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Abstract
Pre-training of text and layout has proved
effective in a variety of visually-rich docu-
ment understanding tasks due to its effec-
tive model architecture and the advantage
of large-scale unlabeled scanned/digital-born
documents. We propose LayoutLMv2 archi-
tecture with new pre-training tasks to model
the interaction among text, layout, and image
in a single multi-modal framework. Specif-
ically, with a two-stream multi-modal Trans-
former encoder, LayoutLMv2 uses not only
the existing masked visual-language model-
ing task but also the new text-image align-
ment and text-image matching tasks, which
make it better capture the cross-modality in-
teraction in the pre-training stage. Meanwhile,
it also integrates a spatial-aware self-attention
mechanism into the Transformer architecture
so that the model can fully understand the
relative positional relationship among differ-
ent text blocks. Experiment results show
that LayoutLMv2 outperforms LayoutLM by
a large margin and achieves new state-of-
the-art results on a wide variety of down-
stream visually-rich document understanding
tasks, including FUNSD (0.7895 → 0.8420),
CORD (0.9493 → 0.9601), SROIE (0.9524
→ 0.9781), Kleister-NDA (0.8340→ 0.8520),
RVL-CDIP (0.9443→ 0.9564), and DocVQA
(0.7295 → 0.8672). We made our model and
code publicly available at https://aka.ms
/layoutlmv2.

1 Introduction

Visually-rich Document Understanding (VrDU)
aims to analyze scanned/digital-born business doc-
uments (images of invoices, forms in PDF format,
etc.) where structured information can be automat-
ically extracted and organized for many business
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applications. Distinct from conventional informa-
tion extraction tasks, the VrDU task relies on not
only textual information but also visual and lay-
out information that is vital for visually-rich docu-
ments. Different types of documents indicate that
the text fields of interest located at different posi-
tions within the document, which is often deter-
mined by the style and format of each type as well
as the document content. Therefore, to accurately
recognize the text fields of interest, it is inevitable
to take advantage of the cross-modality nature of
visually-rich documents, where the textual, visual,
and layout information should be jointly modeled
and learned end-to-end in a single framework.

The recent progress of VrDU lies primarily
in two directions. The first direction is usually
built on the shallow fusion between textual and
visual/layout/style information (Yang et al., 2017;
Liu et al., 2019; Sarkhel and Nandi, 2019; Yu et al.,
2020; Majumder et al., 2020; Wei et al., 2020;
Zhang et al., 2020). These approaches leverage
the pre-trained NLP and CV models individually
and combine the information from multiple modali-
ties for supervised learning. Although good perfor-
mance has been achieved, the domain knowledge
of one document type cannot be easily transferred
into another, so that these models often need to
be re-trained once the document type is changed.
Thereby the local invariance in general document
layout (key-value pairs in a left-right layout, tables
in a grid layout, etc.) cannot be fully exploited. To
this end, the second direction relies on the deep fu-
sion among textual, visual, and layout information
from a great number of unlabeled documents in dif-
ferent domains, where pre-training techniques play
an important role in learning the cross-modality
interaction in an end-to-end fashion (Lockard et al.,
2020; Xu et al., 2020). In this way, the pre-trained

https://aka.ms/layoutlmv2
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models absorb cross-modal knowledge from dif-
ferent document types, where the local invariance
among these layouts and styles is preserved. Fur-
thermore, when the model needs to be transferred
into another domain with different document for-
mats, only a few labeled samples would be suf-
ficient to fine-tune the generic model in order to
achieve state-of-the-art accuracy. Therefore, the
proposed model in this paper follows the second
direction, and we explore how to further improve
the pre-training strategies for the VrDU tasks.

In this paper, we present an improved version
of LayoutLM (Xu et al., 2020), aka LayoutLMv2.
Different from the vanilla LayoutLM model where
visual embeddings are combined in the fine-tuning
stage, we integrate the visual information in the
pre-training stage in LayoutLMv2 by taking ad-
vantage of the Transformer architecture to learn
the cross-modality interaction between visual and
textual information. In addition, inspired by the
1-D relative position representations (Shaw et al.,
2018; Raffel et al., 2020; Bao et al., 2020), we pro-
pose the spatial-aware self-attention mechanism for
LayoutLMv2, which involves a 2-D relative posi-
tion representation for token pairs. Different from
the absolute 2-D position embeddings that Lay-
outLM uses to model the page layout, the relative
position embeddings explicitly provide a broader
view for the contextual spatial modeling. For the
pre-training strategies, we use two new training ob-
jectives for LayoutLMv2 in addition to the masked
visual-language modeling. The first is the proposed
text-image alignment strategy, which aligns the text
lines and the corresponding image regions. The sec-
ond is the text-image matching strategy popular in
previous vision-language pre-training models (Tan
and Bansal, 2019; Lu et al., 2019; Su et al., 2020;
Chen et al., 2020; Sun et al., 2019), where the
model learns whether the document image and tex-
tual content are correlated.

