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Abstract

Aspect-based Sentiment Analysis (ABSA)
aims to identify the aspect terms, their corre-
sponding sentiment polarities, and the opinion
terms. There exist seven subtasks in ABSA.
Most studies only focus on the subsets of
these subtasks, which leads to various compli-
cated ABSA models while hard to solve these
subtasks in a unified framework. In this pa-
per, we redefine every subtask target as a se-
quence mixed by pointer indexes and senti-
ment class indexes, which converts all ABSA
subtasks into a unified generative formulation.
Based on the unified formulation, we exploit
the pre-training sequence-to-sequence model
BART to solve all ABSA subtasks in an end-
to-end framework. Extensive experiments on
four ABSA datasets for seven subtasks demon-
strate that our framework achieves substantial
performance gain and provides a real unified
end-to-end solution for the whole ABSA sub-
tasks, which could benefit multiple tasks1.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) is the
fine-grained Sentiment Analysis (SA) task, which
aims to identify the aspect term (a), its correspond-
ing sentiment polarity (s), and the opinion term (o).
For example, in the sentence “The drinks are al-
ways well made and wine selection is fairly priced”,
the aspect terms are “drinks” and “wine selection”,
and their sentiment polarities are both “positive”,
and the opinion terms are “well made” and “fairly
priced”. Based on the combination of the a, s, o,
there exist seven subtasks in ABSA. We summa-
rize these subtasks in Figure 1. Specifically, their
definitions are as follows:

∗Equal contribution.
†Corresponding author.

1Code is available at https://github.com/yhcc/
BARTABSA.

Subtask Input Output Task Type
Aspect Term Extraction(AE) S a1, a2 Extraction
Opinion Term Extraction(OE) S o1, o2 Extraction
Aspect-level 
Sentiment Classification(ALSC)

S + a1 s1 Classification
S + a2 s2

Aspect-oriented  
Opinion Extraction(AOE)

S + a1 o1 Extraction
S + a2 o2

Aspect Term Extraction and  
Sentiment Classification(AESC) S (a1, s1), 

(a2, s2)
Extraction & 
Classification

Pair Extraction(Pair) S (a1, o1), 
(a2, o2)

Extraction

Triplet Extraction(Triplet) S (a1, o1, s1), 
(a2, o2, s2)

Extraction & 
Classification

S: The  drinks are always well made and wine selection is  fairly priced . 
Positive Positive

a1 o1 a2 o2

s1 s2

Figure 1: Illustration of seven ABSA subtasks.

•Aspect Term Extraction(AE): Extracting all the
aspect terms from a sentence.
• Opinion Term Extraction (OE): Extracting all

the opinion terms from a sentence.
• Aspect-level Sentiment Classification (ALSC):

Predicting the sentiment polarities for every given
aspect terms in a sentence.
• Aspect-oriented Opinion Extraction (AOE):

Extracting the paired opinion terms for every given
aspect terms in a sentence.
• Aspect Term Extraction and Sentiment Clas-

sification (AESC): Extracting the aspect terms as
well as the corresponding sentiment polarities si-
multaneously.
• Pair Extraction (Pair): Extracting the aspect

terms as well as the corresponding opinion terms
simultaneously.
• Triplet Extraction (Triplet): Extracting all as-

pects terms with their corresponding opinion terms
and sentiment polarity simultaneously.

Although these ABSA subtasks are strongly re-
lated, most of the existing work only focus 1∼3
subtasks individually. The following divergences
make it difficult to solve all subtasks in a unified
framework.

1. Input: Some subtasks ( AE, OE, AESC, Pair

https://github.com/yhcc/BARTABSA
https://github.com/yhcc/BARTABSA
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and Triplet) only take the text sentence as in-
put, while the remained subtasks ( ALSC and
AOE) take the text and a given aspect term as
input.

2. Output: Some tasks (AE, OE, ALSC, AOE)
only output a certain type from a, s or o, while
the remained tasks (AESC, Pair and Triplet)
return compound output as the combination
of a, s and o.

3. Task Type: There are two kinds of tasks: ex-
traction task (extracting aspect and opinion)
and classification task (predicting sentiment).

Because of the above divergences, a myriad of
previous works only focus on the subset of these
subtasks. However, the importance of solving the
whole ABSA subtasks in a unified framework re-
mains significant. Recently, several works make
attempts on this track. Some methods(Peng et al.,
2020; Mao et al., 2021) apply the pipeline model
to output the a, s, o from the inside sub-models
separately. However, the pipeline process is not
end-to-end. Another line follows the sequence tag-
ging method by extending the tagging schema (Xu
et al., 2020). However, the compositionality of
candidate labels hinders the performance. In con-
clusion, the existing methods can hardly solve all
the subtasks by a unified framework without re-
lying on the sub-models or changing the model
structure to adapt to all ABSA subtasks.

