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Abstract

Existed pre-training methods either focus on
single-modal tasks or multi-modal tasks, and
cannot effectively adapt to each other. They
can only utilize single-modal data (i.e., text
or image) or limited multi-modal data (i.e.,
image-text pairs). In this work, we pro-
pose a UNIfied-MOdal pre-training architec-
ture, namely UNIMO, which can effectively
adapt to both single-modal and multi-modal
understanding and generation tasks. Large
scale of free text corpus and image collec-
tions are utilized to improve the capability of
visual and textual understanding, and cross-
modal contrastive learning (CMCL) is lever-
aged to align the textual and visual informa-
tion into a unified semantic space, over a
corpus of image-text pairs augmented with
related images and texts. With the help
of rich non-paired single-modal data, our
model is able to learn more generalizable
representations, by allowing textual knowl-
edge and visual knowledge to enhance each
other in the unified semantic space. The ex-
perimental results show that UNIMO greatly
improves the performance of several single-
modal and multi-modal downstream tasks.
Our code and pre-trained models are public
at https://github.com/PaddlePaddle/

Research/tree/master/NLP/UNIMO.

1 Introduction

Large-scale pre-training has drawn much atten-
tion in both the community of Compute Vision
(CV) and Natural Language Processing (NLP) due
to its strong capability of generalization and effi-
cient usage of large-scale data. Firstly in CV, a
series of models were designed and pre-trained on
the large-scale dataset ImageNet, such as AlexNet
(Krizhevsky et al., 2017), VGG (Simonyan and
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Who is standing behind the baseball player?

(a) Cocaher (b) Umpire (c) Spectator

Any baseball game involves one or 
more umpires, who make rulings 
on the outcome of each play. At a 
minimum, one umpire will stand 
behind the catcher, to have a good 
view of the strike zone, and call 
balls and strikes. Addit ional 
umpires may be stationed near the 
other bases …

from wikipedia

Figure 1: An illustrative example for the necessity of
unified-modal learning. We can only determine the cor-
rect answer to the visual question based on the textual
background information.

Zisserman, 2014) and ResNet (He et al., 2016),
which effectively improved the capability of im-
age recognition for numerous tasks. Recent years
have witnessed the burst of pre-training in NLP,
such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), XLNet (Yang et al., 2019) and UniLM
(Dong et al., 2019), which greatly improve the capa-
bilities of language understanding and generation.
However, the above researches focus on the single-
modal learning and can only be effectively used in
single-modal (i.e., only text or image) scenarios. In
order to adapt to multi-modal scenarios, a series of
multi-modal pre-training methods were proposed
and pre-trained on the corpus of image-text pairs,
such as ViLBERT (Lu et al., 2019), VisualBERT
(Li et al., 2019b) and UNITER (Chen et al., 2020b),
which greatly improve the ability to process multi-
modal information. However, these models can
only utilize the limited corpus of image-text pairs
and cannot be effectively adapted to single-modal
scenarios (Lin et al., 2020b).

A smarter AI system should be able to pro-
cess different modalities of information effectively.
There are large scale of data in different modalities
on the Web, mainly textual and visual information.
The textual knowledge and the visual knowledge

https://github.com/PaddlePaddle/Research/tree/master/NLP/UNIMO
https://github.com/PaddlePaddle/Research/tree/master/NLP/UNIMO
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Unified-Modal Transformer

Image-Text Pairs

The baseball player 
readies to swing at 
the pitch while the 
umpire behind him 
looks on.

…
…
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Figure 2: Illustration of the unified-modal pre-training
architecture. Both image collections, text corpus and
image-text pairs can be effectively utilized for repre-
sentation learning.

usually can enhance and complement each other.
As the example shown in Figure 1, it’s difficult to
answer the question correctly only with the visual
information in the image. However, if we connect
the visual information to the textual information
which describes the background of a baseball game,
it’s very easy to determine the correct answer. Also,
the visual information can make it easier to under-
stand the scene described by the text. The research
in neuroscience by Van Ackeren et al. (2018) re-
veals that the parts of the human brain responsible
for vision can learn to process other kinds of in-
formation, including touch and sound. Inspired by
this research, we propose to design a unified-modal
architecture UNIMO which aims to process multi-
scene and multi-modal data input with one model,
including textual, visual and vision-and-language
data, as shown in Figure 2.

The greatest challenge to unify different modali-
ties is to align and unify them into the same se-
mantic space which are generalizable to differ-
ent modalities of data. Existed cross-modal pre-
training methods try to learn cross-modal represen-
tations based on only limited image-text pairs by
simple image-text matching and masked language
modeling (Chen et al., 2020b). They can only learn
specific representations for image-text pairs, and
thus fail to generalize to single-modal scenarios.
So their performance will drop dramatically when
applied to language tasks (Lin et al., 2020b), which
has also been revealed by our experiments (see

Section 4.2). In this work, UNIMO learns visual
representations and textual representations simulta-
neously, and unifies them into the same semantic
space via cross-modal contrastive learning (CMCL)
based on a large-scale corpus of image collections,
text corpus and image-text pairs.

UNIMO effectively utilizes the large-scale of
text corpus and image collections to learn gen-
eral textual and visual representations. The CMCL
aligns the visual representations and textual repre-
sentations, and unifies them into the same semantic
space based on image-text pairs. As shown in Fig-
ure 3, to facilitate different levels of semantic align-
ment between vision and language, we propose
to utilize a series of text rewriting techniques to
improve the diversity of cross-modal information.
Specifically, for an image-text pair, various positive
examples and hard negative examples can be ob-
tained by rewriting the original caption at different
levels. Moreover, to incorporate more background
information from the single-modal data, text and
image retrieval are also applied to augment each
image-text pair with various related texts and im-
ages. The positive pairs, negative pairs, related
images and texts are learned jointly by CMCL. In
this way, our model can effectively unify different
levels of visual and textual representations into the
same semantic space, and incorporate more single-
modal knowledge to enhance each other.

The unified-modal architecture mainly has the
following advantages compared with previous
methods:

• We can utilize large scale of non-paired text
corpus and image collections on the Web to
learn more generalizable textual and visual
representations, and improve the capability of
vision and language understanding and gener-
ation.