We select six publicly available benchmark
datasets as the downstream tasks to evaluate the per-
formance of the pre-trained LayoutLMv2 model,
which are the FUNSD dataset (Jaume et al., 2019)
for form understanding, the CORD dataset (Park
et al., 2019) and the SROIE dataset (Huang et al.,
2019) for receipt understanding, the Kleister-NDA
dataset (Graliński et al., 2020) for long docu-
ment understanding with a complex layout, the
RVL-CDIP dataset (Harley et al., 2015) for doc-
ument image classification, and the DocVQA

dataset (Mathew et al., 2021) for visual question an-
swering on document images. Experiment results
show that the LayoutLMv2 model significantly out-
performs strong baselines, including the vanilla
LayoutLM, and achieves new state-of-the-art re-
sults in all of these tasks.

The contributions of this paper are summarized
as follows:

• We propose a multi-modal Transformer model
to integrate the document text, layout, and
visual information in the pre-training stage,
which learns the cross-modal interaction end-
to-end in a single framework. Meanwhile,
a spatial-aware self-attention mechanism is
integrated into the Transformer architecture.

• In addition to the masked visual-language
model, we add text-image alignment and text-
image matching as the new pre-training strate-
gies to enforce the alignment among different
modalities.

• LayoutLMv2 significantly outperforms and
achieves new SOTA results not only on the
conventional VrDU tasks but also on the VQA
task for document images, which demon-
strates the great potential for the multi-modal
pre-training for VrDU.

2 Approach

In this section, we will introduce the model archi-
tecture and the multi-modal pre-training tasks of
LayoutLMv2, which is illustrated in Figure 1.

2.1 Model Architecture

We build a multi-modal Transformer architecture
as the backbone of LayoutLMv2, which takes text,
visual, and layout information as input to estab-
lish deep cross-modal interactions. We also intro-
duce a spatial-aware self-attention mechanism to
the model architecture for better modeling the doc-
ument layout. Detailed descriptions of the model
are as follows.

Text Embedding Following the common prac-
tice, we use WordPiece (Wu et al., 2016) to tok-
enize the OCR text sequence and assign each token
to a certain segment si ∈ {[A],[B]}. Then, we
add [CLS] at the beginning of the sequence and
[SEP] at the end of each text segment. Extra
[PAD] tokens are appended to the end so that the
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Figure 1: An illustration of the model architecture and pre-training strategies for LayoutLMv2

final sequence’s length is exactly the maximum se-
quence length L. The final text embedding is the
sum of three embeddings. Token embedding rep-
resents the token itself, 1D positional embedding
represents the token index, and segment embed-
ding is used to distinguish different text segments.
Formally, we have the i-th (0 ≤ i < L) text em-
bedding

ti = TokEmb(wi)+PosEmb1D(i)+SegEmb(si)

Visual Embedding Although all information we
need is contained in the page image, the model
has difficulty capturing detailed features in a sin-
gle information-rich representation of the entire
page. Therefore, we leverage the output feature
map of a CNN-based visual encoder, which con-
verts the page image to a fixed-length sequence.
We use ResNeXt-FPN (Xie et al., 2017; Lin et al.,
2017) architecture as the backbone of the visual
encoder, whose parameters can be updated through
backpropagation.

Given a document page image I , it is resized to
224× 224 then fed into the visual backbone. After
that, the output feature map is average-pooled to a

fixed size with the width being W and height being
H . Next, it is flattened into a visual embedding
sequence of lengthW×H . The sequence is named
VisTokEmb(I). A linear projection layer is then
applied to each visual token embedding to unify
the dimensionality with the text embeddings. Since
the CNN-based visual backbone cannot capture the
positional information, we also add a 1D positional
embedding to these visual token embeddings. The
1D positional embedding is shared with the text
embedding layer. For the segment embedding, we
attach all visual tokens to the visual segment [C].
The i-th (0 ≤ i < WH) visual embedding can be
represented as

vi =Proj
(
VisTokEmb(I)i

)
+PosEmb1D(i)+SegEmb([C])

Layout Embedding The layout embedding layer
is for embedding the spatial layout information
represented by axis-aligned token bounding boxes
from the OCR results, in which box width and
height together with corner coordinates are iden-
tified. Following the vanilla LayoutLM, we nor-
malize and discretize all coordinates to integers in
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the range [0, 1000], and use two embedding lay-
ers to embed x-axis features and y-axis features
separately. Given the normalized bounding box
of the i-th (0 ≤ i < WH + L) text/visual token
boxi = (xmin, xmax, ymin, ymax, width, height),
the layout embedding layer concatenates six bound-
ing box features to construct a token-level 2D posi-
tional embedding, aka the layout embedding

li = Concat
(
PosEmb2Dx(xmin, xmax, width),

PosEmb2Dy(ymin, ymax, height)
)

Note that CNNs perform local transformation,
thus the visual token embeddings can be mapped
back to image regions one by one with neither
overlap nor omission. When calculating bound-
ing boxes, the visual tokens can be treated as
evenly divided grids. An empty bounding box
boxPAD = (0, 0, 0, 0, 0, 0) is attached to special
tokens [CLS], [SEP] and [PAD].

