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Abstract

Multimodal fusion has been proved to improve
emotion recognition performance in previous
works. However, in real-world applications,
we often encounter the problem of missing
modality, and which modalities will be miss-
ing is uncertain. It makes the fixed multimodal
fusion fail in such cases. In this work, we pro-
pose a unified model, Missing Modality Imag-
ination Network (MMIN), to deal with the
uncertain missing modality problem. MMIN
learns robust joint multimodal representations,
which can predict the representation of any
missing modality given available modalities
under different missing modality conditions.
Comprehensive experiments on two bench-
mark datasets demonstrate that the unified
MMIN model significantly improves emotion
recognition performance under both uncertain
missing-modality testing conditions and full-
modality ideal testing condition. The code
will be available at https://github.com/AIM3-
RUC/MMIN.

1 Introduction

Automatic multimodal emotion recognition is very
important to natural human-computer interactions
(Fragopanagos and Taylor, 2002). It aims to un-
derstand and interpret human emotions expressed
through multiple modalities such as speech con-
tent, voice tones and facial expression. Previous
works have shown that these different modalities
are complimentary for emotion expression, and pro-
posed many effective multimodal fusion methods
to improve the emotion recognition performance
(Baltrušaitis et al., 2018; Tsai et al., 2019; Zhao
et al., 2018). However, in real applications, many
common causes can lead to the missing modality
problem. For example, the camera is turned off or

∗Equal Contribution
†Corresponding Author

...

I can’t believe it!

Acoustic

Visual

Textual

Missing

Emotion Recognition

Figure 1: Illustration of a missing modality scenario for
multimodal emotion recognition systems. As shown
in this video segment, we encounter the missing vi-
sual modality problem due to the person’s face was ob-
scured by her hands.

blocked due to privacy issues; the speech content
is unavailable due to automatic speech recognition
errors; the voice and text are missing due to the
silence of the user; or the faces cannot be detected
due to lighting or occlusion issues as shown in Fig-
ure 1. Existing multimodal fusion models trained
on full-modality samples usually fail when partial
modalities are missing (Aguilar et al., 2019; Pham
et al., 2019; Cai et al., 2018; Parthasarathy and
Sundaram, 2020).

The missing modality problem has attracted
more research attention in the past years, and the
existing solutions for this problem are mainly based
on learning joint multimodal representation so that
all modality information can be encoded. Han et al.
(Han et al., 2019) propose a joint training approach
that implicitly fuses multimodal information from
auxiliary modalities, which improves the mono-
modal emotion recognition performance. The re-
cent cross-modality sequential translation-based
methods proposed in (Pham et al., 2019; Wang
et al., 2020) learn the joint multimodal representa-
tions via translating a source modality to multiple
target modalities, which improves the performance
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of the source modality as input at the test time.
However, these methods can only deal with the
scenario where the source modality is input to the
trained model. Different models need to be built for
different missing modality cases1. Additionally, the
sequential translation-based models require trans-
lation and generation of videos, audios, and text,
which are difficult to train especially with limited
training samples (Li et al., 2018; Pham et al., 2019).

In this work, we propose a novel unified model,
Missing Modality Imagination Network (MMIN),
to address the above issues. Specifically, the pro-
posed MMIN learns the robust joint multimodal
representations through cross-modality imagina-
tion with Cascade Residual Autoencoder (CRA)
(Tran et al., 2017) and Cycle Consistency Learning
(Zhu et al., 2017) based on sentence-level modality-
specific representations, as the sentence-level rep-
resentation is more reasonable for modeling the
cross-modality emotion correlation. The imagina-
tion module aims to predict the sentence-level emo-
tional representation of the missing modality from
the other available modalities. To the best of our
knowledge, this is the first work that investigates a
unified model for multimodal emotion recognition
with uncertain missing-modality.

Extensive experiments are carried out on
two benchmark datasets, IEMOCAP and MSP-
IMPROV, under both uncertain missing-modality
and full-modality conditions. The proposed MMIN
model as a unified multimodal emotion recognition
model can learn robust joint multimodal represen-
tations and outperforms the standard multimodal
fusion models on both benchmark datasets under
both the uncertain missing-modality and the full-
modality conditions. Furthermore, to evaluate the
imagination ability of our MMIN model, we visual-
ize the distributions of the imagined representations
of the missing modalities and its ground-truth rep-
resentations and find they are very similar, which
demonstrates that MMIN can imagine the repre-
sentations of the missing modalities based on the
representations of the available modalities.

