
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2076–2088

August 1–6, 2021. ©2021 Association for Computational Linguistics

2076

Weight Distillation: Transferring the Knowledge
in Neural Network Parameters

Ye Lin1∗, Yanyang Li2∗, Ziyang Wang1, Bei Li1, Quan Du1, Tong Xiao1,3, Jingbo Zhu1,3†

1NLP Lab, School of Computer Science and Engineering,
Northeastern University, Shenyang, China

2The Chinese University of Hong Kong, Hong Kong, China
3NiuTrans Research, Shenyang, China

{linye2015,blamedrlee,libeineu,duquanneu}@outlook.com
{wangziyang}@stumail.neu.edu.cn

{xiaotong,zhujingbo}@mail.neu.edu.cn

Abstract

Knowledge distillation has proven to be effec-
tive in model acceleration and compression. It
transfers knowledge from a large neural net-
work to a small one by using the large neural
network predictions as targets of the small neu-
ral network. But this way ignores the knowl-
edge inside the large neural networks, e.g., pa-
rameters. Our preliminary study as well as
the recent success in pre-training suggests that
transferring parameters are more effective in
distilling knowledge. In this paper, we propose
Weight Distillation to transfer the knowledge
in parameters of a large neural network to a
small neural network through a parameter gen-
erator. On the WMT16 En-Ro, NIST12 Zh-En,
and WMT14 En-De machine translation tasks,
our experiments show that weight distillation
learns a small network that is 1.88∼2.94×
faster than the large network but with competi-
tive BLEU performance. When fixing the size
of the small networks, weight distillation out-
performs knowledge distillation by 0.51∼1.82
BLEU points.

1 Introduction

Knowledge Distillation (KD) is a popular model
acceleration and compression approach (Hinton
et al., 2015). It assumes that a lightweight network
(i.e., student network, or student for short) can learn
to generalize in the same way as a large network
(i.e., teacher network, or teacher for short). To this
end, a simple method is to train the student network
with predicted probabilities of the teacher network
as its targets.

But KD has its limitation: the student network
can only access the knowledge in the predictions of
the teacher network. It does not consider the knowl-
edge in the teacher network parameters. These pa-
rameters contain billions of entries for the teacher

∗Authors contributed equally.
†Corresponding author.

network to make predictions. Yet in KD the stu-
dent only learns from those predictions with at
most thousands of categories. This way results in
an inferior student network, since it learns from the
limited training signals. Our analysis in Section 5.1
shows that KD performs better if we simply cut off
parts of parameters from the teacher to initialize
the student. This fact implies that the knowledge in
parameters is complementary to KD but missed. It
also agrees with the recent success in pre-training
(Yang et al., 2019; Liu et al., 2019; Devlin et al.,
2019), where parameters reusing plays the main
role. Based on this observation, a superior student
is expected if all parameters in the teacher network
could be exploited. However, this imposes a great
challenge as the student network is too small to fit
in the whole teacher network.

To fully utilize the teacher network, we propose
Weight Distillation (WD) to transfer all the param-
eters of the teacher network to the student network,
even if they have different numbers of weight ma-
trices and (or) these weight matrices are of dif-
ferent shapes. We first use a parameter generator
to predict the student network parameters from
the teacher network parameters. After that, a fine-
tuning process is performed to improve the quality
of the transferred parameters. See Fig. 1 for a
comparison of KD and WD.

We test the WD method in a well-tuned
Transformer-based machine translation system.
The experiments are run on three machine transla-
tion benchmarks, including the WMT16 English-
Roman (En-Ro), NIST12 Chinese-English (Zh-En),
and WMT14 English-German (En-De) tasks. With
a similar speedup, the student network trained by
WD achieves BLEU improvements of 0.51∼1.82
points over KD. With similar BLEU performance,
the student network trained by WD is 1.11∼1.39×
faster than KD. More interestingly, it is found that
WD is very effective in improving the student net-



2077

Teacher Network

Prediction

Student Network

Prediction

Ground
Truth

T1

T2

...

TLt

S1

...

SLs

(a) Knowledge Distillation

Teacher Network

Prediction

Student Network

Prediction

Ground
Truth

Parameter
Generator

T1

T2

...

