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Abstract
In this paper, we study the task of graph-based
constituent parsing in the setting that binariza-
tion is not conducted as a pre-processing step,
where a constituent tree may consist of nodes
with more than two children. Previous graph-
based methods on this setting typically gen-
erate hidden nodes with the dummy label in-
side the n-ary nodes, in order to transform
the tree into a binary tree for prediction. The
limitation is that the hidden nodes break the
sibling relations of the n-ary node’s children.
Consequently, the dependencies of such sib-
ling constituents might not be accurately mod-
eled and is being ignored. To solve this limi-
tation, we propose a novel graph-based frame-
work, which is called “recursive semi-Markov
model”. The main idea is to utilize 1-order
semi-Markov model to predict the immediate
children sequence of a constituent candidate,
which then recursively serves as a child can-
didate of its parent. In this manner, the de-
pendencies of sibling constituents can be de-
scribed by 1-order transition features, which
solves the above limitation. Through experi-
ments, the proposed framework obtains the F1
of 95.92% and 92.50% on the datasets of PTB
and CTB 5.1 respectively. Specially, the recur-
sive semi-Markov model shows advantages in
modeling nodes with more than two children,
whose average F1 can be improved by 0.3-1.1
points in PTB and 2.3-6.8 points in CTB 5.1.

1 Introduction

There are two settings for constituent parsing mod-
els, including binary tree parsing and n-ary tree
parsing. In the former, the original constituent tree
with n-ary nodes is converted into a binary tree by
language-specific rules. The model first predicts
the binary tree, and then converts it back. In the
latter, the model directly predicts the n-ary tree
without the intermediate step of binarization.

∗Xin Xin is the corresponding author.
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Figure 1: An n-ary node and the hidden nodes.

In the paper, we focus on the setting of n-ary
tree parsing. Compared with binary tree parsing,
which has the advantage of utilizing the lexical
head information, n-ary tree parsing is more nat-
ural to fit the original tree structure, and is more
adaptable to languages that do not have head rules
for binarization. In addition, for languages with
the word segmentation issue, such as Chinese, it is
very convenient for n-ary tree parsing models to
deal with the joint task of word segmentation, part-
of-speech (POS) tagging and constituent parsing,
by just enlarging the label set with the POS labels,
as shown in Fig. 1 (a), which alleviates the error
propagation from the pipeline.

Specifically, we target at improving graph-based
models for n-ary tree parsing, which obtain better
performances in recent work (Kitaev et al., 2019;
Zhang et al., 2020; Wei et al., 2020) from the two
streams of well-developed parsing methods, graph-
based and transition-based. For n-ary tree parsing,
the main idea of previous graph-based models is
to generate hidden nodes with the dummy label φ
inside the n-ary node, in order to expand the n-ary
tree into a binary tree. In this way, n-ary tree pars-
ing can be converted into binary tree parsing with
hidden nodes, which are unobservable in the train-
ing process. Consider the n-ary node “VP→VV,
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Figure 2: Comparisons of previous and our models. (i,
j) denotes the span from i to j − 1. ρ(i, j) denotes
the feature score of span (i, j); ψ(i, j, k) denotes the
feature score of the sibling span pair (i, j) and (j, k).

NP, QP” in Fig. 1 (a) as an example. The hidden
nodes can be in two manners, as shown in Fig. 1 (b,
c). Either of them can be seen as being correct
in training. For convenience, the potential scores
of such hidden nodes are manually set to zero, to
ensure that the two manners are equivalent when
calculating the likelihood (Kitaev and Klein, 2018).

The limitation of previous methods is that the
generated hidden nodes break the sibling relations
of the n-ary node’s children. Consequently, such
sibling dependency feature might not be accurately
modeled and is being ignored. Consider the node
“VP→VV, NP, QP” in the above example. If we
model the 1-order dependency from the sibling
node pair, dependency feature scores should be
calculated from both pairs of (VV, NP) and (NP,
QP). Without loss of generality, suppose the hidden
node is as shown in Fig. 1 (b), and the case in
Fig. 1 (c) is similar. As the hidden node φ is forced
to be the sibling node of “QP”, the dependency
feature of (NP, QP) cannot be directly calculated.
In implementation, only potential scores of each
node are modeled, and the dependency potential
scores of sibling node pairs are being ignored.