• Our model can be effectively fine-tuned for
both single-modal and multi-modal under-
standing and generation downstream tasks.

• The visual knowledge and textual knowledge
can enhance each other to achieve better per-
formance on several single-modal and multi-
modal tasks than previous methods.

2 UNIMO

Humans perceive the world through many modal-
ities, such as sound, vision and language. Even
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Figure 3: Illustration of the CMCL. A series of text rewriting techniques are utilized to create positive image-
text pairs X+ and hard negative image-text pairs X−. Image and text retrieval are also utilized to obtain related
images X I and texts X T from single-modal data, which are treated as single-modal positive samples during cross-
modal learning. All of them are encoded by the same unified-modal Transformer in pairs or individually, and the
representations of images and texts are extracted to compute the contrastive loss.

though any individual modality might be incom-
plete or noisy, important information is still perceiv-
able since they tend to be shared or enhanced each
other. With this motivation, we propose a unified-
modal pre-training method UNIMO to learn repre-
sentations that capture modality-invariant informa-
tion at the semantic level. Different from previous
methods, UNIMO learns from different modali-
ties of data, including images, texts and image-text
pairs, thus achieving more robust and generalizable
representations for both textual and visual input.

As shown in Figure 2, UNIMO employs
multi-layer self-attention Transformers to learn
unified semantic representations for both tex-
tual and visual data. For a textual input W,
it is firstly split into a sequence of subwords
W = {[CLS], w1, ..., wn, [SEP ]} by Byte-Pair
Encoding (BPE) (Sennrich et al., 2016), and
then the self-attention mechanism is lever-
aged to learn contextual token representations
{h[CLS], hw1 , ..., hwn , h[SEP ]}. The special
tokens [CLS] and [SEP ] denote the start and end
of the textual sequence, respectively. Similarly, for

an image V, it is firstly converted to a sequence
of region features V = {[IMG], v1, ..., vt}
([IMG] denotes the representation of the entire
image), and then the self-attention mechanism
is leveraged to learn contextual region repre-
sentations {h[IMG], hv1 , ..., hvt}. Similar to
previous work (Chen et al., 2020b), we use Faster
R-CNN (Ren et al., 2016) to detect the salient
image regions and extract the visual features
(pooled ROI features) for each region. For an
image-text pair (V,W ), its visual features and
textual tokens are concatenated as a sequence
{[IMG], v1, ..., vt, [CLS], w1, ..., wn, [SEP ]}.
Then the sequence is feed into the multi-layer
Transformer network to learn cross-modal con-
textual representations for both the textual tokens
and image regions. We extract the representations
h[IMG] and h[CLS] as the semantic representations
of image V and text W , respectively.

Based on large volumes of image collections
{V }, text corpus {W} and image-text pairs
{(V,W )}, UNIMO learns generalizable visual and
textual representations in similar ways by masked
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prediction, and unify them into the same semantic
space via CMCL. Joint visual learning on image
collections, language learning on text corpus and
cross-modal learning on image-text pairs not only
improve the capability of visual and language un-
derstanding and generation, but also enable the tex-
tual knowledge and visual knowledge to enhance
each other in the unified semantic space.

2.1 Cross-Modal Contrastive Learning

The greatest challenge to unify different modali-
ties is to align and unify their representations at
different levels. For the example shown in Figure
2, the model not only needs to connect the scene
shown in the whole image to an article describing
a baseball game, but also needs to align the two
men and their location relationship in the image
with “baseball player”, “umpire” and “behind” in
the text, respectively. Several existing cross-modal
pre-training methods try to align visual and textual
representations by simply image-text matching (Li
et al., 2019a; Chen et al., 2020b) based on a limited
corpus of image-text pairs. They randomly sample
a negative image or text from the same training
batch for each image-text pair, and utilize a clas-
sifier to determine whether the image and text are
matching. As the randomly sampled negative text
or image is usually very different from the original
text or image, they can only learn very coarse align-
ment between textual and visual representations.
In this work, we propose a novel CMCL method to
align and unify different levels of textual and visual
representations into the same semantic space.

The main idea is to let the representations of the
paired image and text near in the representation
space while the non-paired far away. The represen-
tations of image V and text W are used to compute
the similarity between them to measure their dis-
tance d(V,W ). As shown in Figure 3, to facilitate
semantic alignment between vision and language at
different levels, we design several novel text rewrit-
ing techniques to rewrite the original caption of an
image either at word, phrase or sentence level. In
this way, we can create large volumes of positive
examples X+ and negative examples X− for each
image-text pair (V,W ). Moreover, to augment
cross-modal learning with single-modal informa-
tion, text and image retrieval are applied to obtain
various related texts X T and images X I for each
image-text pair (V,W ). Different from the positive
and negative image-text pairs, the retrieved images

and texts are encoded individually as they mainly
carry weak correlations, as shown in the right part
of Figure 3. Based on these positive and negative
examples, the following contrastive loss LCMCL

is utilized to learn detailed semantic alignments
across vision and language:

EV,W

[
−log

∑
(V +,W+)∈X{+,I,T} exp(d(V

+,W+)/τ)∑
(V ′,W ′)∈X{−,+,I,T} exp(d(V ′,W ′)/τ)

]
(1)

where τ denotes the temperature parameter. Note
that, for single-modal images X I and texts X T , the
original text W and image V are used to compute
the cross-modal relevance, respectively. To the best
of our knowledge, this is the first work that explores
CMCL to unify visual and textual semantic space.

Text Rewriting To enhance multi-granularity of
semantic alignment between image and text, we
rewrite the caption of an image at different levels,
including sentence-level, phrase-level and word-
level. For sentence-level rewriting, we utilize the
back-translation techniques (Edunov et al., 2018)
to obtain several positive samples for each image-
text pair. Specifically, each caption of an image
is translated into another language and then trans-
lated back to the original language. In this way,
several similar captions can be obtained for an im-
age. Furthermore, for each image-text pair, the
most similar captions of other images are retrieved
based on TF-IDF similarity. The retrieved results
are very similar to the original caption but doesn’t
accurately describe the corresponding image, so
they can be used as hard negative samples to en-
hance the sentence-level alignment between image
and text. For phrase-level and word-level rewriting,
we first parse the image caption into a scene graph
(Wang et al., 2018), then randomly replacing the
object, attribute or relation nodes of the scene graph
with a different object, attribute or relation from the
corresponding vocabularies. Instead of randomly
sampling negative samples as previous methods,
text rewriting can generate large volumes of hard
negative samples. In this way, we can help the
model to learn more detailed semantic alignment
from different levels between image and text.