TLt

S1

...

SLs

(b) Weight Distillation

Figure 1: A comparison of Knowledge Distillation and Weight Distillation (Solid red lines denote the knowledge
transfer. T1 and S1 are the teacher and student weight matrices at the 1st layer and so on. Lt and Ls are the
numbers of layers in the teacher and student networks.).

work when its model size is close to the teacher
network. On the WMT14 En-De test data, our WD-
based system achieves a strong result (a BLEU
score of 30.77) but is 1.88× faster than the big
teacher network.

2 Background

2.1 Transformer

In this work, we choose Transformer (Vaswani
et al., 2017) for study because it is one of the state-
of-the-art neural models in natural language pro-
cessing. Transformer is a Seq2Seq model, which
consists of an encoder and a decoder. The encoder
maps an input sequence to a sequence of contin-
uous representations and the decoder maps these
representations to an output sequence. Both the
encoder and the decoder are composed of an em-
bedding layer and multiple hidden layers. The
decoder has an additional output layer at the end.

The hidden layer in the encoder consists of a
self-attention sub-layer and a feed-forward network
(FFN) sub-layer. The decoder has an additional
encoder-decoder attention sub-layer between the
self-attention and the FFN sub-layers. For more
details, we refer the reader to (Vaswani et al., 2017).

2.2 Knowledge Distillation

KD encourages the student network to produce
outputs close to the outputs of the teacher network.

KD achieves this by:

S̄ = arg min
S

L(yT , yS) (1)

where L is the cross-entropy loss, yT is the teacher
prediction, T is the teacher parameters, yS is the
student prediction and S is the student parameters.
In practice, Eq. 1 serves as a regularization term.

A more effective KD variant for Seq2Seq mod-
els is proposed by Kim and Rush (2016). They
replace the predicted distributions yT by the gener-
ated sequences from the teacher network.

3 Weight Distillation

3.1 The Parameter Generator
The proposed parameter generator transforms the
teacher parameters T to the student parameters S.
It is applied to the encoder and decoder separately.

The process is simple: it first groups weight ma-
trices in the teacher network into different subsets,
and then each subset is used to generate a weight
matrix in the student network. Though using all
teacher weights to predict student weights is possi-
ble, its efficiency becomes an issue. For instance,
the number of parameters in a simple linear trans-
formation will be the product of the numbers of
entries in its input and output, where in our case
these input and output contain billions of entries
(from the teacher and student weights), making it
intractable to keep this simple linear transforma-
tion in the memory. Grouping is an effective way



2078

L
t
=

6

Ot = 2048 I t
=
51
2

T

Teacher
Network

Grou
p 1

Group 2

Os = 2048 Is
=
51
2

L
t
/
L

s
=

3

Os = 2048 Is
=
51
2

L
t
/
L

s
=

3

L
t
/
L

s
=

3

1

Ot = 2048 O
s
=

10
24

Is =
256

I t
=

51
2

×
WL

× ×

WT
O

WI

Eq.
6

L
t
/
L

s
=

3

1

Ot = 2048 O
s
=

10
24

Is =
256

I t
=

51
2

×
WL

× ×

WT
O

WI

Eq. 6

L
s
=

2

Os =
1024

Is
=

25
6

S

Student
Network

Figure 2: A running example of the Parameter Generator. We take the transformation of W1 in Eq. 2 from the
teacher to the student as an example. The teacher (stacked large cubes in the left) contains Lt = 6 weights (W1)
with each weight from different layers. W1 (a single cube) in the teacher has an input dimension It of 512 and an
output dimension Ot of 2048. The student (stacked small cubes in the right) contains only Ls = 2 weights (W1)
with input dimension Is = 256 and output dimension Os = 1024.

to reduce it to light-weighted transformation prob-
lems. Here we take the encoder as an example for
the following discussion.

