree, hence the
only part we focus on in our paper) is a convo-
lutional network that computes the syntactic dis-
tances dt = d(wt−1, wt) (defined in Section 2.1)
based on the past L words. A deterministic greedy
tree induction algorithm is then used to produce
a parse tree as follows. First, we split the sen-
tence w1...wn into two constituents, w1...wt−1 and
wt...wn, where t ∈ argmax{dt}nt=2 and form the
left and right subtrees of t. We recursively repeat
this procedure for the newly created constituents.
An algorithmic form of this procedure is included
as Algorithm 1 in Appendix A.

Note that, due to the deterministic nature of the
tree-induction process, the ability of PRPN to learn
a PCFG is completely contingent upon learning a
good syntactic distance.

4.3 The ordered neuron architecture
Building upon the idea of representing the syntactic
information with a real-valued distance measure
at each position, a simple extension is to associate
each position with a learned vector, and then use the
vector for syntactic parsing. The ordered-neuron
LSTM (ON-LSTM, Shen et al., 2019) proposes
that the nodes that are closer to the root in the
parse tree generate a longer span of terminals, and
therefore should be less frequently “forgotten” than
nodes that are farther away from the root. The
difference in the frequency of forgetting is captured
by a carefully designed master forget gate vector f̃ ,
as shown in Figure 3 (in Appendix B). Formally:

Definition 4.5 (Master forget gates, Shen et al.,
2019). Given the input sentence W = w1w2...wn

and a trained ON-LSTM, running the ON-LSTM
on W gives the master forget gates, which are a
sequence of D-dimensional vectors {f̃t}nt=1, in
which at each position t, f̃t = f̃t(w1, ..., wt) ∈
[0, 1]D. Moreover, let f̃t,j represent the j-th dimen-
sion of f̃t. The ON-LSTM architectures requires
that f̃t,1 = 0, f̃t,D = 1, and

∀i < j, f̃t,i ≤ f̃t,j .
When parsing a sentence, the real-valued master

forget gate vector f̃t at each position t is reduced to
a single real number representing the syntactic dis-
tance dt at position t (see (1)) (Shen et al., 2018a).
Then, use the syntactic distances to obtain a parse.

4.4 Transition-based parsing
In addition to outputting a single real numbered
distance or a vector at each position t, a left-to-right
model can also parse a sentence by outputting a
sequence of “transitions” at each position t, an idea
proposed in some traditional parsing approaches
(Sagae and Lavie, 2005; Chelba, 1997; Chelba and
Jelinek, 2000), and also some more recent neural
parameterization (Dyer et al., 2016).

We introduce several items of notation:

• zti : the i-th transition performed when reading
in wt, the t-th token of the sentence

W = w1w2...wn.

• Nt: the number of transitions performed be-
tween reading in the token wt and reading in
the next token wt+1.

• Zt: the sequence of transitions after reading
in the prefix w1w2...wt of the sentence.

Zt = {(zj1, z
j
2, ..., z

j
Nj

) | j = 1..t}.

• Z: the parse of the sentence W . Z = Zn.

We base our analysis on the approach introduced
in the parsing version of (Dyer et al., 2016), though
that work additionally proposes a generator ver-
sion. 3

Definition 4.6 (Transition-based parser). A
transition-based parser uses a stack (initialized to
empty) and an input buffer (initialized with the
sentence w1...wt). At each position t, based on a
context ct, the parser outputs a sequence of parsing
transitions {zti}

Nt
i=1, where each zti can be one of

the following transitions (Definition 4.7). The
parsing stops when the stack contains one single
constituent, and the buffer is empty.

Definition 4.7 (Parser transitions, Dyer et al.,
2016). A parsing transition can be one of the fol-
lowing three types:

• NT(X) pushes a non-terminal X onto the
stack.

• SHIFT: removes the first terminal from the
input buffer and pushes onto the stack.