In summary, the main contributions of this work
are: 1) We propose a unified model, Missing
Modality Imagination Network (MMIN), to im-
prove the robustness of emotion recognition sys-
tems under uncertain missing-modality testing con-

1If there are audio(a),visual(v) and textual(t) three modal-
ities, then the system needs 6 models trained under 6 missing
modality conditions {a}, {v}, {t}, {a,v}, {a,t} and {v,t}, plus
one model trained under the full-modality data.

ditions. 2) We design cross-modality imagination
based on paired multimodal data and adopt Cas-
cade Residual Autoencoder (CRA) and Cycle Con-
sistency Learning to learn the robust joint multi-
modal representations. 3) Extensive experiments
on two benchmark datasets demonstrate the effec-
tiveness of the proposed model which improves the
emotion recognition performance under both the
uncertain missing-modality and the full-modality
conditions.

2 Related Work

Multimodal Emotion Recognition Many previ-
ous works have focused on fusing multimodal in-
formation to improve emotion recognition perfor-
mance. Temporal attention-based methods are
proposed to use the attention mechanism to se-
lectively fuse different modalities based on the
frame-level or word-level temporal sequence, such
as Gated Multimodal Unit (GMU) (Aguilar et al.,
2019), Multimodal Alignment Model (MMAN)
(Xu et al., 2019) and Multi-modal Attention mech-
anism (cLSTM-MMA) (Pan et al., 2020). These
methods use different uni-modal sub-networks
to model the contextual representations for each
modality and then use the multimodal attention
mechanism to selectively fuse the representations
of different modalities. Liang et al. (Liang
et al., 2020) propose a semi-supervised multimodal
(SSMM) emotion recognition model which uses
cross-modality emotional distribution matching to
leverages unlabeled data to learn the robust rep-
resentations and achieves state-of-the-art perfor-
mance.
Missing Modality Problem Existing methods for
missing modality problem can mainly be divided
into three groups. The first group features the
data augmentation approach, which randomly ab-
lates the inputs to mimic missing modality cases
(Parthasarathy and Sundaram, 2020). The second
group is based on generative methods to directly
predict the missing modalities given the available
modalities (Li et al., 2018; Cai et al., 2018; Suo
et al., 2019; Du et al., 2018). The third group aims
to learn the joint multimodal representations that
can contain related information from these modal-
ities (Aguilar et al., 2019; Pham et al., 2019; Han
et al., 2019; Wang et al., 2020).

Data augmentation methods: Parthasarathy et
al. (Parthasarathy and Sundaram, 2020) propose
a strategy to randomly ablate visual inputs during
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training at the clip or frame level to mimic real-
world missing modality scenarios for audio-visual
multimodal emotion recognition, which improves
the recognition performance under missing modal-
ity conditions.

Generative methods: Tran et al. (Tran et al.,
2017) propose Cascaded Residual Autoencoder
(CRA) to utilize the residual mechanism over the
autoencoder structure, which can take the corrupted
data and estimate a function to well restore the in-
complete data. Cai et al. (Cai et al., 2018) propose
an encoder-decoder deep neural network to gen-
erate the missing modality (Positron Emission To-
mography, PET) given the available modality (Mag-
netic Resonance Imaging, MRI), and the generated
PET can provide complementary information to
improve the detection and tracking of Alzheimers
disease.

Learning joint multimodal representations:
Han et al. (Han et al., 2019) propose a joint train-
ing model that consists of two modality-specific
encoders and one shared classifier, which implic-
itly fuse the audio and visual information as joint
representations and improve the performance of
the mono-modality emotion recognition. Pham
et al. (Pham et al., 2019) propose a sequential
translation-based model to learn the joint repre-
sentation between the source modality and multi-
ple target modalities. The hidden vectors of the
source modality encoder work as the joint repre-
sentations, which improve the emotion recognition
performance of the source modality. Wang et al.
(Wang et al., 2020) follow this translation-based
method and propose a more efficient transformer-
based translation model with parallel translation
including textual features to acoustic features and
textual features to visual features. Moreover, the
above two translation-based models adopt the for-
ward translation and backward translation training
strategy to ensure that joint representations can re-
tain maximal information from all modalities.