3.1.1 Weight Grouping
The left of Fig. 2 shows an example of weight
grouping for one group with two subsets.

Before the discussion, we define the weight class
as a weight matrix from the network formulation,
and the weight instance as the instantiation of a
weight class. Take the FFN for an example. Its
formulation is defined as:

FFN(x) = max(xW1 + b1, 0)W2 + b2 (2)

where W1, b1, W2 and b2 are learnable weight ma-
trices. In this case, W1 in Eq. 2 defines a weight
class. Then all the corresponding weight matrices
from FFNs in different layers of the network are
the instantiations of this W1 weight class.

From this sense, a weight class determines the
role of its instantiations in design, e.g., extracting
features for W1 in Eq. 2. This means that when
transferring parameters, different weight classes
will contribute little to each other as they have dif-
ferent roles. Therefore, when predicting a student
weight matrix, it is sufficient to consider the teacher
weight matrices with the same weight class only,
which makes the prediction efficient. So our pa-
rameter generator groups the teacher weight ma-
trices by the weight class they belong to, i.e., dif-

ferent weight classes clusters all their instantia-
tions to form their own groups. In the previous
example, the W1 weight class will form a group
[T1, T2, · · · , TLt ], where each Ti is the W1 weight
instance in the i-th FFN andLt is the number of lay-
ers in the teacher network. These weight matrices
are then used to generate the W1 weight instances
in the student network.

The parameter generator further divides each
group into smaller subsets with weight matrices
from adjacent layers, because the adjacent layers
function similarly (Jawahar et al., 2019) and so
as their weights. This way additionally makes
the later transformation more light-weighted.
Namely, given a group of Lt weight matrices,
the parameter generator splits it into Ls subsets,
where Ls is the number of layers in the student
network. For example, the i-th subset of the group
of W1 weight class in the previous example will be[
T(i−1)∗Lt/Ls+1, T(i−1)∗Lt/Ls+2, · · · , Ti∗Lt/Ls

]
.

This subset is used to generate the weight matrix
Si, which corresponds to W1 weight instance in
the i-th FFN of the student network.

3.1.2 Weight Transformation

Given a subset of teacher weight matrices, the pa-
rameter generator then transforms them to the de-
sired student weight matrix, as shown in the right
of Fig. 2.

Let us see the process of generating the



2079

weight matrix S ∈ RIs×Os from the subset[
T1, T2, · · · , TLt/Ls

]
with each Ti ∈ RIt×Ot ,

where Is and Os are the input and output dimen-
sions of the student weight matrix, It andOt are the
input and output dimensions of the teacher weight
matrix. The parameter generator first stacks all
weight matrices in this subset into a tensor T̂ ∈
RIt×Ot×Lt/Ls . Then it uses three learnable weight
matrices, WI ∈ RIt×Is ,WO ∈ ROt×Os ,WL ∈
RLt/Ls×1, to transform T̂ to the shape Is×Os× 1
sequentially:

T̂·jk ← T̂·jkWI ,∀j ∈ [1, Ot], k ∈ [1, L′] (3)

T̂j·k ← T̂j·kWO,∀j ∈ [1, Is], k ∈ [1, L′] (4)

T̂jk· ← T̂jk·WL, ∀j ∈ [1, Is], k ∈ [1, Os](5)

where L′ = Lt/Ls.
Finally we transform T̂ (with 1 in its shape get

eliminated) to produce S, as follows:

S = tanh(T̂ )�W +B (6)

where W and B are learnable weight matrices of
the parameter generator and have the same shape
as T̂ . � denotes the Hadamard product. The tanh
function provides non-linearity. W and B are used
to scale and shift the tanh output to any desirable
value. Note that we do not share WI , WO, WL,
W and B when generating different S. If the en-
coder is of the same size in both the teacher and
student networks, only Eq. 6 is needed to map
each weight matrix from the teacher network to the
student network.

3.2 Training

There are two training phases in WD: In the first
phase (Phase 1), we train the parameter generator
π = {WI ,WO,WL,W,B} to predict the student
network S; In the second phase (Phase 2), we fine-
tune the generated student network S to obtain
better results. Phase 2 is necessary because the
parameter generator is simply a feed-forward net-
work with one hidden layer and thus has no enough
capacity to produce a good enough student network
at once. A more sophisticated parameter generator
is an alternative, but it is expensive due to its large
input and output spaces.