3Dyer et al. (2016) additionally proposes some generator
transitions. For simplicity, we analyze the simplest form: we
only allow the model to return one parse, composed of the
parser transitions, for a given input sentence. Note that this
simplified variant still confers full representational power in
the “full context” setting (see Section 7).
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• REDUCE: pops from the stack until an
open non-terminal is encountered, then pops
this non-terminal and assembles everything
popped to form a new constituent, labels this
new constituent using this non-terminal, and
finally pushes this new constituent onto the
stack.

In Appendix Section C, we provide an example
of parsing the sentence “I drink coffee with milk”
using the set of transitions given by Definition 4.7.

The different context specifications and the corre-
sponding representational powers of the transition-
based parser are discussed in Section 7.

5 Representational Power of Neural
Syntactic Distance Methods

In this section we formalize the results on syntactic
distance-based methods. Since the tree induction
algorithm always generates a binary tree, we con-
sider only PCFGs in Chomsky normal form (CNF)
(Definition 4.4) so that the max likelihood parse of
a sentence is also a binary tree structure.

To formalize the notion of “representing” a
PCFG, we introduce the following definition:

Definition 5.1 (Representing PCFG with syntactic
distance). LetG be any PCFG in Chomsky Normal
Form. A syntactic distance function d is said to be
able to p-represent G if for a set of sentences in
L(G) whose total probability is at least p, d can
correctly induce the tree structure of the max likeli-
hood parse of these sentences without ambiguity.

Remark. Ambiguities could occur when, for ex-
ample, there exists t such that dt = dt+1. In this
case, the tree induction algorithm would have to
break ties when determining the local structure for
wt−1wtwt+1. We preclude this possibility in Defi-
nition 5.1.

In the least restrictive setting, the whole sentence
W , as well as the position index t can be taken into
consideration when determining each dt. We prove
that under this setting, there is a syntactic distance
measure that can represent any PCFG.

Theorem 1 (Full context). Let ct = (W, t).
For each PCFG G in Chomsky normal form,
there exists a syntactic distance measure dt =
d(wt−1, wt | ct) that can 1-represent G.

Proof. For any sentence s = s1s2...sn ∈ L(G),
let T be its max likelihood parse tree. Since G is
in Chomsky normal form, T is a binary tree. We

will describe an assignment of {dt : 2 ≤ t ≤ n}
such that their order matches the level at which the
branches split in T . Specifically, ∀t ∈ [2, n], let at
denote the lowest common ancestor ofwt−1 andwt

in T . Let d′t denote the shortest distance between
at and the root of T . Finally, let dt = n− d′t. As a
result, {dt : 2 ≤ t ≤ n} induces T .

Remark. Since any PCFG can be converted to
Chomsky normal form (Hopcroft et al., 2006), The-
orem 1 implies that given the whole sentence and
the position index as the context, the syntactic dis-
tance has sufficient representational power to cap-
ture any PCFG. It does not state, however, that the
whole sentence and the position are the minimal
contextual information needed for representabil-
ity nor does it address training (i.e. optimization)
issues.

On the flipside, we show that restricting the con-
text even mildly can considerably decrease the rep-
resentational power. Namely, we show that if con-
text is bounded even in a single direction (to the
left or to the right), there are PCFGs on which any
syntactic distance will perform poorly 4. (Note in
the implementation (Shen et al., 2018a) the context
only considers a bounded window to the left.)

Theorem 2 (Limitation of left-to-right parsing via
syntactic distance). Let w0 = 〈S〉 be the sentence
start symbol. Let the context

ct = (w0, w1, ..., wt+L′).

∀ε > 0, there exists a PCFG G in Chomsky nor-
mal form, such that any syntactic distance measure
dt = d(wt−1, wt | ct) cannot ε-represent G.

Proof. Letm > 1/ε be a positive integer. Consider
the PCFG Gm,L′ in Definition 2.1.

For any k ∈ [m], consider the string lk ∈
L(Gm,L′). Note that in the parse tree of lk, the
rule S → AkBk is applied. Hence, ak and ak+1

are the unique pair of adjacent non-terminals in
a1a2...am+1 whose lowest common ancestor is the
closest to the root in the parse tree of lk. Then, in
order for the syntactic distance metric d to induce
the correct parse tree for lk, dk must be the unique
maximum in {dt : 2 ≤ t ≤ m+ 1}.