Motivated by the above observations, we pro-
pose a unified generative framework to address all
the ABSA subtasks. We first formulate all these
subtasks as a generative task, which could han-
dle the obstacles on the input, output, and task
type sides and adapt to all the subtasks without
any model structure changes. Specifically, we
model the extraction and classification tasks as the
pointer indexes and class indexes generation, re-
spectively. Based on the unified task formulation,
we use the sequence-to-sequence pre-trained model
BART (Lewis et al., 2020) as our backbone to gen-
erate the target sequence in an end-to-end process.
To validate the effectiveness of our method, we
conduct extensive experiments on public datasets.
The comparison results demonstrate that our pro-
posed framework outperforms most state-of-the-art
(SOTA) models in every subtask.

In summary, our main contributions are as fol-
lows:
•We formulate both the extraction task and clas-

sification task of ABSA into a unified index gen-

eration problem. Unlike previous unified models,
our method needs not to design specific decoders
for different output types.
• With our re-formulation, all ABSA subtasks

can be solved in sequence-to-sequence framework,
which is easy-to-implement and can be built on the
pre-trained models, such as BART.
•We conduct extensive experiments on four pub-

lic datasets, and each dataset contains a subset of
all ABSA subtasks. To the best of our knowledge,
it is the first work to evaluate a model on all ABSA
tasks.
• The experimental results show that our pro-

posed framework significantly outperforms recent
SOTA methods.

2 Background

2.1 ABSA Subtasks
In this section, we first review the existing studies
on single output subtasks, and then turn to studies
focusing on the compound output subtasks.

2.1.1 Single Output Subtasks
Some researches mainly focus on the single output
subtasks. The AE, OE, ALSC and AOE subtasks
only output one certain type from a, s or o.

AE Most studies treat AE subtask as a se-
quence tagging problem (Li and Lam, 2017; Xu
et al., 2018; Li et al., 2018b). Recent works ex-
plore sequence-to-sequence learning on AE sub-
task, which obtain promissing results especially
with the pre-training language models (Ma et al.,
2019; Li et al., 2020).

OE Most studies treat OE subtask as an auxiliary
task (Wang et al., 2016a, 2017; Wang and Pan,
2018; Chen and Qian, 2020; He et al., 2019). Most
works can only extract the unpaired aspect and
opinion terms2. In this case, opinion terms are
independent of aspect terms.

ALSC Tang et al. (2016a) use the long short term
memory (LSTM) network to enhance the interac-
tions between aspects and context words. Wang
et al. (2016b); Liu and Zhang (2017); Ma et al.
(2017); Tay et al. (2018) incorporate the attention
mechanism into the LSTM-based neural network
models to model relations of aspects and their con-
textual words. Other model structures such as con-
volutional neural network (CNN) (Li et al., 2018a;
Xue and Li, 2018), gated neural network (Zhang
et al., 2016; Xue and Li, 2018), memory neural

2It is also referred to as the AE-OE co-Extraction.
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network (Tang et al., 2016b; Chen et al., 2017)
have also been applied.

AOE This subtask is first introduced by Fan et al.
(2019) and they propose the datasets for this sub-
task. Most studies apply sequence tagging method
for this subtask (Wu et al., 2020; Pouran Ben Vey-
seh et al., 2020).

2.1.2 Compound Output Subtasks

Some researchers pay more attention and efforts
to the subtasks with compound output. We review
them as follows:

AESC. One line follows pipeline method to
solve this problem. Other works utilize unified
tagging schema (Mitchell et al., 2013; Zhang et al.,
2015; Li et al., 2019) or multi-task learning (He
et al., 2019; Chen and Qian, 2020) to avoid the
error-propagation problem (Ma et al., 2018). Span-
based AESC works are also proposed recently (Hu
et al., 2019), which can tackle the sentiment incon-
sistency problem in the unified tagging schema.

Pairs Zhao et al. (2020) propose to extract all (a,
o) pair-wise relations from scratch. They propose
a multi-task learning framework based on the span-
based extraction method to handle this subtask.

Triplet This subtask is proposed by Peng et al.
(2020) and gains increasing interests recently. Xu
et al. (2020) design the position-aware tagging
schema and apply model based on CRF (Lafferty
et al., 2001) and Semi-Markov CRF (Sarawagi and
Cohen, 2004). However, the time complexity lim-
its the model to detect the aspect term with long-
distance opinion terms. Mao et al. (2021) formulate
Triplet as a two-step MRC problem, which applies
the pipeline method.