To solve this limitation, we propose a novel
framework for n-ary tree parsing. Our main idea
is to utilize 1-order semi-Markov model to direct-
ly predict the immediate children sequence of an
n-ary node, without generating the hidden nodes
for binarization, as shown in Fig. 2. Different from
previous models that only have potential scores
on nodes when evaluating a tree’s likelihood, the
potential scores of sibling node pairs are also calcu-
lated as 1-order transition features. Thus dependen-
cies from sibling nodes can be naturally modeled,
which solves the above limitation. When generat-
ing an n-ary tree, the semi-Markov model is recur-
sively conducted on the node spans in a bottom-up
manner, thus we call the proposed model “recursive
semi-Markov model”.

The main challenge of designing the recursive
semi-Markov model is how to make the computa-
tional complexity being acceptable. In nowadays
GPU era, to make full use of parallel computation
is an important issue to enhance the processing
speed. For example, in the previous CYK (Kasa-
mi, 1966) algorithm for binary trees, the absolute
time complexity is O(n3), where n is the sentence
length. But O(n2) out of it can be computed in
parallel, by batchifying the spans with the same
length and the divisions within a span. This means
the hard time complexity of CYK, which cannot
be computed in parallel, is O(n). In the case of
the proposed recursive semi-Markov model, the
time complexity of the straight-forward dynamic
programming algorithm is O(n5). But by careful
design, we propose an algorithm, whose complexi-
ty is O(n4), with O(n3) out of it can be batchified.
It means the increased O(n) complexity compared
with CYK can be calculated in parallel. In prac-
tice, the proposed framework can process 26 and
11 sentences per second in PTB and CTB 5.1 test
sets respectively, by a single NVIDIA RTX GPU.

Our main contributions can be summarized as
follows. (1) We propose a novel graph-based frame-
work, recursive semi-Markov model, for n-ary con-
stituent tree parsing, which can model the depen-
dencies of sibling nodes. (2) We design a dynamic
programming algorithm for the proposed frame-
work, whose complexity is O(n4), with O(n3) in-
side can be batchified. (3) Experimental verifi-
cations demonstrate that the proposed framework
outperforms previous methods. The F1 of the pro-
posed framework is 95.92% and 92.50% in PTB
and CTB 5.1 respectively. In the joint task with
segmentation and POS tagging in CTB 5.1, the F1
is 91.84%. In addition, the proposed framework
can effectively predict nodes with more than two
children, improving the F1 by 0.3-1.1 points in
PTB and 2.3-6.8 points in CTB 5.1.

Our code is released at https://github.com/NP-
NET-research/Recursive-Semi-Markov-Model,
which is developed on the base of the open-source
Berkekey parser (Kitaev and Klein, 2018; Kitaev
et al., 2019).

2 Related Work

2.1 Early Models for N -ary Tree Parsing

A representative of classical methods for n-ary tree
parsing is the Earley algorithm (Earley, 1970). It
can find legal trees of sentence fitting the grammar
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rules with the complexity of O(Cn3) by dynamic
programming, where n is the sentence length and
C is dependent on the complexity of grammar rules.
The dependency with the size of grammar rules in
the Earley algorithm increases the computational
complexity substantially in practice. Therefore, re-
cent studies have paid more attention to utilizing
“less grammar” (Hall et al., 2014), which is imple-
mented in CYK/shift-reduce algorithms (Durrett
and Klein, 2015; Liu and Zhang, 2017b; Stern et al.,
2017; Teng and Zhang, 2018) instead of the Ear-
ley algorithm. It demonstrates it can reduce the
complexity and also obtain better performances.

Our proposed framework is in line with the re-
cent studies, whose complexity is independent with
the size of grammar rules.

2.2 Graph-Based N -ary Tree Parsing

Graph-based parsing models utilize the CYK algo-
rithm to find the tree with the largest feature score
as the prediction. The main advantage is the large
search space and the globally optimal inference. A
representative of graph-based n-ary tree parsing
model is the Berkeley parser (Stern et al., 2017;
Kitaev and Klein, 2018; Kitaev et al., 2019), which
employs hidden nodes to deal with n-ary nodes.