Multi-modal Encoder with Spatial-Aware Self-
Attention Mechanism The encoder concate-
nates visual embeddings {v0, ...,vWH−1} and text
embeddings {t0, ..., tL−1} to a unified sequence
and fuses spatial information by adding the layout
embeddings to get the i-th (0 ≤ i < WH + L)
first layer input

x
(0)
i = Xi + li, where

X = {v0, ...,vWH−1, t0, ..., tL−1}

Following the architecture of Transformer, we
build our multi-modal encoder with a stack of
multi-head self-attention layers followed by a feed-
forward network. However, the original self-
attention mechanism can only implicitly capture
the relationship between the input tokens with
the absolute position hints. In order to efficiently
model local invariance in the document layout, it is
necessary to insert relative position information ex-
plicitly. Therefore, we introduce the spatial-aware
self-attention mechanism into the self-attention lay-
ers. For simplicity, the following description is for
a single head in a single self-attention layer with
hidden size of dhead and projection matrics WQ,
WK , WV . The original self-attention mechanism
captures the correlation between query xi and key
xj by projecting the two vectors and calculating
the attention score

αij =
1√
dhead

(
xiW

Q
) (

xjW
K
)T

Considering the large range of positions, we
model the semantic relative position and spatial
relative position as bias terms to prevent adding
too many parameters. Similar practice has been
shown effective on text-only Transformer architec-
tures (Raffel et al., 2020; Bao et al., 2020). Let
b(1D), b(2Dx) and b(2Dy) denote the learnable 1D
and 2D relative position biases respectively. The bi-
ases are different among attention heads but shared
in all encoder layers. Assuming (xi, yi) anchors
the top left corner coordinates of the i-th bounding
box, we obtain the spatial-aware attention score

α′ij = αij + b
(1D)
j−i + b

(2Dx)
xj−xi

+ b
(2Dy)
yj−yi

Finally, the output vectors are represented as the
weighted average of all the projected value vectors
with respect to normalized spatial-aware attention
scores

hi =
∑
j

exp
(
α′ij

)
∑

k exp
(
α′ik
)xjW

V

2.2 Pre-training Tasks
Masked Visual-Language Modeling Similar to
the vanilla LayoutLM, we use the Masked Visual-
Language Modeling (MVLM) to make the model
learn better in the language side with the cross-
modality clues. We randomly mask some text to-
kens and ask the model to recover the masked to-
kens. Meanwhile, the layout information remains
unchanged, which means the model knows each
masked token’s location on the page. The output
representations of masked tokens from the encoder
are fed into a classifier over the whole vocabulary,
driven by a cross-entropy loss. To avoid visual clue
leakage, we mask image regions corresponding to
masked tokens on the raw page image input before
feeding it into the visual encoder.

Text-Image Alignment To help the model learn
the spatial location correspondence between image
and coordinates of bounding boxes, we propose
the Text-Image Alignment (TIA) as a fine-grained
cross-modality alignment task. In the TIA task,
some tokens lines are randomly selected, and their
image regions are covered on the document image.
We call this operation covering to avoid confusion
with the masking operation in MVLM. During pre-
training, a classification layer is built above the
encoder outputs. This layer predicts a label for
each text token depending on whether it is covered,
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i.e., [Covered] or [Not Covered], and com-
putes the binary cross-entropy loss. Considering
the input image’s resolution is limited, and some
document elements like signs and bars in a fig-
ure may look like covered text regions, the task of
finding a word-sized covered image region can be
noisy. Thus, the covering operation is performed
at the line-level. When MVLM and TIA are per-
formed simultaneously, TIA losses of the tokens
masked in MVLM are not taken into account. This
prevents the model from learning the useless but
straightforward correspondence from [MASK] to
[Covered].

Text-Image Matching Furthermore, a coarse-
grained cross-modality alignment task, Text-Image
Matching (TIM) is applied to help the model learn
the correspondence between document image and
textual content. We feed the output representation
at [CLS] into a classifier to predict whether the
image and text are from the same document page.
Regular inputs are positive samples. To construct
a negative sample, an image is either replaced by
a page image from another document or dropped.
To prevent the model from cheating by finding task
features, we perform the same masking and cover-
ing operations to images in negative samples. The
TIA target labels are all set to [Covered] in neg-
ative samples. We apply the binary cross-entropy
loss in the optimization process.