Image/Text Retrieval In order to incorporate
more single-modal information during cross-modal
learning, each image-text pair is further augmented
with various related images and texts that retrieved
from the single-modal data. Specifically, for an
image, other images in the image collections will
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be ordered by their visual similarities. Those im-
ages that have highly overlapped objects with the
original image will be extracted to provide relevant
visual information. Similarly, sentences that are
semantically related with the original caption are
extracted based on semantic similarity to provide
background language information. The retrieved
images and texts are encoded individually by the
unified-modal Transformer as shown in Figure 3,
then their representations are extracted to com-
pute the cross-modal contrastive loss in Equation 1.
These retrieved single-modal information provide
rich background information for better cross-modal
learning.

2.2 Visual Learning
Similar to the masked language modeling in BERT,
we sample image regions and mask their visual
features with a probability of 15%. The visual fea-
tures of the masked regions are replaced by zeros.
As the regions from an image usually are highly
overlapped with each other, we choose to mask
all regions that have a high proportion of mutual
intersection to avoid information leakage. Similar
to Lin et al. (2020b), we randomly choose regions
as masking anchors and mask the regions whose
overlapping ratios with the anchors are larger than
0.3. For an image V , the model is trained to recon-
struct the masked regions vm given the remaining
regions v\m:

LV = EV ∈Dfθ(vm|v\m) (2)

Similarly, for an image-text pair (V,W ), the model
is trained to reconstruct the masked regions vm
given the text W and the remaining regions v\m:

LV = EV,W∈Dfθ(vm|v\m,W ) (3)

As the visual features are high-dimensional and
continuous, we utilize both feature regression and
region classification objective to learn better visual
representations. The feature regression learns to
regress the contextualized visual representations
hvi to its visual features vi, which can be formu-
lated as: fθ(vm|v\m) =

∑M
i=1 ‖r(hvi) − vi‖2,

where r indicates an FC layer to convert hvi
into a vector of the same dimension as vi. The
region classification learns to recognize the ob-
ject semantic class of each masked region based
on its contextualized visual representation hvi .
An FC layer is utilized to compute the scores
for K object classes s(hvi), which further goes

through a softmax function to obtain the nor-
malized distribution. The final objective mini-
mizes the cross-entropy (CE) loss between the pre-
dicted distribution and the object detection out-
put c(vi) from Faster R-CNN: fθ(vm|v\m) =∑M

i=1CE(softmax(s(hvi)), c(vi)). The score
function fθ(vm|v\m,W ) is formulated similarly.

2.3 Language Learning
To learn general language representations for both
language understanding and generation tasks, our
model is trained as a unified encoder-decoder
model with two types of language modeling tasks:
bidirectional prediction and sequence-to-sequence
(Seq2Seq) generation. The unified modeling is
achieved by utilizing specific self-attention masks
to control what context the prediction conditions
on, inspired by Dong et al. (2019). To improve the
language learning process, we firstly detect seman-
ticly complete phrases from the text, such as name
entities by syntactic parsing, and then treat them as
a whole in the following masking strategies. Dif-
ferent from previous work, we always sample a
sequence of complete words or phrases instead of
subword tokens, for both bidirectional prediction
and Seq2Seq generation.

Bidirectional prediction. Given a sequence of
tokens W = {[CLS], w1, ..., wn, [SEP ]}, we it-
eratively sampling spans of text until totally 15%
tokens have been selected. We sample the span
length from a geometric distribution l ∼ Geo(p),
where p is set as 0.2, similar to SpanBERT (Joshi
et al., 2020). All tokens in the selected spans are
replaced with either a special [MASK] token, a
random token or the original token with probability
80%, 10% and 10%, respectively. The goal is to
predict these masked tokens wm based on their sur-
rounding context w\m, by minimizing the negative
log-likelihood:

LBidirectional = −EW∈DlogPθ(wm|w\m) (4)

Seq2Seq generation. For the Seq2Seq genera-
tion task, we iteratively sample fragments from
the token sequence until the 25% budget has been
spent, inspired by Xiao et al. (2020). For each
iterate, we first sample a fragment length from a
uniform distribution l ∼ U(4, 32), and then sam-
ple a fragment with the specified length. Every
selected fragment {wi, ..., wj} is further appended
with two special tokens [CLS] and [SEP ] (i.e.,
{[CLS], wi, ..., wj , [SEP ]}), which denotes the
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beginning and end of the fragment. All selected
fragments are removed from the text and concate-
nated as the target sequence T while the remaining
parts are concatenated as the source sequence S.
The model is trained to generate the target sequence
auto-regressively condition on the source sequence:

LSeq2Seq = −E(S,T )∈DlogPθ(T |S) (5)

where Pθ(T |S) =
∏|T |
j=1 Pθ(Tj |T<j , S). During

pre-training, we alternate between the bidirectional
prediction objective and the Seq2Seq generation
objective uniformly. For image-text pairs, the two
objectives are applied to the captions similarly to
learn cross-modal understanding and generation.

3 Experimental Settings

In this section, we introduce the pre-training and
finetuning experimental settings.

3.1 Pre-training Dataset

Our pre-training datasets consist of three types:
text corpus, image collections and image-text pairs.
The text corpus includes two large-scale corpora:
BookWiki and OpenWebText, which are part of
the training dataset of RoBERTa. BookWiki is
composed of English Wikipedia and BookCorpus
(Zhu et al., 2015), and OpenWebText is an open
recreation of the WebText corpora. The image
collections are images without textual descriptions,
including a subset of OpenImages (Krasin et al.,
2017) and COCO unlabel. The image-text pairs are
composed of four existing multi-modal datasets:
COCO (Lin et al., 2014), Visual Genome (VG)
(Krishna et al., 2017), Conceptual Captions (CC)
(Sharma et al., 2018) and SBU Captions (Ordonez
et al., 2011), which have also been widely used
in previous multi-modal pre-training models. The
statistics of them are shown in Appendix A.