3 Method

Given a set of video segments S, we use x =
(xa, xv, xt) to represent the raw multimodal fea-
tures for a video segment s ∈ S, where xa, xv and
xt represent the raw features of acoustic, visual
and textual modalities respectively. |S| represents
the number of video segments in set S. We denote
the target set Y = {yi}|S|i=1, yi ∈ {0, 1, . . . , C},
where yi is the target emotion category of the video

(available,missing) unified triplet format pairs
1 ((xa), (xv, xt)) ((xa, xvmiss, x

t
miss), (x

a
miss, x

v, xt))
2 ((xv), (xa, xt)) ((xamiss, x

v, xtmiss), (x
a, xvmiss, x

t))
3 ((xt), (xa, xv)) ((xamiss, x

v
miss, x

t), (xa, xv, xtmiss))
4 ((xa, xv), (xt)) ((xa, xv, xtmiss), (x

a
miss, x

v
miss, x

t))
5 ((xa, xt), (xv)) ((xa, xvmiss, x

t), (xamiss, x
v, xtmiss))

6 ((xv, xt), (xa)) (xamiss, x
v, xt), (xa, xvmiss, x

t
miss))

Table 1: The six possible missing-modality conditions
and their unified format cross-modality pairs.

segment si and |C| is the number of emotion cat-
egories. Our proposed method aims to recognize
the emotion category yi for every video segment si
with full modalities, or with only partial modalities
available, for the example shown in Figure 1, there
exist only acoustic and textual modalities when
visual modality is missing.

3.1 Missing Modality Imagination Network

In order to learn robust joint multimodal representa-
tions, we propose a unified model, Missing Modal-
ity Imagination Network (MMIN), which can deal
with different uncertain missing-modality condi-
tions in real application scenarios. Figure 2 illus-
trates the framework of our proposed MMIN model
which contains three main modules: 1) Modality
Encoder Network for extracting modality-specific
embeddings; 2) Imagination Module based on the
Cascade Residual Autoencoder (CRA) and Cycle
Consistency Learning for imagining the represen-
tations of missing modalities given the represen-
tations of the corresponding available modalities.
The latent vectors of the autoencoders in CRA are
collected to form the joint multimodal represen-
tations; 3) Emotion classifier for predicting the
emotion category based on the joint multimodal
representations. We introduce each module in de-
tails in the following subsections.

3.1.1 Modality Encoder Network
The Modality Encoder Network is used to ex-
tract the modality-specific utterance-level embed-
dings based on the raw modality features x. As
shown in Figure 2(b), we first pretrain the Modal-
ity Encoder Network in a multimodal emotion
recognition model and it is further trained within
MMIN model. We define the modality-specific
embeddings of each modality as ha = EncA(xa),
hv = EncV(xv), ht = EncT(xt), where EncA,
EncV and EncT represent the acoustic, visual and
textual encoders respectively, and ha, hv and ht

represent the modality-specific embeddings gener-
ated by the corresponding encoders respectively.
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Figure 2: Illustration of the Missing Modality Imagination Network (MMIN) framework. (a) MMIN at the training
stage (taking the visual modality missing condition as example). MMIN is trained with all six possible missing
modality conditions (Table 1). (b) Modality Encoder Network. The modality encoder network is pretrained in the
multimodal emotion recognition task on the full-modality data and then it is updated during the MMIN training
as shown in the orange colored block in MMIN. The pretrained modality encoder network (gray colored block
in MMIN) is similar to the modality encoder network, and the only difference is that it is fixed during training.
(c) Missing Modality Imagination Network (MMIN) at the inference stage (taking the visual modality missing
condition as an example). MMIN can inference under different missing modality conditions.

3.1.2 Missing Modality Condition Creation

Given a training sample with all three modalities
(xa, xv, xt), there are 6 different possible missing-
modality conditions as shown in Table 1. We can
build a cross-modality pair (available,missing)
under each missing-modality condition, where the
available and missing mean the available modal-
ities and the corresponding missing modalities re-
spectively. In order to ensure a unified model that
can handle various missing-modality conditions,
we enforce a unified triplet input format for the
modality encoder network as (xa, xv, xt). Under
the missing-modality conditions, the raw features
of the corresponding missing modalities are re-
placed by zero vectors. For example, the unified
format input of the available modalities under the
visual modality missing condition (case 1 in Ta-
ble 1) is formatted as (xa, xvmiss, x

t), where xvmiss

refers to zero vectors.
Under the missing-modality training conditions,

the input includes the cross-modality pairs refer-
ring to available modalities and missing modali-
ties in the unified triplet format (as shown in Ta-

ble 1). The multimodal embeddings of these cross-
modality pairs can be represented as (taking the
visual modality missing condition as example):

h = concat(ha, hv
miss, h

t)