3 Experiments

3.1 Data

In order to pre-train and evaluate LayoutLMv2
models, we select datasets in a wide range from the
visually-rich document understanding area. Fol-
lowing LayoutLM, we use IIT-CDIP Test Collec-
tion (Lewis et al., 2006) as the pre-training dataset.
Six datasets are used as down-stream tasks. The
FUNSD (Jaume et al., 2019), CORD (Park et al.,
2019), SROIE (Huang et al., 2019) and Kleister-
NDA (Graliński et al., 2020) datasets define en-
tity extraction tasks that aim to extract the value
of a set of pre-defined keys, which we formalize
as a sequential labeling task. RVL-CDIP (Harley
et al., 2015) is for document image classification.
DocVQA (Mathew et al., 2021), as the name sug-
gests, is a dataset for visual question answering on
document images. Statistics of datasets are shown
in Table 1. Refer to the Appendix for details.

Dataset # of keys or
categories

# of examples
(train/dev/test)

IIT-CDIP – 11M/0/0
FUNSD 4 149/0/50
CORD 30 800/100/100
SROIE 4 626/0/347
Kleister-NDA 4 254/83/203
RVL-CDIP 16 320K/4K/4K
DocVQA – 39K/5K/5K

Table 1: Statistics of datasets

3.2 Settings

Following the typical pre-training and fine-tuning
strategy, we update all parameters including the
visual encoder layers, and train whole models end-
to-end for all the settings. Training details can be
found in the Appendix.

Pre-training LayoutLMv2 We train Lay-
outLMv2 models with two different pa-
rameter sizes. We use a 12-layer 12-head
Transformer encoder and set hidden size
d = 768 in LayoutLMv2BASE. While in the
LayoutLMv2LARGE, the encoder has 24 Trans-
former layers with 16 heads and d = 1024. Visual
backbones in the two models are based on the
same ResNeXt101-FPN architecture. The numbers
of parameters are 200M and 426M approximately
for LayoutLMv2BASE and LayoutLMv2LARGE,
respectively.

For the encoder along with the text embedding
layer, LayoutLMv2 uses the same architecture as
UniLMv2 (Bao et al., 2020), thus it is initialized
from UniLMv2. For the ResNeXt-FPN part in the
visual embedding layer, the backbone of a Mask-
RCNN (He et al., 2017) model trained on Pub-
LayNet (Zhong et al., 2019) is leveraged.1 The
rest of the parameters in the model are randomly
initialized.

During pre-training, we sample pages from the
IIT-CDIP dataset and select a random sliding win-
dow of the text sequence if the sample is too long.
We set the maximum sequence length L = 512
and assign all text tokens to the segment [A]. The
output shape of the average pooling layer is set to
W = H = 7, so that it transforms the feature map
into 49 visual tokens. In MVLM, 15% text tokens
are masked among which 80% are replaced by a
special token [MASK], 10% are replaced by a ran-
dom token sampled from the whole vocabulary, and

1“MaskRCNN ResNeXt101 32x8d FPN 3X” setting in
https://github.com/hpanwar08/detectron2

https://github.com/hpanwar08/detectron2
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Model FUNSD CORD SROIE Kleister-NDA

BERTBASE 0.6026 0.8968 0.9099 0.7790
UniLMv2BASE 0.6648 0.9092 0.9459 0.7950
BERTLARGE 0.6563 0.9025 0.9200 0.7910
UniLMv2LARGE 0.7072 0.9205 0.9488 0.8180

LayoutLMBASE 0.7866 0.9472 0.9438 0.8270
LayoutLMLARGE 0.7895 0.9493 0.9524 0.8340

LayoutLMv2BASE 0.8276 0.9495 0.9625 0.8330
LayoutLMv2LARGE 0.8420 0.9601 0.9781 0.8520

BROS (Hong et al., 2021) 0.8121 0.9536 0.9548 –
SPADE (Hwang et al., 2020) – 0.9150 – –
PICK (Yu et al., 2020) – – 0.9612 –
TRIE (Zhang et al., 2020) – – 0.9618 –
Top-1 on SROIE Leaderboard (until 2020-12-24) – – 0.9767 –
RoBERTaBASE in (Graliński et al., 2020) – – – 0.7930

Table 2: Entity-level F1 scores of the four entity extraction tasks: FUNSD, CORD, SROIE and Kleister-NDA.
Detailed per-task results are in the Appendix.

10% remains the same. In TIA, 15% of the lines
are covered. In TIM, 15% images are replaced, and
5% are dropped.

Fine-tuning LayoutLMv2 We use the [CLS]
output along with pooled visual token representa-
tions as global features in the document-level classi-
fication task RVL-CDIP. For the extractive question
answering task DocVQA and the other four entity
extraction tasks, we follow common practice like
(Devlin et al., 2019) and build task specified head
layers over the text part of LayoutLMv2 outputs.

In the DocVQA paper, experiment results show
that the BERT model fine-tuned on the SQuAD
dataset (Rajpurkar et al., 2016) outperforms the
original BERT model. Inspired by this fact, we add
an extra setting, which is that we first fine-tune Lay-
outLMv2 on a question generation (QG) dataset
followed by the DocVQA dataset. The QG dataset
contains almost one million question-answer pairs
generated by a generation model trained on the
SQuAD dataset.