3.2 Implementation Detail

We evaluate UNIMO on two model sizes: UNIMO-
base with 12 layers of Transformer block and
UNIMO-large with 24 layers of Transformer block.
The maximum sequence length of text tokens and
image-region features are set as 512 and 100, re-
spectively. We pre-train UNIMO-base by initial-
izing from RoBERTa-base, and UNIMO-large by
initializing from RoBERTa-large. Both UNIMO-
base and UNIMO-large are trained for at least 500K
steps. An Adam optimizer with initial learning rate

5e-5 and a learning rate linear decay schedule is uti-
lized. By virtue of float16 mixed precision training,
it takes almost 7 days for training UNIMO-base
with 32 Nvidia Telsa V100 32GB GPU and 10
days for UNIMO-large with 64 Nvidia Telsa V100
32GB GPU.

For visual learning, we adopt Faster R-CNN
(Ren et al., 2016) pre-trained on the Visual-
Genome dataset to select salient image regions and
extract region features from images. The regions
with class detection probability exceeds a confi-
dence threshold of 0.2 are selected and 100 boxes
are kept. For CMCL, we utilize back-translation
to create 3 positive samples and apply rewriting to
obtain 100 hard negative samples for each image-
text pair. The most similar of 100 images and 100
sentences are retrieved from the single-modal im-
age collections and text corpus for each image-text
pair, respectively. More details are described in
Appendix A.

3.3 Finetuning Tasks

We fine-tune our model on two categories of
downstream tasks: (1) single-modal language
understanding and generation tasks; (2) multi-
modal vision-language understanding and genera-
tion tasks. The single-modal generation tasks in-
clude: generative conversational question answer-
ing on the CoQA dataset (Reddy et al., 2019),
question generation on the SQuAD 1.1 dataset (Ra-
jpurkar et al., 2016), abstractive summarization on
the CNN/DailyMail (CNNDM) dataset (Hermann
et al., 2015), and sentence compression on the Giga-
word dataset (Rush et al., 2015). The single-modal
understanding tasks include: sentiment classifica-
tion on the SST-2 dataset (Socher et al., 2013),
natural language inference on the MNLI dataset
(Williams et al., 2017), linguistic acceptability anal-
ysis on the CoLA dataset (Warstadt et al., 2019) and
semantic similarity analysis on the STS-B dataset
(Cer et al., 2017). The multi-modal tasks include:
visual question answering (VQA) on the VQA
v2.0 dataset (Goyal et al., 2017), image caption
on the Microsoft COCO Captions dataset (Chen
et al., 2015), visual entailment on the SNLI-VE
dataset (Xie et al., 2019) and image-text retrieval
on Flickr30k datasets (Young et al., 2014). The
detail statistics of the datasets and hyper-parameter
settings for the above tasks are described in Ap-
pendix B.
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Model Flickr30k-IR Flickr30k-TR SNLI-VE VQA CoCo Caption
R@1 / R@5 / R@10 R@1 / R@5 / R@10 Val / Test test-dev / -std BLUE4 / CIDEr

ViLBERT-base 58.20 / 84.90 / 91.52 - - 70.55 / 70.92 -
VLP-base - - - 70.5 / 70.7 36.5 / 116.9
UNITER-base 72.52 / 92.36 / 96.08 85.90 / 97.10 / 98.80 78.59 / 78.28 72.70 / 72.91 -
Oscar-base - - - 73.16 / 73.44 36.5 / 123.7
Villa-base 74.74 / 92.86 / 95.82 86.60 / 97.90 / 99.20 79.47 / 79.03 73.59 / 73.67 -
Ernie-ViL-base 74.44 / 92.72 / 95.94 86.70 / 97.80 / 99.00 - 72.62 / 72.85 -
UNIMO-base 74.66 / 93.40 / 96.08 89.70 / 98.40 / 99.10 80.00 / 79.10 73.79 / 74.02 38.8 / 124.4
UNITER-large 75.56 / 94.08 / 96.76 87.30 / 98.00 / 99.20 79.39 / 79.38 73.82 / 74.02 -
Oscar-large - - - 73.61 / 73.82 37.4 / 127.8
Villa-large 76.26 / 94.24 / 96.84 87.90 / 97.50 / 98.80 80.18 / 80.02 74.69 / 74.87 -
ERNIE-ViL-large 76.70 / 93.58 / 96.44 88.10 / 98.00 / 99.20 - 74.75 / 74.93 -
UNIMO-large 78.04 / 94.24 / 97.12 89.40 / 98.90 / 99.80 81.11 / 80.63 75.06 / 75.27 39.6 / 127.7

Table 1: Evaluation results on the multi-modal downstream tasks.

Model SST-2 MNLI CoLA STS-B CoQA SQuAD-QG CNNDM Gigaword
Acc Acc-(m/mm) Mat Per Acc B4/ME/R-L R-1/2/L R-1/2/L

BERT-base 92.7 84.4 / - - - - - - -
RoBERTa-base 94.8 - 63.6 - 77.4 22.15/24.58/51.12 42.31/20.04/39.49 38.65/19.66/36.04
UNIMO-base 95.1 86.8/86.7 65.4 91.0 80.2 22.78/25.24/51.34 42.42/20.12/39.61 38.80/19.99/36.27

w/o single-modal 82.0 59.9/64.9 15.0 88.8 67.1 17.09/21.04/46.47 41.06/19.01/38.23 38.06/18.91/35.41
BERT-large 93.2 86.6/- 60.6 90.0 - - - -
RoBERTa-large 96.4 90.2/90.2 68.0 92.4 85.1 23.39/25.73/52.11 43.10/20.29/40.24 39.32/20.01/36.58
XLNet-large 95.6 89.8/- 63.6 91.8 - - - -
UniLM-large 94.5 87.0/85.9 61.1 87.7 82.5 22.12/25.06/51.07 43.33/20.21/40.51 38.45/19.45/35.75
UNIMO-large 96.8 89.8/89.5 68.5 92.6 84.9 24.59/26.39/52.47 43.51/20.65/40.63 39.71/20.37/36.88