ĥ = concat(ha
miss, h

v, ht
miss)

(1)

where hamiss, hvmiss and htmiss represent the
modality-specific embedding when the correspond-
ing modality is missing, which is produced by the
corresponding modality encoder with input zero
vectors.

3.1.3 Imagination Module
We propose an autoencoder-based Imagination
Module to predict the multimodal embeddings
of the missing modalities given the multimodal
embeddings of the available modalities. The
Imagination Module is expected to learn the ro-
bust joint multimodal representations through the
cross-modality imagination. As illustrated in Fig-
ure 2(a), we employ the Cascade Residual Autoen-
coder (CRA) (Tran et al., 2017) structure, which
has sufficient learning capacity and more stable
convergence than the standard autoencoder. The
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CRA structure is constructed by connecting a se-
ries of Residual Autoencoders (RAs). We fur-
ther employ cycle consistency learning (Zhu et al.,
2017; Wang et al., 2020) with a coupled net ar-
chitecture with two independent networks to per-
form imagination in two directions, including the
Forward (available → missing) and Backward
(missing → available) imagination directions.

To be specific, we use a CRA model withB RAs
and each RA is represented by φk, k = 1, 2, . . . , B,
and the calculation of each RA can be defined as:

{
∆zk = φk(h), k = 1

∆zk = φk(h+
∑k−1

j=1 ∆zj), k > 1
(2)

where h is the extracted multimodal embedding
based on the available modalities in a unified cross-
modality pair format (Eq.(1)) and ∆zk represents
the output of the kth RA. Taking the visual modal-
ity missing condition as example (as shown in Fig-
ure 2(a)), the forward imagination aims to predict
the multimodal embedding of the missing visual
modality based on the available acoustic and tex-
tual modalities. The forward imagined multimodal
embedding is expressed as:

h
′

= imagineforward(h) = h+

B∑
k=1

∆zk (3)

where imagine(·) represents the function of the
Imagination Module. The backward imagination
aims to predict the multimodal embedding of the
available modalities based on the forward imagined
multimodal embedding h

′
(Eq.(3)). The backward

imagined multimodal embedding is expressed as:

h
′′

= imaginebackward(h
′
) (4)

3.1.4 Classifier

We collect the latent vectors of each auto-encoder
in the forward imagination module and concatenate
them together to form the joint multimodal repre-
sentation: R = concat(c1, c2, . . . , cB), where ck
is the latent vector of the autoencoder in the kth

RA. Based on the joint multimodal representation
R, we calculate the probability distribution q as:

q = softmax(fcls(R)) (5)

where fcls(·) denotes the emotion classifier that
consists of several fully-connected layers.

3.2 Joint Optimization

The loss function for MMIN training includes three
parts: the emotion recognition loss Lcls, forward
imagination loss Lforward, and backward imagina-
tion loss Lbackward:

Lcls = − 1

|S|

|S|∑
i=1

H(p, q)

Lforward =
1

|S|

|S|∑
i=1

∥∥∥ĥi − h
′
i

∥∥∥2
2

Lbackward =
1

|S|

|S|∑
i=1

∥∥∥hi − h
′′
i

∥∥∥2
2

(6)

where p is the true distribution of one-hot label and
q is the prediction distribution calculated in Eq.(5).
H(p, q) is the cross-entropy between distributions
p and q. hi and ĥi are the ground-truth representa-
tions extracted by the modality encoder network as
shown in Eq.(1). We combine all the three losses
into the joint objective function as below to jointly
optimize the model parameters:

L = Lcls + λ1Lforward + λ2Lbackward (7)

where λ1 and λ2 are weighting hyper parameters
for Lforward and Lbackward respectively.

4 Experiments

4.1 Dataset

We evaluate our proposed model on two benchmark
multimodal emotion recognition datasets, Interac-
tive Emotional Dyadic Motion Capture (IEMO-
CAP) (Busso et al., 2008) and MSP-IMPROV
(Busso et al., 2016). The statistics of the two
datasets are shown in Table 2.