Baselines We select three baseline models in
the experiments to compare LayoutLMv2 with
the text-only pre-trained models as well as the
vanilla LayoutLM model. Specifically, we com-
pare LayoutLMv2 with BERT (Devlin et al., 2019),
UniLMv2 (Bao et al., 2020), and LayoutLM (Xu
et al., 2020) for all the experiment settings. We
use the publicly available PyTorch models for
BERT (Wolf et al., 2020) and LayoutLM, and
use our in-house implementation for the UniLMv2
models. For each baseline approach, experiments
are conducted using both the BASE and LARGE

parameter settings.

3.3 Results

Entity Extraction Tasks Table 2 shows the
model accuracy on the four datasets FUNSD,
CORD, SROIE, and Kleister-NDA, which we re-
gard as sequential labeling tasks evaluated using
entity-level F1 score. We report the evaluation
results of Kleister-NDA on the validation set be-
cause the ground-truth labels and the submission
website for the test set are not available right now.
For text-only models, the UniLMv2 models out-
perform the BERT models by a large margin in
terms of the BASE and LARGE settings. For
text+layout models, the LayoutLM family, espe-
cially the LayoutLMv2 models, brings significant
performance improvement over the text-only base-
lines. Compared to the baselines, the LayoutLMv2
models are superior to the SPADE (Hwang et al.,
2020) decoder method, as well as the text+layout
pre-training approach BROS (Hong et al., 2021)
that is built on the SPADE decoder, which demon-
strates the effectiveness of our modeling approach.
Moreover, with the same modal information, our
LayoutLMv2 models also outperform existing
multi-modal approaches PICK (Yu et al., 2020),
TRIE (Zhang et al., 2020) and the previous top-
1 method on the leaderboard,2 confirming the
effectiveness of our pre-training for text, lay-
out, and visual information. The best perfor-
mance on all the four datasets is achieved by

2Unpublished results, the leaderboard is available
at https://rrc.cvc.uab.es/?ch=13&com=eval
uation&task=3

https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3
https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3
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Model Accuracy

BERTBASE 89.81%
UniLMv2BASE 90.06%
BERTLARGE 89.92%
UniLMv2LARGE 90.20%

LayoutLMBASE (w/ image) 94.42%
LayoutLMLARGE (w/ image) 94.43%

LayoutLMv2BASE 95.25%
LayoutLMv2LARGE 95.64%

VGG-16 (Afzal et al., 2017) 90.97%
Single model (Das et al., 2018) 91.11%
Ensemble (Das et al., 2018) 92.21%
InceptionResNetV2 (Szegedy et al., 2017) 92.63%
LadderNet (Sarkhel and Nandi, 2019) 92.77%
Single model (Dauphinee et al., 2019) 93.03%
Ensemble (Dauphinee et al., 2019) 93.07%

Table 3: Classification accuracy on the RVL-CDIP
dataset

the LayoutLMv2LARGE, which illustrates that the
multi-modal pre-training in LayoutLMv2 learns
better from the interactions from different modali-
ties, thereby leading to the new SOTA on various
document understanding tasks.

RVL-CDIP Table 3 shows the classification ac-
curacy on the RVL-CDIP dataset, including text-
only pre-trained models, the LayoutLM family as
well as several image-based baseline models. As
shown in the table, both the text and visual in-
formation are important to the document image
classification task because document images are
text-intensive and represented by a variety of lay-
outs and formats. Therefore, we observed that the
LayoutLM family outperforms those text-only or
image-only models as it leverages the multi-modal
information within the documents. Specifically, the
LayoutLMv2LARGE model significantly improves
the classification accuracy by more than 1.2% point
over the previous SOTA results, which achieves an
accuracy of 95.64%. This also verifies that the
pre-trained LayoutLMv2 model benefits not only
the information extraction tasks in document under-
standing but also the document image classification
task through effective multi-model training.

DocVQA Table 4 lists the Average Normalized
Levenshtein Similarity (ANLS) scores on the
DocVQA dataset of text-only baselines, LayoutLM
family models, and the previous top-1 on the
leaderboard. With multi-modal pre-training, Lay-
outLMv2 models outperform LayoutLM models
and text-only baselines by a large margin when fine-

Model Fine-tuning set ANLS

BERTBASE train 0.6354
UniLMv2BASE train 0.7134
BERTLARGE train 0.6768
UniLMv2LARGE train 0.7709

LayoutLMBASE train 0.6979
LayoutLMLARGE train 0.7259

LayoutLMv2BASE train 0.7808
LayoutLMv2LARGE train 0.8348

LayoutLMv2LARGE train + dev 0.8529
LayoutLMv2LARGE + QG train + dev 0.8672

Top-1 (30 models ensemble)
on DocVQA Leaderboard
(until 2020-12-24)

- 0.8506

Table 4: ANLS score on the DocVQA dataset, “QG”
denotes the data augmentation with the question gener-
ation dataset.

tuned on the train set. By using all data (train + dev)
as the fine-tuning dataset, the LayoutLMv2LARGE

single model outperforms the previous top-1 on the
leaderboard which ensembles 30 models.3 Under
the setting of fine-tuning LayoutLMv2LARGE on a
question generation dataset (QG) and the DocVQA
dataset successively, the single model performance
increases by more than 1.6% ANLS and achieves
the new SOTA.