2.2 Sequence-to-Sequence Models

The sequence-to-sequence framework has been
long studied in the NLP field to tackle various tasks
(Sutskever et al., 2014; Cho et al., 2014; Vinyals
et al., 2015; Luong et al., 2015). Inspired by the
success of PTMs (pre-trained models) (Qiu et al.,
2020; Peters et al., 2018; Devlin et al., 2019; Brown
et al., 2020), Song et al. (2019); Raffel et al. (2020);
Lewis et al. (2020) try to pre-train sequence-to-
sequence models. Among them, we use the BART
(Lewis et al., 2020) as our backbone, while the
other sequence-to-sequence pre-training models
can also be applied in our architecture to use the
pointer mechanism (Vinyals et al., 2015), such as
MASS (Song et al., 2019).

BART is a strong sequence-to-sequence pre-
trained model for Natural Language Generation
(NLG). BART is a denoising autoencoder com-
posed of several transformer (Vaswani et al., 2017)
encoder and decoder layers. It is worth noting that
the BART-Base model contains a 6-layer encoder
and 6-layer decoder, which makes it similar number
of parameters3 with the BERT-Base model. BART
is pretrained on denoising tasks where the input
sentence is noised by some methods, such as mask-
ing and permutation. The encoder takes the noised
sentence as input, and the decoder will restore the
original sentence in an autoregressive manner.

3 Methodology

Although there are two types of tasks among the
seven ABSA subtasks, they can be formulated un-
der a generative framework. In this part, we first
introduce our sequential representation for each
ABSA subtask. Then we detail our method, which
utilizes BART to generate these sequential repre-
sentations.

3.1 Task Formulation

As depicted in Figure 1, there are two types of tasks,
namely the extraction and classification, whose
target can be represented as a sequence of pointer
indexes and class indexes, respectively. Therefore,
we can formulate these two types of tasks in a
unified generative framework. We use a, s, o, to
represent the aspect term, sentiment polarity,and
opinion term, respectively. Moreover, we use the
superscript s and e to denote the start index and
end index of a term. For example, os, ae represent
the start index of an opinion term o and the end
index of an aspect term a. We use the sp to denote
the index of sentiment polarity class. The target
sequence for each subtask is as follows:
• AE : Y = [as1, a

e
1, ..., a

s
i , a

e
i , ...],

• OE : Y = [os1, o
e
1, ..., o

s
i , o

e
i , ...],

• AESC : Y = [as1, a
e
1, s

p
1, ..., a

s
i , a

e
i , s

p
i , ...],

• Pair: Y = [as1, a
e
1, o

s
1, o

e
1, ..., a

s
i , a

e
i , o

s
i , o

e
i ,...],

• Triplet : Y = [as1, a
e
1, o

s
1, o

e
1, s

p
1, ..., a

s
i , a

e
i , o

s
i ,

oei , s
p
i , ...],

The above subtasks only rely on the input sen-
tence, while for the ALSC and AOE subtasks, they
also depend on a specific aspect term a. Instead of
putting the aspect term on the input side, we put

3Because of the cross-attention between encoder and de-
coder, the number of parameters of BART is about 10% larger
than its counterpart of BERT (Lewis et al., 2020).
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Figure 2: Overall architecture of the framework. This shows an example generation process for the Triplet subtask
where the source is “<s>the battery life is good</s>” and the target is “2 3 5 5 8 6”(Only partial decoder sequence
is shown where the 6 (</s>) should be the next generation index). The “Index2Token Conversion” converts the
index to tokens. Specifically, the pointer index will be converted to its corresponding token in the source text,
and the class index will be converted to corresponding class tokens. Embedding vectors in ll boxes are retrieved
from same embedding matrix. We use different position embeddings in the source and target for better generation
performance.

The  wine list is  interesting and has good values , but the service is dreadful
Positive

Positive

Position index:

Token:
0  1   2  3  4   5  6    7  8   9  10     11   12 13   14

Positive

Subtask Target Sequence
AE 1, 2, 12, 12, </s> 
OE 4, 4, 7, 8, 14, 14, </s>

ALSC
1, 2 , POS, </s>
12, 12, POS, </s>

AOE
1, 2, 4, 4, 7, 8, </s>
12, 12, 14, 14, </s>

AESC 1, 2, POS, 12, 12, NEG, </s>
Pair 1, 2, 4, 4, 1, 2, 7, 8, 12, 12, 14, 14, </s>
Triplet 1, 2, 4, 4, POS, 1, 2, 7, 8, POS, 12, 12, 14, 14, POS, </s>

Figure 3: Target sequences for different subtasks. The
underlined indexes are given in advance. We convert
the sentiment class index to the corresponding class to-
ken for better understanding.

them on the target side so that the target sequences
are as follows:
• ALSC : Y = [as, ae, sp],
• AOE : Y = [as, ae, os1, o

e
1, ..., o

s
i , o

e
i , ...],

where the underlined tokens are given during infer-
ence. Detailed target sequence examples for each
subtask are presented in Figure 3.