Table 2: Comparison on the single-modal downstream tasks. R-1, R-2 and R-L denote ROUGE-1, ROUGE-2
and ROUGE-L, respectively. Mat, Per, B4 and ME denote Matthews correlation coefficient, Pearson correlation
coefficient, BLUE4 and METEOR (Lavie and Agarwal, 2007), respectively. “w/o single-modal” denotes removing
the single-modal learning process on the single-modal data from UNIMO, which is similar to UNITER-base (Chen
et al., 2020b). The results on SST-2, MNLI, CoLA, STS-B and CoQA are evaluated on the dev set. The results
of RoBERTa on the generation tasks CoQA, SQuAD-QG, CNNDM and Gigaword are evaluated by utilizing the
UNIMO architecture initialized with pre-trained parameters of RoBERTa.

4 Results and Analysis

In this section, we report the evaluation results
on both the multi-modal and single-modal tasks
to show the adaptability and generalizability of
UNIMO to different scenarios. We further make
several ablation studies to validate that textual
knowledge and visual knowledge can enhance each
other in the unified semantic space. The visual-
ization and case analysis of the model results are
appended in Appendix C.

4.1 Multi-Modal tasks

The evaluation results on the multi-modal tasks
are shown in Table 1. We compare with most of
the existed multi-modal pre-training models, in-
cluding ViLBERT (Lu et al., 2019), VLP (Zhou
et al., 2020), UNITER (Chen et al., 2020b), Os-
car (Li et al., 2020), Villa (Gan et al., 2020) and
ERNIE-ViL (Yu et al., 2020). The results show that
UNIMO achieves the best results against almost all
benchmarks under both the base and large size of

models. Particularly, UNIMO-large outperforms
previous best performing model ERNIE-ViL-large
by 1.34 R@1 on image retrieval and 1.3 R@1 on
text retrieval, which are great improvements for
the image-text retrieval tasks. On the image cap-
tion task, UNIMO outperforms the best perform-
ing model Oscar by more than 2 BLUE4 score.
UNIMO achieves better performance on both the
multi-modal understanding and generation tasks,
while previous methods usually focus on either
the understanding or generation tasks. The above
results demonstrate the effectiveness of the unified-
modal learning architecture that takes advantage of
the large scale of single-modal images and texts for
cross-modal learning.

4.2 Single-Modal tasks

Previous multi-modal pre-training models usually
cannot effectively adapt to single-modal scenar-
ios.To further validate that, we remove the single-
modal learning processes on the text corpus and
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Model Flickr30k-IR Flickr30k-TR SNLI-VE VQA CoCo Caption
R@1 / R@5 / R@10 R@1 / R@5 / R@10 Val test-dev BLUE4 / CIDEr

UNIMO-base 74.66 / 93.40 / 96.08 89.70 / 98.40 / 99.10 80.00 73.79 38.8 / 124.4
w/o texts 72.04 / 91.62 / 95.30 85.80 / 97.90 / 99.10 79.52 73.77 38.3 / 123.2

Table 3: Analyzing the effectiveness of textual knowledge to multi-modal tasks.

Model SST-2 MNLI CoLA STS-B CoQA SQuAD-QG CNNDM Gigaword
Acc Acc-(m/mm) Mat Per Acc B4/ME/R-L R-1/2/L R-1/2/L

UNIMO-base 95.1 86.8/86.7 65.4 91.0 80.2 22.78/25.24/51.34 42.42/20.12/39.61 38.80/19.99/36.27
w/o pairs&images 94.7 87.4/86.8 62.8 90.6 78.1 21.26/24.02/50.04 42.26/20.09/39.41 38.22/19.43/35.71

Table 4: Analyzing the effectiveness of visual knowledge to language tasks.

image collections (i.e., “w/o single-modal”) from
UNIMO and replace the CMCL with an image-text
matching objective. Then, the model “w/o single-
modal” is just a multi-modal pre-training method
similar to UNITER (Chen et al., 2020b). As shown
in Table 2, the performance of the model on all
the language understanding and generation tasks
drop dramatically compared to UNIMO, which
demonstrates that multi-modal pre-training only
on image-text pairs cannot effectively adapt to the
single-modal tasks.

To show the effectiveness of UNIMO on the
language understanding and generation tasks, we
further compare with existed pre-trained language
models (PLMs), including BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019) and UniLM (Dong et al., 2019). The
comparison results in Table 2 demonstrate that
UNIMO achieves better or comparable perfor-
mance than existed PLMs on both the language
understanding and generation tasks. Specifically,
UniLM (Dong et al., 2019) is designed for both
natural language understanding and generation.
UNIMO outperforms UniLM on most of the tasks
with a large margin, which demonstrates the effec-
tiveness of UNIMO on the single-modal scenarios.

In all, UNIMO not only achieves the best perfor-
mance on the multi-modal tasks, but also performs
very well on the single-modal tasks, which demon-
strate the superiority of our unified-modal learning
architecture.

4.3 Mutual Enhancement of Text and Vision
We further make several ablation studies to show
that the unified-modal architecture can help textual
knowledge and visual knowledge mutually enhance
each other in the unified semantic space.

Text Enhance Vision To explore whether the
textual knowledge in the text corpus facilitates

the cross-modal learning, we remove the language
learning process on the text corpus from UNIMO
(i.e., “w/o texts”), and compare their performance
on the multi-modal tasks. Table 3 summarizes
the comparison results, which show that the per-
formance of the model “w/o texts” declines con-
sistently on both the multi-modal understanding
and generation tasks. The results demonstrate that
the textual knowledge in the text corpus benefit
the vision-language tasks by enhancing the cross-
modal learning with more textual information.