The proposed framework belongs to graph-based
n-ary tree parsing models. Compared with previ-
ous work, the novelty lies in that semi-Markov
model is utilized to directly model the children se-
quence of an n-ary node, instead of generating a
binary tree with hidden nodes. Consequently, it
can avoid breaking the sibling relation of nodes in
the sequence. The proposed framework then makes
use of such dependencies to improve the parsing
performance.

2.3 Transition-Based N -ary Trees Parsing

Transition-based models make predictions sequen-
tially, with advantages of the low computational
cost and the utilization of high-order features. The
models can be divided into post-order (Cross and
Huang, 2016; Fernández-González and Gómez-
Rodrı́guez, 2019), pre-order (Dyer et al., 2016), and
in-order (Liu and Zhang, 2017a), according to the
traversal manner of the action sequence. Post-order
models require to deciding the number of reduced
nodes for n-ary nodes (Fernández-González and
Gómez-Rodrı́guez, 2019), or to introducing hidden
nodes with dummy label (Cross and Huang, 2016).
Pre-order models and in-order models are born to
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Figure 3: Probabilistic graph of recursive semi-Markov
model.

have convenience in dealing with n-ary nodes, as
the number of reduced nodes is fixed.

Both the proposed framework and some of the
above methods directly model the sequence within
an n-ary node. The novelty of the proposed frame-
work is that it models the sequence as a graph-
based model rather than a transition-based mod-
el. Transition-based models suffer from the limita-
tion of local optimization in the inference process,
but graph-based models can guarantee the globally
optimal inference. In recent studies, graph-based
models have been demonstrated to perform better
than transition-based models (Kitaev et al., 2019;
Zhang et al., 2020; Wei et al., 2020).

3 The Recursive Semi-Markov Model

3.1 Preliminaries
A sentence is denoted by x = {xi}, with xi being
the ith word. The sentence length is denoted by n.
Let Y be the set of the alphabet constituent labels.
Following previous work (Kitaev and Klein, 2018;
Zhang et al., 2020), the nodes with unary gram-
mars are collapsed, and its label is replaced by the
joint label of the collapsed nodes. For example, in
Fig. 1 (a), “CP→IP” will be replaced by “CP+IP”,
where “CP+IP” is an atomic label. Given x, the
task is to build an n-ary tree on top of it, and assign
a label to each internal node. When conducting the
joint parsing task with word segmentation and POS
tagging in Chinese, Y is enriched with the POS
labels and a “C” label (denoting characters), and xi
denotes the ith character. For example, in Fig. 1 (a),
“NN” is a POS label, and “NP+NN” is treated as
an atomic label for the corresponding node in the
joint parsing task.

3.2 The Framework Structure
In the proposed recursive semi-Markov model, the
probabilistic graph of a constituent tree is shown
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Figure 4: Examples of potential scores for a whole tree.
For the convenience of presentation, we omit the labels.
The full presentation for ρ(i, j) is ρ(i, j, l) and the full
presentation for ψ(i, j, k) is ψ(i, j, k, l1, l2).

in Fig. 3. This graph corresponds to the tree in
Fig. 1 (a). Full circles refer to the input x. Blank
circles refer to the internal nodes, which can be
seen as variables in the probabilistic graph. The
full line, which connects two nodes, means that
the two nodes are dependent with each other. The
dotted line pointing to an internal node refers to the
sequence of the node’s immediate children. There
are two kinds of cliques in the graph, the one with
a single node, and the one with two sibling nodes.
The former corresponds to 0-order cliques, and the
latter corresponds to 1-order cliques. The whole
framework is a 1-order semi-Markov model.

Potential scores, which are assigned to the above
two kinds of cliques, are denoted by ρ(i, j, l|x, θ),
and ψ(i, j, k, l1, l2|x, θ), respectively. θ is the mod-
el parameters, including neural network weights
and word embeddings. In the following, we omit
the symbol x and θ in equations for presentation
simplicity. ρ(i, j, l) defines the emission feature
score of a span, describing how likely the span is a
constituent. (i, j) denotes a span which starts at i
and ends at j − 1, 0 ≤ i < j ≤ n. l ∈ Y denotes
the span’s label. ψ(i, j, k, l1, l2) defines the transi-
tion feature score of two sibling spans, describing
how likely the two spans are sibling neighbors with-
in an n-ary node. (i, j, k) denotes the two sibling
spans (i, j) and (j, k). l1 is the label of the left
span, and l2 is the label of the right span.