3.2 Our Model

As our discussion in the last section, all subtasks
can be formulated as taking the X = [x1, ..., xn]
as input and outputting a target sequence Y =

[y1, ..., ym], where y0 is the start-of-the-sentence
token. Therefore, different ABSA subtasks can be
formulated as:

P (Y |X) =
m∏
t=1

P (yt|X,Y<t). (1)

To get the index probability distribution Pt =
P (yt|X,Y<t) for each step, we use a model com-
posed of two components: (1) Encoder; (2) De-
coder.

Encoder The encoder part is to encode X into
vectors He. We use the BART model, therefore,
the start of sentence (<s>) and the end of sentence
(</s>) tokens will be added to the start and end
of X , respectively. We ignore the <s> token in
our equations for simplicity. The encoder part is as
follows:

He = BARTEncoder([x1, ..., xn]), (2)

where He ∈ Rn×d, and d is the hidden dimension.
Decoder The decoder part takes the encoder out-

puts He and previous decoder outputs Y<t as inputs
to get Pt. However, the Y<t is an index sequence.
Therefore, for each yt in Y<t, we first need to use
the following Index2Token module to conduct a
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Dataset
14res 14lap 15res 16res

Subtasks
#s #a #o #p #s #a #o #p #s #a #o #p #s #a #o #p

D17
train 3044 3699 3484 - 3048 2373 2504 - 1315 1199 1210 - - - - - AE, OE, ALSC,

AESCtest 800 1134 1008 - 800 654 674 - 685 542 510 - - - - -

D19
train 1627 2643 - - 1158 1634 - - 754 1076 - - 1079 1512 - -

AOE
test 500 865 - - 343 482 - - 325 436 - - 329 457 - -

D20a

train 1300 - - 2145 920 - - 1265 593 - - 923 842 - - 1289
AE, OE, ALSC, AOE,
AESC, Pair, Triplet

dev 323 - - 524 228 - - 337 148 - - 238 210 - - 316
test 496 - - 862 339 - - 490 318 - - 455 320 - - 465

D20b

train 1266 - - 2338 906 - - 1460 605 - - 1013 857 - - 1394
AE, OE, ALSC, AOE,
AESC, Pair, Triplet

dev 310 - - 577 219 - - 346 148 - - 249 210 - - 339
test 492 - - 994 328 - - 543 148 - - 485 326 - - 514

Table 1: The statistics of four datasets, where the #s, #a, #o, #p denote the numbers of sentences, aspect terms,
opinion terms, and the <a, o> pairs, respectively. We use “-” to denote the missing data statistics of some datasets.
The “Subtasks” column refers to the ABSA subtasks that can be applied on the corresponding dataset.

conversion

ŷt =

{
Xyt , if yt is a pointer index,
Cyt−n, if yt is a class index,

(3)

where C = [c1, ..., cl] is the class token list4.
After that, we use the BART decoder to get the

last hidden state

hd
t = BARTDecoder(He; Ŷ<t), (4)

where hd
t ∈ Rd. With hd

t , we predict the token
probability distribution Pt as follows:

Ee = BARTTokenEmbed(X), (5)

Ĥe = MLP(He), (6)

H̄e = αĤe + (1− α)Ee, (7)

Cd = BARTTokenEmbed(C), (8)

Pt = Softmax([H̄e;Cd]hd
t ), (9)

where Ee,He, Ĥe, H̄e ∈ Rn×d; Cd ∈ Rl×d; and
Pt ∈ R(n+l) is the final distribution on all indexes.

During the training phase, we use the teacher
forcing to train our model and the negative log-
likelihood to optimize the model. Moreover, dur-
ing the inference, we use the beam search to get
the target sequence Y in an autoregressive manner.
After that, we need to use the decoding algorithm
to convert this sequence into the term spans and
sentiment polarity. We use the Triplet task as an
example and present the decoding algorithm in Al-
gorithm 1, the decoding algorithm for other tasks
are much depicted in the Supplementary Material.