3.4 Ablation Studies

To fully understand the underlying impact of dif-
ferent components, we conduct an ablation study
to explore the effect of visual information, the pre-
training tasks, spatial-aware self-attention mech-
anism, as well as different text-side initialization
models. Table 5 shows model performance on the
DocVQA validation set. Under all the settings, we
pre-train the models using all IIT-CDIP data for one
epoch. The hyper-parameters are the same as those
used to pre-train LayoutLMv2BASE in Section 3.2.
“LayoutLM” denotes the vanilla LayoutLM archi-
tecture in (Xu et al., 2020), which can be regarded
as a LayoutLMv2 architecture without visual mod-
ule and spatial-aware self-attention mechanism.
“X101-FPN” denotes the ResNeXt101-FPN visual
backbone described in Section 3.2.

We first evaluate the effect of introducing vi-
sual information. From #1 to #2a, we add the
visual module without changing the pre-training
strategy, where results show that LayoutLMv2 pre-

3Unpublished results, the leaderboard is available
at https://rrc.cvc.uab.es/?ch=17&com=eval
uation&task=1

https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1
https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1
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# Model Architecture Initialization SASAM MVLM TIA TIM ANLS

1 LayoutLMBASE BERTBASE X 0.6841

2a LayoutLMv2BASE BERTBASE + X101-FPN X 0.6915
2b LayoutLMv2BASE BERTBASE + X101-FPN X X 0.7061
2c LayoutLMv2BASE BERTBASE + X101-FPN X X 0.6955
2d LayoutLMv2BASE BERTBASE + X101-FPN X X X 0.7124

3 LayoutLMv2BASE BERTBASE + X101-FPN X X X X 0.7217

4 LayoutLMv2BASE UniLMv2BASE + X101-FPN X X X X 0.7421

Table 5: Ablation study on the DocVQA dataset, where ANLS scores on the validation set are reported. “SASAM”
means the spatial-aware self-attention mechanism. “MVLM”, “TIA” and “TIM” are the three pre-training tasks.
All the models are trained using the whole pre-training dataset for one epoch with the BASE model size.

trained with only MVLM can leverage visual in-
formation effectively. Then, we compare the two
cross-modality alignment pre-training tasks TIA
and TIM. According to the four results in #2, both
tasks improve the model performance substantially,
and the proposed TIA benefits the model more than
the commonly used TIM. Using both tasks together
is more effective than using either one alone. Ac-
cording to this observation, we keep all the three
pre-training tasks and introduce the spatial-aware
self-attention mechanism (SASAM) to the model
architecture. Compare the results #2d and #3, the
proposed SASAM can further improve the model
accuracy. Finally, in settings #3 and #4, we change
the text-side initialization checkpoint from BERT
to UniLMv2, and confirm that LayoutLMv2 bene-
fits from the better initialization.

4 Related Work

In recent years, pre-training techniques have be-
come popular in both NLP and CV areas, and have
also been leveraged in the VrDU tasks.

Devlin et al. (2019) introduced a new language
representation model called BERT, which is de-
signed to pre-train deep bidirectional representa-
tions from the unlabeled text by jointly condition-
ing on both left and right context in all layers. Bao
et al. (2020) propose to pre-train a unified language
model for both autoencoding and partially autore-
gressive language modeling tasks using a novel
training procedure, referred to as a pseudo-masked
language model. Our multi-modal Transformer
architecture and the MVLM pre-training strategy
extend Transformer and MLM used in these work
to leverage visual information.

Lu et al. (2019) proposed ViLBERT for learning
task-agnostic joint representations of image con-
tent and natural language by extending the popular

BERT architecture to a multi-modal two-stream
model. Su et al. (2020) proposed VL-BERT that
adopts the Transformer model as the backbone,
and extends it to take both visual and linguistic
embedded features as input. Different from these
vision-language pre-training approaches, the visual
part of LayoutLMv2 directly uses the feature map
instead of pooled ROI features, and benefits from
the new TIA pre-training task.

Xu et al. (2020) proposed LayoutLM to jointly
model interactions between text and layout infor-
mation across scanned document images, benefit-
ing a great number of real-world document image
understanding tasks such as information extraction
from scanned documents. This work is a natural
extension of the vanilla LayoutLM, which takes ad-
vantage of textual, layout, and visual information
in a single multi-modal pre-training framework.