Let y denote a predicted tree given x. The con-
ditional probability p(y|x) can be defined on the
probabilistic graph, under the framework of condi-
tional random fields (CRF) (Lafferty et al., 2001),
as shown in the following equations. C1(y) de-
notes the set of emission scores, and C2(y) denotes
the set of transition scores. T (x) denotes all legal
n-ary trees that can be built on top of the input sen-
tence x. s(y) is the sum of clique potential scores
defined in a whole tree, with two examples shown
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Figure 5: The neural architecture for feature learning.

in Fig. 4. Given the parameters θ, the inference
process is to find a tree with the largest probability.

s(y) =
∑
C1(y)

ρ(i, j, l) +
∑
C2(y)

ψ(i, j, k, l1, l2) (1)

p(y|x) =
exp(s(y)))∑

y′∈T (x) exp(s(y′))

3.3 Potential Score Calculations
Given an input sentence x, we follow the neural
network architecture of the Berkeley parser (Kitaev
and Klein, 2018) with some minor revisions, to
calculate the two kinds of potential scores, ρ(i, j, l),
and ψ(i, j, k, l1, l2), as shown in Fig. 5.

In the embedding layer, the BERT (Devlin et al.,
2019; Wolf et al., 2020) is selected to generate pre-
trained vectors, denoted by ei, 0 ≤ i < n. For the
Chinese language, ei refers to the ith character, and
the embedding vector of last character within the
word is chosen to represent the word.

ei = BERT(xi|x)

In the encoding layer, the Transformer (Vaswani
et al., 2017) is selected for extracting the context
features, denoted by hi, with odd dimensions

−→
h i

and the even dimensions
←−
h i.

hi = Transformer(ei|x)

The representation of a single span (i, j) is
formed by v(i, j) = [

−→
h j−

−→
h i;
←−
h j−1−

←−
h i−1], and

the representation of a sibling span pair (i, j) and
(j, k) is formed by v(i, j, k) = [v(i, j); v(j, k)]. [; ]
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is the concatenate operation. By passing v(i, j) and
v(i, j, k) through multi-layer perceptrons (MLP),
the emission potential score is finally defined as

ρ(i, j, l) = MLPemission
l (v(i, j)),

and the transition potential score is defined as

ψ(i, j, k, l1, l2) = MLPtransition
l1,l2 (v(i, j, k)).

There are totally |Y|MLPs for ρ. |Y| is the size
of the label set Y . Parameters in the hidden layers
are shared among them, and only the parameters
of the output layers are different to distinguish dif-
ferent labels. Similarly, there are |Y|2 MLPs for ψ,
whose parameters in hidden layers are also shared.

3.4 The Max-Margin Loss

When designing the loss function, theoretically, we
can follow the CRF framework to optimize the log-
likelihood of the training data. But in practice, if
we do this, the gradients of all potential scores,
which is O(n4) (n is the sentence length), should
be stored in the GPU memory. This is impossi-
ble to be implemented in a general GPU device.
Therefore, we employ the max-margin loss as the
training objective to learn the parameters of the
proposed framework, following the Berkeley pars-
er (Kitaev and Klein, 2018). By max-margin, only
the gradients of the predicted tree structure and the
gold structure need to be stored, which is O(n).
Consequently, it saves a lot of memory in imple-
mentation.

Let s(y) in Eq. 1 denote the total potential score
of a tree y. Suppose the gold tree is yg, with the
potential score s(yg). The key idea of the max-
margin loss is to let the maximum potential score
of the other trees, denoted as s(y∗), be less than
s(yg) by an acceptable margin. In the probability
space, it is equivalent that the probability of the
gold tree is larger than the maximum probability of
the other trees by a margin. The formal definition
of the objective is to minimize the following hinge
loss, where ∆(y, yg) refers to the number of spans
in yg not matched in y.