Algorithm 1 Decoding Algorithm for the Triplet
Subtask
Input: Number of tokens in the input sentence

n, target sequence Y = [y1, ..., ym] and yi ∈
[1, n+ |C|]

Output: Target span set L =
{(as1, ae1, os1, oe1, s1), ..., (asi , aei , osi , oei , si), ...}

1: L = {}, e = [], i = 1
2: while i <= m do
3: yi = Y [i]
4: if yi > n then
5: L.add((e, Cyi−n))
6: e = []
7: else
8: e.append(yi)
9: end if

10: i+ = 1
11: end while
12: return L

4 Experiments

4.1 Datasets

We evaluate our method on four ABSA datasets.
All of them are originated from the Semeval Chal-
lenges (Pontiki et al., 2014a,b,c), where only the
aspect terms and their sentiment polarities are la-
beled.

The first dataset(D17
5) is annotated by Wang

et al. (2017), where the unpaire opinion terms are la-
beled. The second dataset(D19) is annotated by Fan
et al. (2019), where they pair opinion terms with

4In our implement, yt ∈ [1, n+ l]. The x1 has the pointer
index 1.

5Each dataset only contains a subset of all ABSA subtasks.
We use the published year of the dataset to distinguish them.
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Baselines E2E Task Formulation Backbone Datasets AE OE ALSC AOE AESC Pair Triplet

SPAN-BERT - Span.Extraction BERT D17 3 - 3 - 3 - -
IMN-BERT 3 Seq.Tagging BERT D17 3 3 3 - 3 - -
RACL-BERT - Seq.Tagging BERT D17 3 3 3 - 3 - -

IOG 3 Seq.Tagging LSTM D19 - - - 3 - - -
LOTN 3 Seq.Tagging LSTM D19 - - - 3 - - -
ONG 3 Seq.Tagging BERT D19 - - - 3 - - -

RINANTE+ - Seq.Tagging LSTM+CRF D20a,D20b 3 3 3 - 3 3 3

CMLA+ - Seq.Tagging Attention D20a,D20b 3 3 3 - 3 3 3

Li-unified+ - Seq.Tagging LSTM D20a,D20b 3 3 3 - 3 3 3

Peng-two-stage - Seq.Tagging LSTM+GCN D20a,D20b 3 3 3 - 3 3 3

JET-BERT 3 Seq.Tagging BERT D20a,D20b 3 3 3 - 3 3 3

Dual-MRC - Span.MRC BERT D17,D19,D20a,D20b 3 - 3 3 3 3 3

Ours 3 Span.Generation BART D17,D19,D20a,D20b 3 3 3 3 3 3 3

Table 2: The baselines of our experiments. To further demonstrate that our proposed method is a real unified end-
to-end ABSA framework, we present our work in the last row. “E2E” is short for End-to-End, which means the
model should output all the subtasks’ results synchronously rather than requiring any preconditions, e.g., pipeline
methods. The “Datasets” column refers to the datasets that this baseline is conducted.

corresponding aspects. The third dataset(D20a) is
from Peng et al. (2020). They refine the data in <a,
o, s> triplet form. The fourth dataset(D20b) from
Xu et al. (2020) is the revised variant of Peng et al.
(2020), where the missing triplets with overlapping
opinions are corrected. We present the statistics for
these four datasets in Table 1.

4.2 Baselines

To have a fair comparison, we summarize top-
performing baselines of all ABSA subtasks. Given
different ABSA subtasks, datasets, and experimen-
tal setups, existing baselines can be separated into
three groups roughly as shown in Table 2.

The baselines in the first group are conducted on
D17 dataset, covering the AE, OE, ALSC, and AESC
subtasks. Span-based method SPAN-BERT (Hu
et al., 2019) and sequence tagging method, IMN-
BERT (He et al., 2019) and RACL-BERT (Chen
and Qian, 2020), are selected. Specifically, the
IMN-BERT model is reproduced by Chen and Qian
(2020). All these baselines are implemented on
BERT-Large.

The baselines of the second group are conducted
on D19 dataset, mainly focusing on AOE subtask.
Interestingly, we find that sequence tagging method
is the main solution for this subtask (Fan et al.,
2019; Wu et al., 2020; Pouran Ben Veyseh et al.,
2020).

The baselines of the third group are mainly con-
ducted on D20a and D20b datasets, which could

cover almost all the ABSA subtasks except for one
certain subtask depending on the baseline struc-
tures. For the following baselines: RINANTE (Dai
and Song, 2019), CMLA (Wang et al., 2017), Li-
unified (Li et al., 2019), the suffix “+” in Table 2
denotes the corresponding model variant modified
by Peng et al. (2020) for being capable of AESC,
Pair and Triplet.