IEMOCAP contains recorded videos in 5
dyadic conversation sessions. In each session, there
are multiple scripted plays and spontaneous dia-
logues between a male and a female speaker and
10 speakers in total in the database. We follow
the emotional label processing in (Xu et al., 2019;
Liang et al., 2020) to form the four-class emotion
recognition setup.

MSP-IMPROV contains recorded segments
videos in dyadic conversation scenarios with 12
actors. We first remove videos that are shorter
than 1 second. Then we select the videos in
the “Other-improvised” group which are recorded
during the improvisation scenarios with happy,
anger, sadness, or neutral labels to form the
four-class emotion recognition setup.
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dataset Happy Anger Sadness Neutral Total
IECMOAP 1636 1103 1084 1708 5531

MSP-IMPROV 999 460 627 1733 3819

Table 2: Data Statistics of datasets

4.1.1 Missing-Modality Training Set
We first define the original training set which con-
tains all the three modalities as the full-modality
training set. Based on the full-modality training
set, we construct another training set that con-
tains cross-modality pairs to simulate the possible
missing-modality conditions and we define it as
the missing-modality training set, which we use
to train the proposed MMIN. Six different cross-
modality pairs (Table 1) for each training sample
are generated. Therefore, the number of the gen-
erated cross-modality pairs is six times as large as
the number of the full-modality training samples.

4.1.2 Missing-Modality Testing Set
We first define the original testing set which con-
tains all the three modalities as the full-modality
testing set. To evaluate the performance of the
proposed MMIN under the uncertain missing-
modality conditions, we construct six different
missing modality testing subsets corresponding to
the six possible missing modality conditions re-
spectively. For example, in the inference stage,
under the missing visual modality condition as
shown in Figure 2(c), the raw feature of a missing-
modality testing sample in the unified format is
(xa, xvmiss, x

t). We combine all the six missing-
modality testing subsets together and denote it as
the missing-modality testing set.

4.2 Raw Feature Extraction
We follow feature extraction methods described in
(Liang et al., 2020; Pan et al., 2020) and extract the
frame-level raw features of each modality 2.

Acoustic features: OpenSMILE toolkit (Ey-
ben et al., 2010) with the configuration of
“IS13 ComParE” is used to extract frame-level
features, which have similar performance with
the IS10 utterance-level acoustic features used in
(Liang et al., 2020). We denote the features as
“ComParE” and the feature vectors are in 130 di-
mensions.

Visual features: We extract the facial expres-
sion features using a pretrained DenseNet (Huang

2To facilitate fair comparison with the sequential
translation-based missing modality method MCTN, we adopt
frame-level features which can be directly used in the MCTN
method

et al., 2017) which is trained based on the Facial
Expression Recognition Plus (FER+) corpus (Bar-
soum et al., 2016). We denote the facial expres-
sion features as “Denseface”. The “Denseface” are
frame-level sequential features based on the de-
tected faces from the video frames, and the feature
vectors are in 342 dimensions.

Textual features: We extract contextual word
embeddings using a pretrained BERT-large model
(Devlin et al., 2019) which is one of the state-of-
the-art language representations. We denote the
word embeddings as “Bert” and the features are in
1024 dimensions.

4.3 Higher-level Feature Encoder
To generate more efficient sentence-level modality-
specific representations for the Imagination Mod-
ule, we design different modality encoders for dif-
ferent modalities.
Acoustic Modality Encoder (EncA): We apply a
Long Short-term Memory (LSTM) network (Sak
et al., 2014) to capture the temporal information
based on the sequential frame-level raw acous-
tic features xa. Then we use max-pooling to get
utterance-level acoustic embedding ha based on
the LSTM hidden states.
Visual Modality Encoder (EncV): We adopt
a similar method with EncA on the sequential
frame-level facial expression features xv and get
utterance-level visual embedding hv.
Textual Modality Encoder (EncT): We apply a
TextCNN (Kim, 2014) to get the utterance-level
textual embedding as ht based on the sequential
word-level features xt.

4.4 Recognition Baselines
Our baseline model takes the structure as shown
in Figure 2(b), which is trained based on the full-
modality training set and we use it as our full-
modality baseline. To improve the system robust-
ness against the missing modality problem, one in-
tuitive solution is to add samples under the missing-
modality conditions into the training set. We, there-
fore, pool the missing-modality training set and
full-modality training set together to train the base-
line model and use it as our augmented baseline.