5 Conclusion

In this paper, we present a multi-modal pre-training
approach for visually-rich document understand-
ing tasks, aka LayoutLMv2. Distinct from existing
methods for VrDU, the LayoutLMv2 model not
only considers the text and layout information but
also integrates the image information in the pre-
training stage with a single multi-modal framework.
Meanwhile, the spatial-aware self-attention mecha-
nism is integrated into the Transformer architecture
to capture the relative relationship among different
bounding boxes. Furthermore, new pre-training ob-
jectives are also leveraged to enforce the learning
of cross-modal interaction among different modali-
ties. Experiment results on 6 different VrDU tasks
have illustrated that the pre-trained LayoutLMv2
model has substantially outperformed the SOTA
baselines in the document intelligence area, which
greatly benefits a number of real-world document
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understanding tasks.
For future research, we will further explore the

network architecture as well as the pre-training
strategies for the LayoutLM family. Meanwhile,
we will also investigate the language expansion to
make the multi-lingual LayoutLMv2 model avail-
able for different languages, especially the non-
English areas around the world.
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Appendix

A Details of Datasets

Introduction to the dataset and task definitions
along with the description of required data pro-
cessing are presented as follows.

Pre-training Dataset Following LayoutLM, we
pre-train LayoutLMv2 on the IIT-CDIP Test Col-
lection (Lewis et al., 2006), which contains over
11 million scanned document pages. We extract

text and corresponding word-level bounding boxes
from document page images with the Microsoft
Read API.4

FUNSD FUNSD (Jaume et al., 2019) is a dataset
for form understanding in noisy scanned doc-
uments. It contains 199 real, fully annotated,
scanned forms where 9,707 semantic entities are an-
notated above 31,485 words. The 199 samples are
split into 149 for training and 50 for testing. The
official OCR annotation is directly used with the
layout information. The FUNSD dataset is suitable
for a variety of tasks, where we focus on semantic
entity labeling in this paper. Specifically, the task
is assigning to each word a semantic entity label
from a set of four predefined categories: question,
answer, header, or other. The entity-level F1 score
is used as the evaluation metric.

CORD We also evaluate our model on the receipt
key information extraction dataset, i.e. the public
available subset of CORD (Park et al., 2019). The
dataset includes 800 receipts for the training set,
100 for the validation set, and 100 for the test set. A
photo and a list of OCR annotations are equipped
for each receipt. An ROI that encompasses the area
of receipt region is provided along with each photo
because there can be irrelevant things in the back-
ground. We only use the ROI as input instead of
the raw photo. The dataset defines 30 fields under
4 categories and the task aims to label each word to
the right field. The evaluation metric is entity-level
F1. We use the official OCR annotations.

SROIE The SROIE dataset (Task 3) (Huang
et al., 2019) aims to extract information from
scanned receipts. There are 626 samples for train-
ing and 347 samples for testing in the dataset. The
task is to extract values from each receipt of up to
four predefined keys: company, date, address, or
total. The evaluation metric is entity-level F1. We
use the official OCR annotations and results on the
test set are provided by the official evaluation site.

Kleister-NDA Kleister-NDA (Graliński et al.,
2020) contains non-disclosure agreements col-
lected from the EDGAR database, including 254
documents for training, 83 documents for valida-
tion, and 203 documents for testing. This task is
defined to extract the values of four fixed keys.
We get the entity-level F1 score from the official

4https://docs.microsoft.com/en-us/azu
re/cognitive-services/computer-vision/co
ncept-recognizing-text
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evaluation tools.5 Words and bounding boxes are
extracted from the raw PDF file. We use heuristics
to locate entity spans because the normalized stan-
dard answers may not appear in the utterance. As
the labeled answers are normalized into a canonical
form, we apply post-processing heuristics to con-
vert the extracted date information into the “YYYY-
MM-DD” format, and company names into the
abbreviations such as “LLC” and “Inc.”.

RVL-CDIP RVL-CDIP (Harley et al., 2015) con-
sists of 400,000 grayscale images, with 8:1:1 for
the training set, validation set, and test set. A multi-
class single-label classification task is defined on
RVL-CDIP. The images are categorized into 16
classes, with 25,000 images per class. The evalu-
ation metric is the overall classification accuracy.
Text and layout information is extracted by Mi-
crosoft OCR.

DocVQA As a VQA dataset on the document un-
derstanding field, DocVQA (Mathew et al., 2021)
consists of 50,000 questions defined on over 12,000
pages from a variety of documents. Pages are split
into the training set, validation set, and test set with
a ratio of about 8:1:1. The dataset is organized as
a set of triples 〈page image, questions, answers〉.
Thus, we use Microsoft Read API to extract text
and bounding boxes from images. Heuristics are
used to find given answers in the extracted text.
The task is evaluated using an edit distance based
metric ANLS (aka average normalized Levenshtein
similarity). Given that human performance is about
98% ANLS on the test set, it is reasonable to as-
sume that the found ground truth which reaches
over 97% ANLS on training and validation sets is
good enough to train a model. Results on the test
set are provided by the official evaluation site.