Vision Enhance Text To further validate that
the visual knowledge in the image collections and
image-text pairs facilitates the language learning,
we remove the images and image-text pairs from
the pre-training dataset (i.e., “w/o pairs&images”)
and compare their performance on the single-modal
language tasks. After removing the images and
image-text pairs, our model is trained by only the
language learning objectives, which are similar to
previous pre-trained language models BERT and
UniLM. Table 4 summarizes the comparison re-
sults, which demonstrate that after removing the
visual data, the performance of the model “w/o
pairs&images” drops obviously on most of the lan-
guage understanding tasks and all the language gen-
eration tasks. The results reveal that visual knowl-
edge can enhance the language tasks by enabling
the model to learn more robust and generalizable
representations in a unified semantic space.

5 Related Work

Existing researches on pre-training can be mainly
classified into two categories: single-modal pre-
training and multi-modal pre-training. The single-
modal pre-training methods only focus on single-
modal tasks, while the multi-modal pre-training
methods only focus on multi-modal tasks.
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Single-Modal Pre-training The single-modal
pre-training methods mainly consist of visual pre-
training and language pre-training. Most visual
pre-training methods are based on the multi-layer
CNN architecture such as VGG (Simonyan and
Zisserman, 2014) and ResNet (He et al., 2016),
and trained on the ImageNet dataset. Recently,
contrastive self-supervised learning like SimCLR
(Chen et al., 2020a) and MoCo (He et al., 2020)
also greatly improve the performance of visual rep-
resentation learning. These pre-trained models only
focus on visual tasks (e.g. image classification etc.),
however, they cannot be used in textual or multi-
modal (i.e., with both text and image) tasks. The
language pre-training methods based on the Trans-
former architecture are also very popular in NLP
models, such as GPT (Radford et al., 2018), BERT
(Devlin et al., 2019), XLNet (Yang et al., 2019) and
BART (Lewis et al., 2020). However, they mainly
focus on textual tasks. They cannot effectively
deal with the multi-modal tasks, such as image-text
retrieval, image captioning, multimodal machine
translation (Lin et al., 2020a; Su et al., 2021) and
visual dialog (Murahari et al., 2020).

Multi-Modal Pre-training Recently, multi-
modal pre-training methods have been more
and more popular for solving the multi-modal
tasks. All of them are trained on a corpus of
image-text pairs, such as ViLBERT (Lu et al.,
2019), VisualBERT (Li et al., 2019b), VL-BERT
(Su et al., 2019), Unicoder-VL (Li et al., 2019a)
and UNITER (Chen et al., 2020b). Based on the
multi-layer Transformer network, they all employ
the BERT-like objectives to learn multi-modal
representations from a concatenated-sequence of
vision features and language embeddings. Their
architectures can be mainly classified into two
categories: single-stream and two-stream. The
two-stream methods, such as ViLBERT, utilize
two single-modal Transformer to process visual
features and language embeddings respectively,
and then learn their interactions based on a cross-
modal Transformer. The single-stream methods
directly utilize a single Transformer network to
model both the visual features and the language
embeddings. VisualBERT, VL-BERT, Unicoder-
VL and UNITER all utilize the single-stream
architecture, which show that fusing cross-modal
information early and freely by a single-stream
network can achieve better performance.

Recently, several contrastive learning-based

multi-modal pre-training methods have also been
proposed. OpenAI CLIP (Radford et al., 2021)
leverages large-scale image-text pairs to learn trans-
ferrable visual representations by image-text match-
ing, which enables zero-shot transfer of the model
to various visual classification tasks. WenLan (Huo
et al., 2021) further proposes a similar two-tower
Chinese multi-modal pre-training model and adapts
MoCo (He et al., 2020) to improve the contrastive
cross-modal learning process. Instead of extracting
salient image regions by pre-trained object detec-
tion models like Faster-RCNN (Ren et al., 2016),
the end-to-end vision-language pre-training archi-
tecture SOHO (Huang et al., 2021) proposes to
jointly learn Convolutional Neural Network (CNN)
and Transformer for cross-modal alignments from
millions of image-text pairs.

All existed multi-modal pre-training methods
only focus on multi-modal tasks with both vision
and language inputs. However, they cannot be
effectively adapted to single-modal tasks. More-
over, they can only utilize the limited corpus of
image-text pairs. By contrast, our unified-modal
pre-training method UNIMO can employ large vol-
umes of text corpus and image collections to en-
hance each other, and can be effectively adapted to
both textual and multi-modal scenarios. UNIMO
also achieves the best performance on multi-modal
tasks including image-text retrieval, visual entail-
ment, VQA and image caption.

6 Conclusion

In this work, we propose UNIMO, a unified-modal
pre-training architecture to leverage the large scale
of non-paired text corpus and image collections for
cross-modal learning. We verify that UNIMO pro-
vides an effective way for textual knowledge and
visual knowledge to mutually enhance each other
in a unified semantic space, and UNIMO success-
fully adapts to both single-modal and multi-modal
understanding and generation tasks. In this way,
UNIMO outperforms previous methods on both the
multi-modal and single-modal downstream tasks.
In the future work, we will focus on end-to-end vi-
sual and language unified learning, and much larger
scale of model size and data volumes.
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A Pre-training Settings

Data Processing The pre-training datasets con-
sist of text corpus, image collections and image-
text pairs. The detail statistics of them are shown
in Table 5. For unified-modal learning, all data
(including images, texts and image-text pairs) are
represented in the same format with both visual
and textual input as “[IMG] [box1] ... [box100]
[CLS] [tok1] ... [tokN] [SEP]”, which “[box]” and
“[tok]” denote an image region and subword token,
respectively. For single-modal images, a pseudo
token sequence “[CLS] [PAD] ... [SEP]” is treated
as the textual input during pre-training. During vi-
sual learning on images, the pseudo token sequence
will be masked out by special self-attention masks
to eliminate its effect to the visual learning process.
The language learning process will not be applied
on the pseudo token sequence. So the single-modal
images are equivalent to be encoded individually
rather than in pair. Similarly, for single-modal
texts, a pseudo image-region sequence “[IMG] [0]
... [0]” will be utilized as the visual input, where
“[0]” denotes a zero-value feature embedding. Dur-
ing language learning, the pseudo image-region
sequence will be masked out. Based on the above
techniques, both images and texts are represented
in the same format as image-text pairs. For image-
text pairs, both the visual learning and language
learning are applied on the images and captions si-
multaneously to learn cross-modal representations.