4.5 Implementation Details
Table 3 presents our implementation details. We
use the 10-fold and 12-fold speaker-independent
cross-validation to evaluate the models on IEMO-
CAP and MSP-IMPROV respectively. For the ex-
periments on IEMOCAP, we take four sessions for
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Acoustic Encoder single layer LSTM with hidden size of 128
Visual Encoder single layer LSTM with hidden size of 128
Textual Encoder 3 Conv blocks in TextCNN with kernel size

{3,4,5} and output layer with 128 channels
Emotion Classifier 3 FC layers of size {128,64,4}
CRA 5 residual-RAs with RA-layers in size 384-256-

128-64-128-256-384 (latent-vector size: 64)
parameters λ1, λ2 both set as 0.1
Learning rate Adam optimizer with learning rate of 0.001,

ReLU activation

Table 3: Implementation Details

train test WA UA
Our full-modality baseline

{a, v, t} {a, v, t}
0.7651 0.7779

cLSTM-MMA(Pan et al., 2020) 0.7394 –
SSMM(Liang et al., 2020) 0.7560 0.7450

Table 4: Multimodal Emotion Recognition Results on
IEMOCAP under full-modality condition.

training, and the remaining session is split by speak-
ers into the validation and testing sets. For MSP-
IMPROV, we take the utterances of 10 speakers for
training, the remaining 2 speakers are divided into
validation set and testing set by speakers. We train
the model with at most 100 epochs for each experi-
ment. We select the best model on the validation
set and report its performance on the testing set. To
demonstrate the robustness of our models, we run
each model three times to alleviate the influences
of random initialization of parameters and apply a
significance test for model comparison. All models
are implemented with Pytorch deep learning toolkit
and run on a single Nvidia GTX 1080Ti graphic
card.

For the experiments on IEMOCAP, we use two
evaluation metrics: weighted accuracy (WA) and
unweighted accuracy (UA). Due to the imbalance
of emotion categories on MSP-IMPROV, we use
the f-score as the evaluation metric.

4.6 Full-modality Baseline Results

We first compare our full-modality baseline with
several state-of-the-art multimodal recognition
models under the full-modality condition. Results
in Table 4 show that our full-modality baseline
outperforms other state-of-the-art models, which
proves that our modality encoder network can ex-
tract effective representations for multimodal emo-
tion recognition.

4.7 Uncertain Missing-Modality Results

Table 5 presents the experimental results of our
proposed MMIN model under different missing-
modality testing conditions and full-modality test-
ing condition. On IEMOCAP, comparing to the

“full-modality baseline” results in Table 4, we
see a significant performance drop under uncer-
tain missing-modality testing conditions, which
indicates that the model trained under the full-
modality condition is very sensitive to the missing
modality problem. The intuitive solution “Aug-
mented baseline”, which combines the missing-
modality training set with the full-modality train-
ing set to train the baseline model, does signif-
icantly improves over the full-modality baseline
under missing-modality testing conditions, which
indicates that data augmentation can help alleviate
the problem of data mismatch between training and
testing. More notably, our proposed MMIN signifi-
cantly outperforms both the full-modality baseline
and the augmented baseline under every possible
missing-modality testing condition. It also outper-
forms the two baselines under the full-modality
testing condition, even though the MMIN model
does not use the full-modality training data. These
results indicate that our proposed MMIN model
can learn robust joint multimodal representation so
that it can achieve consistently better performance
under both the different missing-modality and the
full-modality testing conditions. This is because
our proposed MMIN method not only has the data
augmentation capability, but also can learn better
joint representation, which can preserve informa-
tion of other modalities.

We further analyze the performance under dif-
ferent missing modality conditions. Our MMIN
model achieves significant improvement under one
modality available conditions ({a}, {v}, or {t})
compared with the augmented baseline, especially
for the weak modalities {a} and {v}. It brings
some improvements as well over the augmented
baseline even for the strong modality combinations,
such as {a, t}. These experimental results indicate
that the learned joint representation via MMIN did
learn complementary info from the other modalities
to compensate for the weak modalities.

The bottom block in Table 5 shows the perfor-
mance comparison on the MSP-IMPROV dataset.
Our proposed MMIN model again significantly
outperforms the two baselines under different
missing-modality and full-modality testing condi-
tions, which demonstrates the good generalization
ability of MMIN across different datasets.