L = max

(
0, max

y∈T (x)
[s(y) + ∆(y, yg)]− s(yg)

)

3.5 Explanations of the Proposed Model

The Semi-Markov Property. The semi-Markov
property of the proposed model refers to the one

(b) Semi-Markov Model

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(a) CYK

(1)

(2)

(3)

Figure 6: Comparisons between the CYK algorithm
and the recursive semi-Markov model.

mentioned in Sarawagi and Cohen’s work (Sarawa-
gi and Cohen, 2004). When finding the immedi-
ate children of a constituent span, the linear-chain
Markov structures are assumed over the sequence
of candidate immediate constituents. In the imple-
mentation, we treat it as a segmentation problem,
where each immediate child span can be seen as
a segment, which has the similar setting with the
previous work (Sarawagi and Cohen, 2004). Com-
pared with the traditional “B-I-O” tagging schema
in segmentation, which assigns a label to each to-
ken, the emission feature ρ is defined on the whole
segment of several tokens in the proposed model,
which is non-Markovian. Markov property exists
in adjacent segments from the transition feature ψ.
This shows the semi-Markov property.

Connections with CRF. Traditional CRF mod-
els define a conditional probability over a proba-
bilistic graph, and utilize the maximum likelihood
estimation as the optimization objective. The pro-
posed model shares the same conditional probabili-
ty definition from the explanation view, but utilizes
a margin-based loss in order to save the computa-
tional memory.

4 Algorithms

4.1 The Challenge

The core for the optimization is to find the tree with
the maximum potential score. The previous CYK
algorithm utilizes dynamic programming to find the
maximum score, in a bottom-up manner. In order
to calculate the maximum score of a given span,
all the divisions should be enumerated. As shown
in Fig. 6 (left), in the binary tree case, the number
of the divisions is equal to L − 1, where L is the
span length. Besides, the span length should be
enumerated from 1 to n, and for each span length
L there is L − n + 1 spans. Therefore the total
time complexity of previous CYK is O(n3). In
our case, a span can have more than two immediate
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Figure 7: An example of the dynamic programming.

children. Therefore, all the segmentation sequences
should be enumerated, which obviously enlarges
the search space. In Fig. 6 (right), for a span with
the length equal to 4, the number of sequences to be
considered increases from 3 to 7. This difference
is the key issue to be solved in this section.

4.2 Straight-Forward Algorithm (O(n5))
Let (i, j) be a representative span (i < j). We need
to find its immediate children sequence with the
maximum potential score. Dynamic programming
is employed to accumulate the maximum potential
score from the left to the right. Let α(i, j′, d, l) be
an accumulated variable in the dynamic program-
ming, which accumulates potential scores from
j′ = i + 1 to j′ = j. j′ denotes the current accu-
mulated position. d (i < d < j′) means that the
last immediate child for span (i, j′) is the span (d,
j′). l refers to the label of (d, j′). The meaning
of α(i, j′, d, l) is the maximum accumulated score
chosen from all the immediate children sequences
of span (i, j′) whose last immediate child is (d, j′)
with the label l. We also include the case of d = i,
which refers to the maximum accumulated score of
the span (i, j′)’s children and the span (i, j′) itself
with l as its label.

α(i, i+ 1, i, l) = ρ(i, i+ 1, l)

α(i, j′, d, l) = max
i≤q<d,l′∈Y

[
α(i, d, q, l′)+

+ψ(q, d, j′, l′, l) + α(d, j′, d, l)
]

α(i, j′, i, l) = ρ(i, j′, l) + max
i<k<j′,l′∈Y

α(i, j′, k, l′)

In semi-Markov model, the above iterative cal-
culation equations hold for the dynamic program-
ming. The first equation is the initial state when
j′ = i+ 1, and the second and third equations are

(a) (b)

(c) (d)

(0,5, , )d lα
(0,4, , )d lα

(0,5, , )d lα
(1,6, , )d lα

(2,7, , )d lα

(0,7,6, )lα

(0,7,5, )lα

(0,7,4, )lα

(0,7,3, )lα

(0,7,2, )lα

(0,7,1, )lα

(0,5,4, )lα (0,7,5, )lα

(0,5,3, )lα (0,7,5, )lα

(0,7,5, )lα(0,5,1, )lα

(0,5,2, )lα (0,7,5, )lα

Figure 8: The main steps of the proposed algorithm.

the iterative functions when (i < d < j′, j′ > i+1)
and (d = i, j′ > i+ 1), respectively. An example
of the dynamic programming is shown in Fig. 7.