4.3 Implement Details

Following previous studies, we use different met-
rics according to different subtasks and datasets.
Specifically, for the single output subtasks AE, OE,
and AOE, the prediction span would be considered
as correct only if it exactly matches the start and the
end boundaries. For the ALSC subtask, we require
the generated sentiment polarity of the given aspect
should be the same as the ground truth. As for
compound output subtasks, AESC, Pair and Triplet,
a prediction result is correct only when all the span
boundaries and the generated sentiment polarity
are accurately identified. We report the precision
(P), recall (R), and F1 scores for all experiments6.

4.4 Main Results

On D17 dataset (Wang et al., 2017), we compare
our method for AE, OE, ALSC, and AESC. The
comparison results are shown in Table 3. Most of
our results achieve better or comparable results to

6Due to the limited space, we would present detailed ex-
periments for each dataset in the Supplementary Material.
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Model
14res 14lap 15res

AE OE ALSC AESC AE OE ALSC AESC AE OE ALSC AESC
SPAN-BERT 86.71 - 71.75 73.68 82.34 - 62.5 61.25 74.63 - 50.28 62.29
IMN-BERT 84.06 85.10 75.67 70.72 77.55 81.0 75.56 61.73 69.90 73.29 70.10 60.22
RACL-BERT 86.38 87.18 81.61 75.42 81.79 79.72 73.91 63.40 73.99 76.0 74.91 66.05
Dual-MRC 86.60 - 82.04 75.95 82.51 - 75.97 65.94 75.08 - 73.59 65.08
Ours 87.07 87.29 75.56 73.56 83.52 77.86 76.76 67.37 75.48 76.49 73.91 66.61

Table 3: Comparison F1 scores for AE, OE, SC, and AESC on the D17 dataset (Wang et al., 2017). The baseline
results are retrieved from Mao et al. (2021). We highlight the best results in bold. It is worth noting that all the
baseline results are obtained via BERT-Large, while our results are obtained via BART-Base.

Model
14res 14lap 15res 16res

P R F1 P R F1 P R F1 P R F1
IOG 82.38 78.25 80.23 73.43 68.74 70.99 72.19 71.76 71.91 84.36 79.08 81.60
LOTN 84.0 80.52 82.21 77.08 67.62 72.02 76.61 70.29 73.29 86.57 80.89 83.62
ONG 83.23 81.46 82.33 73.87 77.78 75.77 76.63 81.14 78.81 87.72 84.38 86.01
Dual-MRC 89.79 78.43 83.73 78.21 81.66 79.90 77.19 71.98 74.50 86.07 80.77 83.33
Ours 86.01 84.76 85.38 83.11 78.13 80.55 80.12 80.93 80.52 89.22 86.67 87.92

Table 4: Comparison results for AOE on the D19 dataset (Fan et al., 2019). Baselines are from the original papers.
We highlight the best results in bold.

Model
14res 14lap 15res 16res

AESC Pair Triple. AESC Pair Triple. AESC Pair Triple. AESC Pair Triple.
CMLA+ † 70.62 48.95 43.12 56.90 44.10 32.90 53.60 44.60 35.90 61.20 50.00 41.60
RINANTE+ † 48.15 46.29 34.03 36.70 29.70 20.0 41.30 35.40 28.0 42.10 30.70 23.30
Li-unified+ † 73.79 55.34 51.68 63.38 52.56 42.47 64.95 56.85 46.69 70.20 53.75 44.51
Peng-two-stage † 74.19 56.10 51.89 62.34 53.85 43.50 65.79 56.23 46.79 71.73 60.04 53.62
JET-BERT ] - - 63.92 - - 50.0 - - 54.67 - - 62.98
Dual-MRC† 76.57 74.93 70.32 64.59 63.37 55.58 65.14 64.97 57.21 70.84 75.71 67.40
Ours 78.47 77.68 72.46 68.17 66.11 57.59 69.95 67.98 60.11 75.69 77.38 69.98

Table 5: Comparison F1 scores for AESC, Pair and Triplet on the D20a dataset (Peng et al., 2020). The baseline
results with “†” are retrieved from Mao et al. (2021), and result with “]” is from Xu et al. (2020). We highlight the
best results in bold.