However, d is restricted to be in the form

dt = d(wt−1, wt |w0, w1, ..., wt+L′).

4In Theorem 2 we prove the more typical case, i.e. un-
bounded left context and bounded right context. The other
case, i.e. bounded left context and unbounded right context,
can be proved symmetrically.
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Note that ∀1 ≤ k1 < k2 ≤ m, the first m+ 1 +L′

tokens of lk1 and lk2 are the same, which implies
that the inferred syntactic distances

{dt : 2 ≤ t ≤ m+ 1}

are the same for lk1 and lk2 at each position t. Thus,
it is impossible for d to induce the correct parse
tree for both lk1 and lk2 . Hence, d is correct on
at most one lk ∈ L(Gm,L′), which corresponds to
probability at most 1/m < ε. Therefore, d cannot
ε-represent Gm,L′ .

Remark. In the counterexample, there are only m
possible parse structures for the prefix a1a2...am+1.
Hence, the proved fact that the probability of be-
ing correct is at most 1/m means that under the
restrictions of unbounded look-back and bounded
look-ahead, the distance cannot do better than ran-
dom guessing for this grammar.
Remark. The above Theorem 2 formalizes the in-
tuition discussed in (Htut et al., 2018) outlining
an intrinsic limitation of only considering bounded
context in one direction. Indeed, for the PCFG con-
structed in the proof, the failure is a function of the
context, not because of the fact that we are using a
distance-based parser.

Note that as a corollary of the above theorem, if
there is no context (ct = null) or the context is
both bounded and unidirectional, i.e.

ct = wt−Lwt−L+1...wt−1wt,

then there is a PCFG that cannot be ε-represented
by any such d.

6 Representational Power of the Ordered
Neuron Architecture

In this section, we formalize the results character-
izing the representational power of the ON-LSTM
architecture. The master forget gates of the ON-
LSTM, {f̃t}nt=2 in which each f̃t ∈ [0, 1]D, encode
the hierarchical structure of a parse tree, and Shen
et al. (2019) proposes to carry out unsupervised
constituency parsing via a reduction from the gate
vectors to syntactic distances by setting:

d̂ft = D −
D∑
j=1

f̃t,j for t = 2..n (1)

First we show that the gates in ON-LSTM in
principle form a lossless representation of any
parse tree.

Theorem 3 (Lossless representation of a parse
tree). For any sentence W = w1w2...wn with
parse tree T in any PCFG in Chomsky normal form,
there exists a dimensionality D ∈ Z+, a sequence
of vectors {f̃t}nt=2 in which each f̃t ∈ [0, 1]D, such
that the estimated syntactic distances via (1) induce
the structure of T .

Proof. By Theorem 1, there is a syntactic distance
measure {dt}nt=2 that induces the structure of T
(such that ∀t, dt 6= dt+1).

For each t = 2..n, set d̂t = k if dt is the k-th
smallest entry in {dt}nt=2, breaking ties arbitrar-
ily. Then, each d̂t ∈ [1, n − 1], and {d̂t}nt=2 also
induces the structure of T .

Let D = n − 1. For each t = 2..n, let f̃t =
(0, ..., 0, 1, ..., 1) whose lower d̂t dimensions are 0
and higher D − d̂t dimensions are 1. Then,

d̂ft = D −
D∑
j=1

f̃t,j = D − (D − d̂t) = d̂t.

Therefore, the calculated {d̂ft }nt=2 induces the
structure of T .

Although Theorem 3 shows the ability of the
master forget gates to perfectly represent any parse
tree, a left-to-right parsing can be proved to be
unable to return the correct parse with high proba-
bility. In the actual implementation in (Shen et al.,
2019), the (real-valued) master forget gate vectors
{f̃t}nt=1 are produced by feeding the input sentence
W = w1w2...wn to a model trained with a lan-
guage modeling objective. In other words, f̃t,j is
calculated as a function of w1, ..., wt, rather than
the entire sentence.