In the iterative calculation of the above dynamic
programming, we need to enumerate q, d, j′, i, j,
each of which has the complexity of O(n). The to-
tal time complexity of the straight-forward method
is O(n5) ∗O(|Y|2). To simplify the complexity of
|Y|2, in calculating ψ(q, d, j′, l′, l), we manually
group the labels in Y into clusters, according to
the meaning of the constituent label, which reduces
the complexity of |Y|2. Consequently, the main
complexity comes from the O(n5) part.

4.3 The Proposed Algorithm (O(n) ∗Op(n3))

In this section, we introduce how to reduce the
above complexity of O(n5) to O(n) ∗ Op(n3).
Op(n3) means all the O(n3) calculations can be
batchfied. The hard complexity, which cannot be
computed in parallel, is O(n).

The overall procedure for designing the algorith-
m is shown in Fig. 8. It includes four steps for
reducing or batchifying the time complexity. In the
first step, the complexity is reduced from O(n5) to
O(n4) by sharing the α values in a set of spans. As
shown in Fig. 8 (a), in the span of (0, 5), we need
to calculate α(0, j, d, l) by enumerating j from 1
to 5. But the value α(0, 4, d, l) has been calculated
in the span of (0, 4). Iteratively, all the values of
α(0, j, d, l)(0 < j < 5) have been calculated in
previous spans starting from 0. This means a set
of spans that have the same start position can share
the α values. If we enumerate the span length in
the ascending order, in span (i, j), only the jth

position’s value α(i, j, d, l) needs to be calculated,
instead of enumerating the position j′ from i + 1
to j, which reduces O(n) of the time complexi-
ty. In the second step, the complexity is batchified



2637

Algorithm 1 Algorithm for recursive semi-Markov
model.
Input: sentence x (length N ), model parameters θ.
Outputs: the constituent tree y∗ with the maximum
potential score s(y∗|x; θ).

1: for all spans (i, j) do
2: calculate ρ(i, j, l|x; θ).
3: end for
4: for all sibling span pairs (i, j) and (j, k) do
5: calculate ψ(i, j, k, l1, l2|x; θ).
6: end for
7: for span length T from 1 to N do
8: calculate α(i, i+ T, d, l).

0 ≤ i ≤ N − T , i ≤ d < i+ T
9: end for

10: s(y∗|x; θ) = maxd,l α(0, N, d, l).
11: trace back the tree y∗.

from O(n4) to O(n3) ∗ Op(n), by computing the
spans of the same length in parallel, as shown in
Fig. 8 (b). In the third step, the complexity is batchi-
fied from O(n3) ∗ Op(n) to O(n2) ∗ Op(n2), by
computing different ds in α(i, j, d, l), i < d < j in
parallel, as shown in Fig. 8 (c). In the fourth step,
the complexity is batchified from O(n2) ∗Op(n2)
to O(n) ∗Op(n3), by computing α(i, j, d, l) when
enumerating the second last immediate child with
i < q < d in parallel (To calculate the dynamic
programming state at a new position given the last
child, we need to enumerate previous states with
different second last children, in order to calculate
ψ), as shown in Fig. 8 (d).

The details of the proposed algorithm are shown
in Alg. 1. The calculation of ρ(i, j, l|x; θ) and
ψ(i, j, k, l1, l2|x; θ) can be easily computed in par-
allel, with the complexity Op(n2) and Op(n3), re-
spectively. The complexity of calculating α is
O(n) ∗Op(n3). Therefore, the total time complex-
ity of the proposed algorithm is O(n) ∗Op(n3).

5 Experiments

5.1 Experimental Setup

We evaluate the proposed framework in both En-
glish and Chinese, on the datasets of PTB (WSJ
sections (Marcus et al., 1993)) and CTB 5.1 (Xue
et al., 2005), respectively. For Chinese, we evaluate
both the single task of constituent parsing and the
joint task with word segmentation and POS tagging.
We follow the standard split of the datasets (Kitaev

Parameter Value Parameter Value
batch size 32 learning rate 10−5

decay factor 0.5 decay patience 5
max decay 3 dropout 0.2
MLP layer 1 MLP hidden 250
Trans. hidden 1024 Trans. layer 2
head number 8 label hidden 250

Table 1: Hyper-parameters.