Training Details During pre-training, the sam-
ples of image collections, text corpus and image-
text pairs are randomly mixed together with ra-
tio 1:1:5. The objectives of language learning, vi-
sual learning and cross-modal contrastive learning
(CMCL) are trained jointly. The hyper-parameters
for both UNIMO-Base and UNIMO-Large are
shown in Table 6. For CMCL, each positive image-
text pair is appended with several hard negative
samples by text rewriting, as well as several posi-
tive images and texts by image/text retrieval. All
samples for other image-text pairs in the training
batch are also treated as the negative samples (in-
cluding negative images and negative texts), which
are more than 6K for UNIMO-base and 3K for
UNIMO-Large. For an image-text pair (V,W ), the
detail formula of the CMCL loss LCMCL(V,W )
is as follows:

−log posP + posI + posT
(negP + negI + negT ) + (posP + posI + posT )

(6)



posP =
∑

(V +,W+)∈X+

exp(d(V +,W+)/τ)

posI =
∑

V r∈XI

exp(d(V r,W )/τ)

posT =
∑

Wr∈XT

exp(d(V,W r)/τ)

negP =
∑

(V−,W−)∈X−
exp(d(V −,W−)/τ)

negI =
∑

V ′∈YI

exp(d(V ′,W )/τ)

negT =
∑

W ′∈YT

exp(d(V,W ′)/τ)

(7)

where posP , posI and posT denote the scores of
positive image-text pairs X+, related images X I
and related texts X T , respectively. Also, negP ,
negI and negT denote the scores of negative image-
text pairs X−, negative images YI and negative
texts YT , respectively. The objective is to maxi-
mize the positive score posP + posI + posT while
minimizing the negative score negP+negI+negT ,
while help aligns and unifies the visual and textual
representation spaces. The pre-training process of
UNIMO is described in Algorithm 1 in pseudo-
code style.

Data Augmentations We apply two types of
data augmentation techniques in the CMCL: text
rewriting and image/text retrieval. The text rewrit-
ing techniques are utilized to create positive and
negative examples for CMCL. To create more posi-
tive image-text pairs, we apply back-translation to
all captions in the image-text pairs. Each caption
is translated into 3 kinds of languages, including
Chinese, French and Spanish, by our translation
tool in house, and then translated back to English.
For the phrase-level and word-level rewriting, each
caption in the image-text pairs is firstly parsed into
a scene graph by the Stanford Scene Graph Parser1.
All objects, attributes and relations are extracted to
build an object vocabulary, an attribute vocabulary
and a relation vocabulary. For each caption, the ob-
jects, attributes or relations are randomly replaced
with other similar objects, attributes or relations in
the corresponding vocabularies, respectively. The
rewritten captions are ranked based on their linguis-
tic fluency, and the top 100 captions are selected
to create hard negative image-text pairs by com-
posing with the original image. Furthermore, the
image and text retrieval techniques are utilized to

1https://nlp.stanford.edu/software/scenegraph-
parser.shtml
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Type Image-Text Pairs Images Text Corpus
Dataset COCO VG CC SBU BookWiki OpenWebText
Train 533K 5.06M 3.0M 990K 1.7M 16G 38G
Val 25K 106K 14K 10K

Table 5: Statistics of the image-text pairs, image collections and text corpus for pre-training.

Hyper-parameters UNIMO-Base UNIMO-Large
Num of Layers 12 24
Hidden Size 768 1024
FFN Hidden Size 3072 4096
Attention Heads 12 16
Head Size 64 64
Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Warmup Steps 24K 30K
Peak Learning Rate 5e-5 5e-5
Batch Size 6K 3K
Weight Decay 0.01 0.01
Max Training Steps 1M 1M
Learning Rate Decay Linear Linear
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Gradient Clipping 1.0 1.0

Table 6: Hyper-parameters for UNIMO pre-training.

augment each image-text pair with various related
images and texts from the single-modal image col-
lections and text corpus. For image-retrieval, each
image is transformed into 100 image regions and
the object labels are detected for all regions by
Faster R-CNN. The object labels are utilized to
create a TF-IDF feature vector for each image, and
the cosine similarity between images are computed.
For each image in the image-text pairs, 100 of the
most similar images are retrieved from the image
collections, which are treated as positive images
in the CMCL. For text retrieval, we firstly build
an inverted index for all image captions and sen-
tences in the text corpus, then filter non-relevant
sentences from the text corpus based on the in-
verted index. For each caption in the image-text
pairs, the TF-IDF similarities between the caption
and the relevant sentences retrieved by the inverted
index are calculated, and the top-1000 sentences
are extracted. Further, BERT-based embedding
similarities are computed between the caption and
the 1000 sentences to rank them, and the top-100
sentences are extracted as the positive texts for the
CMCL.

B Finetuning Settings

Task Definition and Details The multi-modal
finetuning tasks include: (1) VQA requires the
model to answer natural language questions by se-

Algorithm 1 UNIMO’s pre-training process in a
Python-like style.

# The training details of UNIMO

function pretraining process
for step in all steps do

batch = []
# load x image samples

imgs = get data(ImgCollections, x)
# load y text samples

texts = get data(TextCorpus, y)
# load z image-text pairs

img text pairs = get data(Pairs, z)
# load CMCL data for each image-text pair

for pair in img text pairs do
samples = cmcl data loader(pair)
batch.extend(samples)

end for
batch.extend(texts)
batch.extend(imgs)
v loss, l loss, cmcl loss = UNIMO(batch)
loss = v loss+ l loss+ cmcl loss
loss.backward()

end for
end function

# build CMCL samples for each image-text pair

function cmcl data loader
samples = []
# sample a positive pairs from back-translation

pos pairs = sample pos pairs(pair, a)
# sample b negative pairs from text rewriting

neg pairs = sample neg pairs(pair, b)
# sample c sentences from text retrieval

pos imgs = sample pos imgs(pair, c)
# sample d images from image retrieval

pos texts = sample pos texts(pair, d)
samples.extend(pair)
samples.extend(pos pairs)
samples.extend(neg pairs)
samples.extend(pos imgs)
samples.extend(pos texts)
return samples

end function

lecting the correct answer from a multi-choice list
based on an image. We conduct experiments on
the widely-used VQA v2.0 dataset, which is built
based on the COCO images. Similar to previous
work, both training and validation sets are used
for training for the results on both the test-std and
test-dev splits. (2) Image Caption requires the
model to generate a natural language description of
an image. We report our results on the Microsoft
COCO Captions dataset. Following Karpathy’s
split, the dataset contains 113.2k/5k/5k images for
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Task Image Src.
#Images (#Text)