As such, this left-to-right parser is subject to
similar limitations as in Theorem 2:

Theorem 4 (Limitation of syntactic distance esti-
mation based on ON-LSTM). For any ε > 0, there
exists a PCFG G in Chomsky normal form, such
that the syntactic distance measure calculated with
(1), d̂ft , cannot ε-represent G.

Proof. Since by Definition 4.5, f̃t,j is a function
of w1, ..., wt, the estimated syntactic distance d̂ft
is also a function of w1, ..., wt. By Theorem 2,
even with unbounded look-back context w1, ..., wt,
there exists a PCFG for which the probability that
d̂ft induces the correct parse is arbitrarily low.
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7 Representational Power of
Transition-Based Parsing

In this section, we analyze a transition-based pars-
ing framework inspired by (Dyer et al., 2016;
Chelba and Jelinek, 2000; Chelba, 1997).

Again, we proceed to say first that “full context”
confers full representational power. Namely, using
the terminology of Definition 4.6, we let the context
ct at each position t be the whole sentence W and
the position index t. Note that any parse tree can be
generated by a sequence of transitions defined in
Definition 4.7. Indeed, Dyer et al. (2016) describes
an algorithm to find such a sequence of transitions
via a “depth-first, left-to-right traversal” of the tree.

Proceeding to limited context, in the setting of
typical left-to-right parsing, the context ct consists
of all current and past tokens {wj}tj=1 and all pre-
vious parses {(zj1, ..., z

j
Nj

)}tj=1. We’ll again prove
even stronger negative results, where we allow an
optional look-ahead to L′ input tokens to the right.

Theorem 5 (Limitation of transition-based parsing
without full context). For any ε > 0, there exists
a PCFG G in Chomsky normal form, such that
for any learned transition-based parser (Definition
4.6) based on context

ct = ({wj}t+L′

j=1 , {(z
j
1, ..., z

j
Nj

)}tj=1),

the sum of the probabilities of the sentences in
L(G) for which the parser returns the maximum
likelihood parse is less than ε.

Proof. Letm > 1/ε be a positive integer. Consider
the PCFG Gm,L′ in Definition 2.1.

Note that ∀k, S → AkBk is applied to yield
string lk. Then in the parse tree of lk, ak and
ak+1 are the unique pair of adjacent terminals in
a1a2...am+1 whose lowest common ancestor is the
closest to the root. Thus, different lk requires a dif-
ferent sequence of transitions within the first m+ 1
input tokens, i.e. {zti}i≥1, 1≤t≤m+1.

For each w ∈ L(Gm,L′), before the last to-
ken wm+2+L′ is processed, based on the common
prefix w1w2...wm+1+L′ = a1a2...am+1+L′ , it is
equally likely that w = lk, ∀k, w. prob. 1/m each.

Moreover, when processing wm+1, the bounded
look-ahead window of sizeL′ does not allow access
to the final input token am+2+L′ = ck.

Thus, ∀1 ≤ k1 < k2 ≤ m, it is impossible
for the parser to return the correct parse tree for
both lk1 and lk2 without ambiguity. Hence, the
parse is correct on at most one lk ∈ L(G), which
corresponds to probability at most 1/m < ε.

8 Conclusion

In this work, we considered the representational
power of two frameworks for constituency pars-
ing prominent in the literature, based on learning
a syntactic distance and learning a sequence of it-
erative transitions to build the parse tree — in the
sandbox of PCFGs. In particular, we show that
if the context for calculating distance/deciding on
transitions is limited at least to one side (which is
typically the case in practice for existing architec-
tures), there are PCFGs for which no good distance
metric/sequence of transitions can be chosen to
construct the maximum likelihood parse.

This limitation was already suspected in (Htut
et al., 2018) as a potential failure mode of leading
neural approaches like (Shen et al., 2018a, 2019)
and we show formally that this is the case. The
PCFGs with this property track the intuition that
bounded context methods will have issues when
the parse at a certain position depends heavily on
latter parts of the sentence.