Model P R F1
Dyer et al. (2016) – – 93.3
Choe and Charniak (2016) – – 93.8
Liu and Zhang (2017a) – – 94.2
Fried et al. (2017) – – 94.66
Stern et al. (2017) 92.98 90.63 91.79
Liu et al. (2018) – – 92.3
Shen et al. (2018) 92.0 91.7 91.8
Gómez-Rodrı́guez and Vilares (2018) – – 90.7
Gaddy et al. (2018) 92.41 91.76 92.08
Teng and Zhang (2018) 92.5 92.2 92.4
Hong and Huang (2018) 91.5 92.5 92.0
Joshi et al. (2018) 93.8 94.8 94.3
Vilares et al. (2019) – – 90.60
Kitaev and Klein (2018) 94.85 95.40 95.13
Kitaev et al. (2019) 95.46 95.73 95.59
Zhou and Zhao (2019) 95.70 95.98 95.84
Zhang et al. (2020) 95.85 95.53 95.69
Wei et al. (2020) 95.5 96.1 95.8
Ours 96.29 95.55 95.92

Table 2: Single-task performances on test set of PTB.

et al., 2019). In the single task for Chinese, some
previous work utilize the Stanford tagger (Toutano-
va et al., 2003) to generate the POS tags as input,
which leads to a fixed error propagation. In this
paper, POS tags are removed and not used as input
features in both training and testing in CTB 5.1,
following the previous work in (Zhang et al., 2020).
Standard precision, recall and F1-measure are em-
ployed as evaluation metrics, where the EVALB1

tool is employed in the single task. The hyper-
parameters in the implementation are shown in Ta-
ble. 1. Most of them are set following the Berkeley
parser (Kitaev and Klein, 2018). When choosing
the pre-train models (Wolf et al., 2020), “bert-large-
cased” is utilized for English with a single RTX
3090, “bert-base-chinese” is utilized for Chinese
with a single RTX 1080TI.

5.2 Performances
The overall performances of the proposed frame-
work in the single task of constituent parsing on

1https://nlp.cs.nyu.edu/evalb



2638

Model P R F1
Watanabe and Sumita (2015) – – 84.33
Gómez-Rodrı́guez and Vilares (2018) – – 84.40
Dyer et al. (2016) – – 84.60
Liu and Zhang (2017b) 85.90 85.20 85.50
Vilares et al. (2019) – – 85.61
Liu and Zhang (2017a) – – 86.10
Shen et al. (2018) 86.60 86.40 86.50
Wang et al. (2015) – – 86.60
Fernández-González and Gómez-Rodrı́guez (2019) – – 86.80
Fried and Klein (2018) – – 87.00
Teng and Zhang (2018) 87.50 87.10 87.30
Kitaev et al. (2019) 91.96 91.55 91.75
Zhou and Zhao (2019) 92.03 92.33 92.18
Zhang et al. (2020) 92.51 92.04 92.27
Wei et al. (2020) 92.2 92.7 92.4
Ours 92.94 92.06 92.50

Table 3: Single-task performances on test set of CTB.

Model Seg-F1 Pos-F1 Par-F1
Wang et al. (2006) 76.20 78.00 77.10
Jiang et al. (2009) – – 81.07
Qian and Liu (2012) 97.96 93.81 82.85
Wang et al. (2013) 97.86 94.40 83.42
Zhang et al. (2013) 97.84 94.80 84.43
Zheng et al. (2015) – – 84.22
Baseline 98.35 96.32 91.38
Ours 98.92 96.70 91.84

Table 4: Joint-task performances on test set of CTB.
The “baseline” row shows our running results using a
revision of the Berkeley parser (Kitaev et al., 2019).

the test set are shown in Table. 2 and Table. 3.
The baselines in the first block are mainly based
on basic word embeddings, and the baselines in
the second block are based on BERT (Wolf et al.,
2020). It can be observed that the F1-measures
of proposed framework are 95.92% in PTB and
92.50% in CTB 5.1, which outperform the previ-
ous state-of-the-art methods. Our implementation
for the proposed framework is based on the Berke-
ley parser (Kitaev et al., 2019). Therefore, many
settings are similar with it for fair comparisons,
such as learning schedule and feature normaliza-
tion. Our method outperforms it by 0.33 points
in PTB and 0.5 points in CTB 5.1 (0.25% of the
0.75% improvement is due to not utilizing auto-
matically predicted POS tags in CTB 5.1), which
demonstrates the advantage of modeling the sibling
dependency features.