B Model Training Details

Pre-training We pre-train LayoutLMv2 models
using Adam optimizer (Kingma and Ba, 2015;
Loshchilov and Hutter, 2019), with the learn-
ing rate of 2 × 10−5, weight decay of 1 ×
10−2,and (β1, β2) = (0.9, 0.999). The learn-
ing rate is linearly warmed up over the first 10%
steps then linearly decayed. LayoutLMv2BASE is
trained with a batch size of 64 for 5 epochs, and
LayoutLMv2LARGE is trained with a batch size of
2048 for 20 epochs on the IIT-CDIP dataset.

5https://gitlab.com/filipg/geval

Fine-tuning for Visual Question Answering
We treat the DocVQA as an extractive QA task
and build a token-level classifier on top of the text
part of LayoutLMv2 output representations. Ques-
tion tokens, context tokens and visual tokens are
assigned to segment [A], [B] and [C], respec-
tively. The maximum sequence length is set to
L = 384.

Fine-tuning for Document Image Classification
This task depends on high-level visual information,
thereby we leverage the image features explicitly
in the fine-tuning stage. We pool the visual embed-
dings into a global pre-encoder feature, and pool
the visual part of LayoutLMv2 output representa-
tions into a global post-encoder feature. The pre
and post-encoder features along with the [CLS]
output feature are concatenated and fed into the
final classification layer.

Fine-tuning for Sequential Labeling We for-
malize FUNSD, SROIE, CORD, and Kleister-NDA
as the sequential labeling tasks. To fine-tune Lay-
outLMv2 models on these tasks, we build a token-
level classification layer above the text part of the
output representations to predict the BIO tags for
each entity field.

C Detailed Experiment Results

Tables list per-task detailed results for the four en-
tity extraction tasks, with Table 6 for FUNSD, Ta-
ble 7 for CORD, Table 8 for SROIE, and Table 9
for Kleister-NDA.

https://gitlab.com/filipg/geval
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Model Precision Recall F1

BERTBASE 0.5469 0.6710 0.6026
UniLMv2BASE 0.6349 0.6975 0.6648
BERTLARGE 0.6113 0.7085 0.6563
UniLMv2LARGE 0.6780 0.7391 0.7072

LayoutLMBASE 0.7597 0.8155 0.7866
LayoutLMLARGE 0.7596 0.8219 0.7895

LayoutLMv2BASE 0.8029 0.8539 0.8276
LayoutLMv2LARGE 0.8324 0.8519 0.8420

BROS (Hong et al., 2021) 0.8056 0.8188 0.8121

Table 6: Model accuracy (entity-level Precision, Recall, F1) on the FUNSD dataset

Model Precision Recall F1

BERTBASE 0.8833 0.9107 0.8968
UniLMv2BASE 0.8987 0.9198 0.9092
BERTLARGE 0.8886 0.9168 0.9025
UniLMv2LARGE 0.9123 0.9289 0.9205

LayoutLMBASE 0.9437 0.9508 0.9472
LayoutLMLARGE 0.9432 0.9554 0.9493

LayoutLMv2BASE 0.9453 0.9539 0.9495
LayoutLMv2LARGE 0.9565 0.9637 0.9601

SPADE (Hwang et al., 2020) - - 0.9150
BROS (Hong et al., 2021) 0.9558 0.9514 0.9536

Table 7: Model accuracy (entity-level Precision, Recall, F1) on the CORD dataset

Model Precision Recall F1

BERTBASE 0.9099 0.9099 0.9099
UniLMv2BASE 0.9459 0.9459 0.9459
BERTLARGE 0.9200 0.9200 0.9200
UniLMv2LARGE 0.9488 0.9488 0.9488

LayoutLMBASE 0.9438 0.9438 0.9438
LayoutLMLARGE 0.9524 0.9524 0.9524

LayoutLMv2BASE 0.9625 0.9625 0.9625
LayoutLMv2LARGE 0.9661 0.9661 0.9661
LayoutLMv2LARGE (Excluding OCR mismatch) 0.9904 0.9661 0.9781

BROS (Hong et al., 2021) 0.9493 0.9603 0.9548
PICK (Yu et al., 2020) 0.9679 0.9546 0.9612
TRIE (Zhang et al., 2020) - - 0.9618
Top-1 on SROIE Leaderboard (Excluding OCR mismatch) 0.9889 0.9647 0.9767

Table 8: Model accuracy (entity-level Precision, Recall, F1) on the SROIE dataset (until 2020-12-24)

Model F1

BERTBASE 0.779
UniLMv2BASE 0.795
BERTLARGE 0.791
UniLMv2LARGE 0.818

LayoutLMBASE 0.827
LayoutLMLARGE 0.834

LayoutLMv2BASE 0.833
LayoutLMv2LARGE 0.852

RoBERTaBASE in (Graliński et al., 2020) 0.793

Table 9: Model accuracy (entity-level F1) on the validation set of the Kleister-NDA dataset using the official
evaluation toolkit