The conclusions thus suggest re-focusing our at-
tention on methods like (Kim et al., 2019a) which
have enjoyed greater success on tasks like unsu-
pervised constituency parsing, and do not fall in
the paradigm analyzed in our paper. A question of
definite further interest is how to augment models
that have been successfully scaled up (e.g. BERT)
in a principled manner with syntactic information,
such that they can capture syntactic structure (like
PCFGs). The other question of immediate impor-
tance is to understand the interaction between the
syntactic and semantic modules in neural architec-
tures — information is shared between such mod-
ules in various successful architectures, e.g. (Dyer
et al., 2016; Shen et al., 2018a, 2019; Kim et al.,
2019a), and the relative pros and cons of doing this
are not well understood. Finally, our paper purely
focuses on representational power, and does not
consider algorithmic and statistical aspects of train-
ing. As any model architecture is associated with
its distinct optimization and generalization consid-
erations, and natural language data necessitates the
modeling of the interaction between syntax and
semantics, those aspects of considerations are well
beyond the scope of our analysis in this paper using
the controlled sandbox of PCFGs, and are interest-
ing directions for future work.
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A Tree Induction Algorithm Based on Syntactic Distance

The following algorithm is proposed in (Shen et al., 2018a) to create a parse tree based on a given syntactic
distance.

Algorithm 1: Tree induction based on syntactic distance
Data: Sentence W = w1w2...wn, syntactic distances dt = d(wt−1, wt | ct), 2 ≤ t ≤ n
Result: A parse tree for W
Initialize the parse tree with a single node n0 = w1w2...wn;
while ∃ leaf node n = wiwi+1...wj where i < j do

Find k ∈ arg maxi+1≤k≤j dk ;
Create the left child nl and the right child nr of n ;
nl ← wiwi+1...wk−1 ;
nr ← wkwk+1...wj ;

end
return The parse tree rooted at n0.

B ON-LSTM Intuition

See Figure 3 below, which is excerpted from (Shen et al., 2019) with minor adaptation to the notation.

Figure 3: Relationship between the parse tree, the block view, and the ON-LSTM. Excerpted from (Shen et al.,
2019) with minor adaptation to the notation.
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C Examples of parsing transitions
Table 1 below shows an example of parsing the sentence “I drink coffee with milk” using the set of
transitions given by Definition 4.7, which employs the parsing framework of (Dyer et al., 2016). The
parse tree of the sentence is given by

S

NP

N

I

VP

V

drink

NP

NP

N

coffee

PP

P

with

N

milk

Stack Buffer Action
I drink coffee with milk NT(S)

(S I drink coffee with milk NT(NP)
(S | (NP I drink coffee with milk NT(N)
(S | (NP | (N I drink coffee with milk SHIFT
(S | (NP | (N | I drink coffee with milk REDUCE
(S | (NP (N I)) drink coffee with milk NT(VP)
(S | (NP (N I)) | (VP drink coffee with milk NT(V)
(S | (NP (N I)) | (VP | (V drink coffee with milk SHIFT
(S | (NP (N I)) | (VP | (V | drink coffee with milk REDUCE
(S | (NP (N I)) | (VP | (V drink) coffee with milk NT(NP)
(S | (NP (N I)) | (VP | (V | drink) |

(NP coffee with milk NT(NP)
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP coffee with milk NT(N)
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP | (N coffee with milk SHIFT
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP | (N | coffee with milk REDUCE
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP (N coffee)) with milk NT(PP)
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP (N coffee)) | (PP with milk NT(P)
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP (N coffee)) | (PP | (P with milk SHIFT
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP (N coffee)) | (PP | (P | with milk REDUCE
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP (N coffee)) | (PP | (P with) milk NT(N)
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP (N coffee)) | (PP | (P with) | (N milk SHIFT
(S | (NP (N I)) | (VP | (V drink) |

(NP | (NP (N coffee)) | (PP | (P with) | (N | milk REDUCE
(S (NP (N I)) (VP (V drink)

(NP (NP (N coffee)) (PP (P with) (N milk)))))

Table 1: Transition-based parsing of the sentence “I drink coffee with milk”.