Model
14res 14lap 15res 16res

P R F1 P R F1 P R F1 P R F1
CMLA+ 39.18 47.13 42.79 30.09 36.92 33.16 34.56 39.84 37.01 41.34 42.1 41.72
RINANTE+ 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.3 23.87
Li-unified+ 41.04 67.35 51.0 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31
Peng-two-stage 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
JET-BERT 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
Ours 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.6 68.68 67.62

Table 6: Comparison results for Triplet on the D20b dataset (Xu et al., 2020). Baselines are from (Xu et al., 2020).
We highlight the best results in bold.

baselines. However, these baselines yield competi-
tive results based on the BERT-Large pre-trained
models. While our results are achieved on the
BART-Base model with almost half parameters.
This shows that our framework is more suitable for

these ABSA subtasks.

On D19 dataset (Fan et al., 2019), we compare
our method for AOE. The comparison results are
shown in Table 4. We can observe that our method
achieves significant P/R/F1 improvements on 14res,
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15res, and 16res. Additionally, we notice that our
F1 score on 14lap is close to the previous SOTA
result. This is probably caused by the dataset do-
main difference as the 14lap is the laptop comments
while the others are restaurant comments.

On D20a dataset (Peng et al., 2020), we com-
pare our method for AESC, Pair, and Triplet. The
comparison results are shown in Table 5. We can
observe that our proposed method is able to outper-
form other baselines on all datasets. Specifically,
we achieve the better results for Triplet, which
demonstrates the effectiveness of our method on
capturing interactions among aspect terms, opinion
terms, and sentiment polarities. We also observe
that the Span-based methods show superior per-
formance to sequence tagging methods. This may
be caused by the higher compositionality of candi-
date labels in sequence tagging methods (Hu et al.,
2019). As the previous SOTA method, the Dual-
MRC shows competitive performance by utilizing
the span-based extraction method and the MRC
mechanism. However, their inference process is
not an end-to-end process.

On D20b dataset (Xu et al., 2020), we compare
our method for Triplet. The comparison results
can be found in Table 6. Our method achieves the
best results with nearly 7 F1 points improvements
on 14res, 15res, and 16res. Our method achieves
nearly 13, 9, 7, 12 points improvements on each
dataset for the recall scores compared with other
baselines. This also explains the drop performance
of the precision score. Since D20b is refined from
D20a, we specifically compare the Triplet results of
the corresponding dataset in D20a and D20b. Inter-
estingly, we discover that all baselines have a much
bigger performance change on 15res. We conjec-
ture the distribution differences may be the cause
reason. In conclusion, all the experiment results
confirm that our proposed method, which unifies
the training and the inference to an end-to-end gen-
erative framework, provides a new SOTA solution
for the whole ABSA task.

5 Framework Analysis

To better understand our proposed framework,
we conduct analysis experiments on the D20b

dataset (Xu et al., 2020).
To validate whether our proposed framework

could adapt to the generative ABSA task, we met-
ric the invalid predictions for the Triplet. Specifi-
cally, since the Triplet requires the prediction for-

mat like [as, ae, os, oe, sp], it is mandatory that
one valid triplet prediction should be in length
5, noted as “5-len”, and obviously all end index
should be larger than the corresponding start in-
dex, noted as “ordered prediction”. We calculate
number of non−5−len

total prediction , referred to as the “Invalid

size”, and the number of non−ordered prediction
total 5−len prediction , re-

ferred to as the “Invalid order”. The “Invalid token”
means the as is not the start of a token, instead,
it is the index of an inside subword. From Table
7, we can observe that BART could learn this task
form easily as the low rate for all the three metrics,
which demonstrate that the generative framework
for ABSA is not only a theoretically unified task
form but also a realizable framework in practical.
We remove these invalid predictions in our imple-
mentation of experiments.

As shown in Table 4, we give some analysis on
the impact of the beam size, as we are a generation
method. However, the beam size seems to have
little impact on the F1 scores.

Errors 14res 14lap 15res 16res

Invalid size 0.48% 0.77% 1.41% 1.40%

Invalid order 1.75% 3.70% 3.26% 3.26%

Invalid token 0.48% 0.78% 1.02% 1.02%

Table 7: The errors for Triplet on the test set of the
D20b.
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Figure 4: The F1 change curve with the increment of
beam size on the dev set of D20b. The beam size seems
to have little effect on the F1 scores.

6 Conclusion

This paper summarizes the seven ABSA subtasks
and previous studies, which shows that there exist
divergences on all the input, output, and task type
sides. Previous studies have limitations on han-
dling all these divergences in a unified framework.
We propose to convert all the ABSA subtasks to a
unified generative task. We implement the BART
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to generate the target sequence in an end-to-end
process based on the unified task formulation. We
conduct massive experiments on public datasets
for seven ABSA subtasks and achieve significant
improvements on most datasets. The experimental
results demonstrate the effectiveness of our method.
Our work leads to several promising directions,
such as sequence-to-sequence framework on other
tasks, and data augmentation.
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A Supplemental Material

A.1 Experimental Environment

We use the triangular learning rate warmup. All
experiments are conducted in the Nvidia Ge-Force
RTX-3090 Graphical Card with 24G graphical
memory.