Train Val Test
test-std test-dev

VQA COCO 83K(444K) 41K(214K) 81K(107K) 81K(448K)
Image Caption COCO 113.2K 5K 5K -
Visual Entailment Flickr30K 529.5K 17.9K 17.9K -
Image-Text Retrieval Flickr30K 29K(145K) 1K(5K) 1K(5K) -

Table 7: Statistics of the datasets for the multi-modal downstream tasks.

Hyper-parameters Image-Text Retrieval SNLI-VE VQA COCO Caption
Batch Size 64/32 192/64 256/256 64/32
Epoch 40 10 12 10

Learning Rate
5e-6 for epoch=[0,24]

1e-5
1e-4/4e-5 for epoch=[0,5] 1e-5/5e-6

5e-7 for epoch=[24,32] 1e-5/4e-6 for epoch=[6,8]
5e-8 for epoch=[32,40] 1e-6/4e-7 for epoch=[9,12]

Warmup Ratio - 0.06 - 0.06
Weight Decay 0.01 0.0 0.01 0.01

Table 8: Hyper-parameters (base/large) for fine-tuning multi-modal tasks .

Hyper-parameters SST-2/MNLI/CoLA/STS-B CNNDM Gigaword SQuAD-QG CoQA
Learning Rate {1e-5, 2e-5, 3e-5} 4e-5/2e-5 3e-5 1.25e-5/5e-6 1e-5/8e-6
Batch Size {16, 32} 32 128 32 32
Epochs 10 20 10 20 20
Warmup Raito 0.06 0.06 0.06 0.06 0.06
Beam Size - 6 6 6 3
Length Penalty - 0.6/1.2 0.6/1.2 1.0/1.2 0.0
Trigram Blocking - True False False False

Table 9: Hyper-parameters (base/large) for fine-tuning single-modal tasks.

train/val/test splits respectively. (3) Visual Entail-
ment (SNLI-VE) is evaluated on the SLNI-VE
dataset which was derived from Flickr30K images
and Stanford Natural Language Inference (SNLI)
dataset. The task is to determine the logical rela-
tionship (i.e., “Entailment”, “Neutral” and “Contra-
diction”) between a natural language statement and
an image. (4) Image-Text Retrieval is evaluated
on the Flickr30k dataset, which contains two sub-
tasks: image retrieval (Flickr30k-IR) and text re-
trieval (Flickr30k-TR), depending on which modal-
ity is used as the retrieved target. We report the top-
K retrieval results on the test sets, including R@1,
R@5 and R@10 (R denotes Recall). The statistics
of the datasets for the above multimodal-tasks are
described in Table 7. The hyper-parameters for
all the downstream tasks, including both the multi-
modal tasks and single-modal tasks are shown in
Table 8 and 9.

C Visualization and Analysis

To intuitively show the effectiveness of the unified-
modal learning on the corpus of images, texts and
image-text pairs, we utilize 2-dimensional visual-
ization of the embeddings by Principal component
analysis (PCA). The nearest neighbors of the center

word are shown in the embedding space. UNIMO
is compared with two ablation models described
in Section 4.3. The figure shows that the model
“UNIMO-w/o texts” can find more visual relevant
words than “UNIMO-w/o image&pairs”, which
demonstrates the effectiveness of the visual learn-
ing on images. However, UNIMO not only finds
many visually relevant words, but also finds some
semantic relevant background words. For example,
UNIMO finds “lunch” and “airplanes” for the cen-
ter word “hamburger”, which denotes people usu-
ally eat hamburger at lunch and often eat it while
flying. Also, for the second example, UNIMO finds
relevant concepts “meter”, “steps” and “soccer” for
“foot”, which enrich the concept and connect it with
rich relevant information.

To further intuitively show the advantages of
the unified-modal learning with rich single-modal
data, we compare UNIMO with the multimodal
pre-training model “w/o single modal” (described
in Section 4.2), on both the text retrieval and im-
age retrieval tasks. The examples of text retrieval
results in Figure 5 show that the retrieved captions
by UNIMO describes the images more accurately
by including different levels of information, includ-
ing objects, attributes and relations in images. The
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(a) UNIMO - w/o images&pairs (b) UNIMO - w/o texts (c) UNIMO

Figure 4: 2-dimensional visualization by PCA.

UNIMO: Two men are in a subway 
station getting ready to mop.

Baseline: Two men are standing 
at telephone booths outside.

UNIMO: A child dressed in blue 
jeans with rolled cuffs and a pink 
hoodie waits outdoors at the foot 
of the stairs with an axe.

Baseline: Young boy with a broom 
sweeps a deck in a wooded area.

UNIMO: Three guys are jumping 
on some grass and making funny 
faces, you can see their shadows 
on the ground.

Baseline: A group of young men 
are running a race.

UNIMO: Two bicyclists are racing 
each other on a dirt track.

Baseline: Three runners are on a 
track and two of them are jumping 
hurdles.

Figure 5: Text retrieval examples by R@1. The green
color denotes accurate visual information while the red
denotes wrong information.

examples of the image retrieval results in Figure
6 also show that the retrieved images better match
the captions with more detail semantic alignments.

A group of men 
are loading cotton 
onto a truck

UNIMO BaselineText

A woman in a red 
shirt playing the 
cello.

Children enjoying 
themselves on an 
amusement park 
ride.

A man and a little 
boy beating drums.

Two men are 
smiling and riding 
bicycles.

Figure 6: Image retrieval examples by R@1. The blue
color denotes the important information that has been
neglected by the baseline model, but is accurately rec-
ognized by UNIMO.