The overall performances in the joint task on the
test set of CTB 5.1 are shown in Table. 4. As there
are rare reports of performances with the BERT
embedding, we have implemented a minor revision
to the previous Berkeley parser (Kitaev et al., 2019)
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Figure 9: F1-measure values on constituent nodes with
different numbers of children. The “baseline” refers to
our running results using the Berkeley parser (Kitaev
et al., 2019). The percentage values at bottom refers to
the distribution of different nodes.

to make it adaptable to the joint task, which serves
as the baseline method in the second block. It can
observed that the F1-measures of proposed recur-
sive semi-Markov model outperforms the competi-
tive baseline by 0.46 points in F1, and consistently
outperforms previous method in all tasks of word
segmentation, POS tagging, and parsing.

The main improvement of the proposed frame-
work comes from modeling the sibling dependen-
cies of an n-ary node’s children sequence. It has
special advantage for predicting nodes with more
children. We have divided all the constituent nodes
into bins by how many children they have. Figure 9
shows the comparisons. The improvement is more
obvious when the number of children becomes larg-
er. For nodes with more than 2 immediate children,
our framework outperforms the baseline by 0.3 to
1.1 points in PTB and 2.3 to 6.8 points in CTB 5.1.
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Model Sent./Sec.
Zhu et al. (2013) 90
Stern et al. (2017) 76
Shen et al. (2018) 111
Gómez-Rodrı́guez and Vilares (2018) 780
Zhou and Zhao (2019) 159
Wei et al. (2020) 220
Zhang et al. (2020) 1092
Ours 26

Table 5: Speed comparisons of different methods. The
results of other methods are referred from the previous
papers, and the hardware equipments are different.

5.3 Speed Analysis
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Figure 10: Speed analysis.
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Figure 11: Speed comparisons with the baseline. Ra-
tio=Speed(Baseline)/Speed(Ours).

The average processing speed in PTB test set is
26 sentences per second with a single RTX 3090,
and the one in CTB 5.1 test set is 11 sentences per
second with a single RTX 1080TI (or 20 sentences
per second with single RTX 3090). Table 5 shows
the speed comparisons of the proposed model with
previous methods in the PTB dataset. Figure 10
shows the detailed processing speed of the pro-
posed model in CTB 5.1 dataset. Figure 10 (left)
shows the processing speeds with different sen-
tence lengths; and Fig. 10 (right) shows the pro-
cessing time of some special long sentences. For
the longest sentence in the CTB 5.1, which con-
tains 240 words, it takes around 6 seconds. Fig-

ure 11 shows the processing speed ratio between
the Berkeley parser (Kitaev et al., 2019) and our
model. It demonstrates that ratio does not grow
linearly, by making full use of parallel computa-
tions. We know that the speed is still slower than
some previous methods. On one hand, our pro-
posed algorithm has already reduced the complexi-
ty by parallel computations. On the other hand, by
considering its advantage in modeling nodes with
multiple children, which especially happens a lot in
the joint parsing task with segmentation and POS
tagging in Chinese, the processing speed is still
acceptable in many offline cases.

5.4 A Further Comparison on Fine-Grained
Noun Phrase Structures

Within the nodes having more than two children,
some of them are noun phrases, whose internal hier-
archical structures have been annotated in the PTB
dataset by previous work (Vadas and Curran, 2007,
2011). We have also conducted experiments with
the Berkeley parser (Kitaev et al., 2019) on this
refined PTB data. In the test process, we convert
the generated fine-grained trees back to the original
trees for comparisons. The F1 in the refined PTB
test dataset by the Berkeley parser (Kitaev et al.,
2019) is 95.62%, which is also outperformed by
the proposed method in Table 2.

6 Conclusion

In this paper, a recursive semi-Markov model is pro-
posed for n-ary constituent tree parsing, with the
advantage of modeling the sibling relations within
n-ary node. Experimental verifications on PTB and
CTB 5.1 demonstrate that the proposed framework
outperforms previous work in the single parsing
task of both datasets and the joint task in CTB 5.1.
For constituent nodes with more than 2 children,
the F1 can be improved by 0.3− 1.1 points in PTB
and 2.3− 6.8 points in CTB 5.1.
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