The averages running time for experiments on
each dataset is less than 15 minutes. The number
of parameters is as follows:
• BART-Base model: 12 layers, 768 hidden di-

mensions and 16 heads with the total number of
parameters, 139M;
• BERT-Base model: 12 layers, 768 hidden di-

mensions and 12 heads with the total number of
parameters, 110M.

A.2 Decoding Algorithm for Different
Datasets

In this part, we introduce the decoding algorithm
we used to convert the predicted target sequence Y
into the target span set L. These algorithm can be
found in Algorithm 2, 3, 4.

Algorithm 2 Decoding Algorithm for the AOE sub-
task
Input: Number of tokens in the input sentence

n, target sequence Y = [y1, ..., ym] and yi ∈
[1, n+ |C|], LT is a given length for different
tasks.

Output: Target span set L = {(os1, oe1, ..., osi , oei )}
1: L = {}, e = [], i = 3
2: while i <= m do
3: yi = Y [i]
4: e.append(yi)
5: i+ = 1
6: end while
7: L.add(e)
8: return L

A.3 Detailed Experimental Setup

Experiments on each dataset
As the different subtasks are conducted on differ-

ent datasets, specifically, we conduct the following
experiments on each dataset:
• On the D17 dataset, we conduct the AESC and

the OE in multi-task learning method. To that end,
we feed the pre-defined task tags “<AESC>” and
“<OE>” to the decoder first. For example, for the
input “The drinks are always

::::
well

:::::
made and wine

selection is
:::::
fairly

::::::
priced” from D17 dataset, we

Algorithm 3 Decoding Algorithm for the AESC
Subtask
Input: Number of tokens in the input sentence

n, target sequence Y = [y1, ..., ym] and yi ∈
[1, n+ |C|]

Output: Target span set L =
{(as1, ae1, s1), ..., (asi , aei , si)}

1: L = {}, e = [], i = 1
2: while i <= m do
3: yi = Y [i]
4: if yi > n then
5: L.add((e, Cyi−n))
6: e = []
7: else
8: e.append(yi)
9: end if

10: i+ = 1
11: end while
12: return L

Algorithm 4 Decoding Algorithm for the
AE/OE/Pair subtasks
Input: Number of tokens in the input sentence

n, target sequence Y = [y1, ..., ym] and yi ∈
[1, n+ |C|], LT is a given length for different
tasks.

Output: Target span set L = {x1, ..., xi}(xi
is (asi , a

e
i ), (osi , o

e
i ) and (asi , a

e
i , o

s
i , o

e
i ) for

AE/OE/Pair, respectively)
1: L = {}, e = [], i = 1
2: while i <= m do
3: yi = Y [i]
4: if len(e) == LT then
5: L.add((e, Cyi−n))
6: e = []
7: end if
8: e.append(yi)
9: i+ = 1

10: end while
11: return L

define the AESC sequence and the OE target se-
quence as “<AESC>, 1, 1, POS, 7, 8, POS, </s>”
and “<OE>, 4, 5, 10, 11, </s>”.
• On the D19 dataset, we conduct the AOE. As

the AOE subtask requires to detect the opinion
terms given aspect terms in advance, the aspect
terms need to be fed to our decoder first. For
the aforementioned example sentence from D19

dataset, we define the AOE target sequence as “ 1,
1, 4, 5, </s>” and the “ 7, 8, 10, 11, </s>”.
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• On theD20a andD20b datasets, we conduct the
Triplet Extraction. For the aforementioned example
sentence fromD20a andD20b dataset, we define the
Triplet target sequence as “1, 1, 4, 5, POS, 7, 8, 10,
11, POS, </s>”.
Specific Subtask Metrics
• On the D17 dataset, we get the AESC and OE

results directly. Following previous work, we only
calculate the metrics for AESC and ALSC from
those true positive AE predictions. Specifically, the
F1
• On the D19 dataset, we get the AOE results di-

rectly. The metrics for AOE are standard Precision,
Recall and the F1 score.
• On the D20a and D20b datasets, we get the

Triplet results directly. We preserve the <AT,OT>
for Pair metric and <AT, SP> for AESC metric.
The metrics for them are standard Precision, Recall
and the F1 score.