We also compare to the MCTN (Pham et al.,
2019) model which is the state-of-the-art model
for the missing modality problem. As MCTN can-
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Dateset Model Metric
Testing Condition

{a} {v} {t} {a, v} {a, t} {v, t} Average {a, v, t}

IEMOCAP

Full-modality baseline
WA(↑) 0.4190 0.4574 0.5646 0.5488 0.7018 0.6217 0.5522 0.7651
UA(↑) 0.4719 0.3966 0.5549 0.5762 0.7257 0.5971 0.5537 0.7779

Augmented baseline
WA(↑) 0.5303 0.4864 0.6564 0.6395 0.7251 0.7082 0.6243∗ 0.7617
UA(↑) 0.5440 0.4598 0.6691 0.6434 0.7435 0.7162 0.6293∗ 0.7767

proposed MMIN
WA(↑) 0.5658 0.5252 0.6657 0.6399 0.7294 0.7267 0.6410∗N 0.7650
UA(↑) 0.5900 0.5160 0.6802 0.6543 0.7514 0.7361 0.6524∗N 0.7812∗N

MCTN (Pham et al., 2019)
WA(↑) 0.4975 0.4892 0.6242 0.5634 0.6834 0.6784 0.5894∗ –
UA(↑) 0.5162 0.4573 0.6378 0.5584 0.6946 0.6834 0.5913∗ –

MSP-IMPROV

Full-modality baseline F1(↑) 0.2824 0.3295 0.4576 0.4721 0.5655 0.5368 0.4543 0.6523
Augmented baseline F1(↑) 0.4278 0.4185 0.5544 0.5396 0.6038 0.6295 0.5455∗ 0.6663∗

proposed MMIN F1(↑) 0.4647 0.4471 0.5573 0.5740 0.6188 0.6411 0.5649∗N 0.6855∗N
MCTN (Pham et al., 2019) F1(↑) 0.3285 0.3810 0.5050 0.4683 0.5611 0.5886 0.4721∗ –

Table 5: Performance comparison under six possible missing-modality testing conditions and the full-modality
testing condition (i.e. testing condition “{a}” means that only the acoustic modality is available and both visual and
textual modalities are missing. “{a, v, t}” refers to the full-modality testing condition where all acoustic, visual
and textual modalities are available) “Average” refers to the average performance over all six missing-modality
conditions. T-test is conducted on Average and {a,v,t} column. ∗ indicates that p-value < 0.05 (compared with
Full-modality baseline). N indicates that p-value < 0.05 (compared with Augmented baseline).

not handle different missing-modality conditions
in one unified model, so we have to train a particu-
lar model under each missing-modality condition3.
The comparison results demonstrate that our pro-
posed MMIN model not only can handle both the
different missing-modality and the full-modality
testing condition with a unified model, but also can
consistently outperform the MCTN models under
all missing-modality conditions.

4.8 Ablation Study

We conduct experiments to ablate the contributions
of different components in MMIN, including the
structure of the imagination module and the cyclic
consistency learning.

Structure of the imagination module. We first
investigate the impact of different network struc-
tures on the performance in the imagination mod-
ule. Specifically, we compare the Autoencoder and
the CRA structure in MMIN, and we adopt the
same parameter scale to ensure the fairness of the
comparison. As shown in Table 6, the performance
of the imagination module with Autoencoder struc-
ture “MMIN-AE” is worse than that with the CRA
structure under both different missing-modality and
full-modality testing conditions. The performance
comparison indicates that the CRA has a stronger
imagination ability than the Autoencoder model.

Cycle Consistency Learning. To evaluate the
impact of the cyclic consistency learning in MMIN,

3We use features described in Sec. 4.3 and follow the
training setting in (Pham et al., 2019) to conduct the MCTN
experiments. The MCTN model cannot be evaluated under the
full-modality testing condition because the target modalities
cannot be None.

we conduct experiments using MMIN with or with-
out cycle consistency learning. As shown in Ta-
ble 6, the model trained without cycle consistency
learning results in performance loss under all con-
ditions, which indicates that the cycle consistency
learning can enhance the imagination ability and
learn more robust joint multimodal representations.

4.9 Analysis of MMIN Core Competence

We conduct detailed experiments on IEMOCAP to
demonstrate the joint representation learning ability
and the imagination ability of our MMIN model.
Joint representation learning ability: Since the
joint representation is expected to retain informa-
tion of multiple modalities, we conduct experi-
ments to evaluate the joint representation learning
ability of MMIN. We compare MMIN to the base-
line model under the matched-modality condition
in which the training data and the test data contain
the same modalities. As shown in Table 7, com-
paring to the baseline model, MMIN achieves on
par with or even better performance, which demon-
strates that MMIN has the ability to learn effec-
tive joint multimodal representations. We also no-
tice that the data-augmented model cannot beat the
corresponding matching partial-modality baseline
model, which indicates the data-augmented model
cannot learn the joint representation.
Imagination ability: Figure 3 visualizes the distri-
bution of the ground-truth multimodal embeddings
(ĥ in Figure 2) and MMIN imagined multimodal
embeddings (h

′
in Figure 2) for a male speaker

and female speaker using t-SNE (Maaten and Hin-
ton, 2008). We observe that the distribution of
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Model Metric
Testing Condition

{a} {v} {t} {a, v} {a, t} {v, t} Average {a, v, t}

MMIN-AE
WA(↑) 0.5404 0.5025 0.6588 0.6115 0.7203 0.7125 0.6244 0.7619
UA(↑) 0.5625 0.4836 0.6689 0.6246 0.7374 0.7187 0.6368 0.7677

MMIN-NoCycle
WA(↑) 0.5503 0.5116 0.6577 0.6239 0.7185 0.7202 0.6304 0.7498
UA(↑) 0.5821 0.5006 0.6705 0.6454 0.7438 0.7301 0.6454 0.7709

MMIN
WA(↑) 0.5658 0.5252 0.6657 0.6399 0.7294 0.7267 0.6410 0.7650
UA(↑) 0.5900 0.5160 0.6802 0.6543 0.7514 0.7361 0.6524 0.7812

Table 6: Experimental results for component contribution evaluation on IEMOCAP. “MMIN-AE” denotes replac-
ing the CRA structure with the Autoencoder structure in the imagination module. “MMIN-NoCycle” denotes
removing the cycle consistency learning in MMIN.

train test Baseline Augmented MMIN
ComparE a a 0.5760 0.5440 0.5900
Denseface v v 0.5064 0.4598 0.5160

Bert t t 0.6873 0.6691 0.6802
ComparE+Denseface a, v a, v 0.6380 0.6434 0.6543

ComparE+Bert a, t a, t 0.7533 0.7435 0.7514
Bert+Denseface v, t v, t 0.7177 0.7162 0.7361

ComparE+Bert+Denseface a, v, t a, v, t 0.7779 0.7767 0.7812

Table 7: Evaluation (UA) of the joint representation learning ability on IEMOCAP. “Baseline” denotes the results
individually train with cross-entropy loss on partial modalities samples. “Augmented” and “MMIN” denote the
evaluation results of our unified data-augmented baseline model and MMIN model under different test conditions,
which are the same as in Table 5.

(a) A Female Speaker (b) A Male Speaker

Figure 3: Visualization of the ground-truth and imag-
ined multimodal embeddings. For example, a denotes
the ground-truth multimodal embeddings of the acous-
tic modality. a imagined denotes the MMIN imagined
multimodal embeddings of the acoustic modality based
on visual and textual modalities.

the ground-truth embeddings and imagined embed-
dings are very similar, although the distribution of
visual modality embeddings deviates a little, it is
mainly because the quality of the visual modality is
poor in this dataset. It demonstrates that MMIN can
imagine the representations of the missing modali-
ties based on the available modalities.

5 Conclusion

In this paper, we propose a novel unified multi-
modal emotion recognition model, Missing Modal-
ity Imagination Network (MMIN), to improve the
emotion recognition performance under uncertain
missing-modality conditions in real application
scenarios. The proposed MMIN can learn the

robust joint multimodal representations through
cross-modality imagination via the Cascade Resid-
ual Autoencoder and Cycle Consistency Learning.
Extensive experiments on two public benchmark
datasets demonstrate the effectiveness and robust-
ness of our proposed model, which significantly
outperforms other baselines under both uncertain
missing-modality and full-modality conditions.

In the future work, we will explore ways to fur-
ther improve the robust joint multimodal represen-
tation.
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