The task of Phase 1 is to minimize the loss of the
student network with parameters S predicted by the
parameter generator π from the teacher parameters

T . The objective of Phase 1 is:

π̄ = arg min
π

[(1− α)L(yT , yπ) +

αL(y, yπ)] (7)

where L is the cross-entropy loss, yT is the teacher
prediction, yπ is the prediction of the student net-
work generated by the parameter generator π, y is
the ground truth, and α is a hyper-parameter that
balances two losses and is set to 0.5 by default. The
first term of Eq. 7 is the KD loss as in Eq. 1, and
the second term is the standard loss.

The objective of Phase 2 has the same form as
Eq. 7, except that it optimizes S instead of π, like
this:

S̄ = arg min
S

[(1− α)L(yT , yS) +

αL(y, yS)] (8)

4 Experiments

4.1 Datasets

We evaluate our methods on the WMT16 English-
Roman (En-Ro), NIST12 Chinese-English (Zh-En),
and WMT14 English-German (En-De) tasks.

For the En-Ro task, we use the WMT16 English-
Roman dataset (610K pairs). We choose newsdev-
2016 as the validation set and newstest-2016 as the
test set. For the Zh-En task, we use 1.8M sentence
Chinese-English bitext provided within NIST12
OpenMT1. We choose the evaluation data of mt06
as the validation set, and mt08 as the test set.
For the En-De task, we use the WMT14 English-
German dataset (4.5M pairs). We share the source
and target vocabularies. We choose newstest-2013
as the validation set and newstest-2014 as the test
set.

For all datasets, we tokenize every sentence us-
ing the script in the Moses toolkit and segment
every word into subword units using Byte-Pair En-
coding (Sennrich et al., 2016). The number of the
BPE merge operations is set to 32K. We remove
sentences with more than 250 subword units (Xiao
et al., 2012). In addition, we evaluate the results
using multi-bleu.perl.

1LDC2000T46, LDC2000T47, LDC2000T50,
LDC2003E14, LDC2005T10, LDC2002E18, LDC2007T09,
LDC2004T08



2080

System Depth Width Test ∆BLEU Valid Params Speed Speedup

W
M

T
16

E
n-

R
o

Teacher 6 512 31.64 - 32.07 83M 138.35 sent./s 1.00×
TINY 1 256 29.65 - 29.73 45M 323.26 sent./s 2.34×

+ KD 1 256 30.03 0.00 29.98 45M 347.07 sent./s 2.51×
+ WD 1 256 30.89 +0.86 30.89 45M 359.53 sent./s 2.60×

SMALL 2 512 31.22 - 31.19 66M 281.31 sent./s 2.03×
+ KD 2 512 30.97 0.00 30.77 66M 289.11 sent./s 2.09×
+ WD 2 512 31.65 +0.68 31.27 66M 289.80 sent./s 2.09×

N
IS

T
12

Z
h-

E
n

Teacher 6 512 45.14 - 51.91 102M 88.42 sent./s 1.00×
TINY 1 256 41.90 - 48.28 60M 225.46 sent./s 2.55×

+ KD 1 256 42.78 0.00 49.71 60M 214.06 sent./s 2.42×
+ WD 1 256 44.60 +1.82 51.56 60M 247.90 sent./s 2.80×

SMALL 2 512 44.30 - 50.83 85M 194.23 sent./s 2.20×
+ KD 2 512 44.89 0.00 51.87 85M 199.74 sent./s 2.26×
+ WD 2 512 46.20 +1.31 53.04 85M 199.29 sent./s 2.25×

W
M

T
14

E
n-

D
e Teacher 6 512 27.47 - 26.79 96M 158.29 sent./s 1.00×

TINY 1 256 24.62 - 24.88 55M 321.79 sent./s 2.03×
+ KD 1 256 26.51 0.00 26.01 55M 412.91 sent./s 2.61×
+ WD 1 256 27.12 +0.61 26.42 55M 406.68 sent./s 2.57×

SMALL 2 512 26.68 - 26.07 80M 281.97 sent./s 1.78×
+ KD 2 512 27.47 0.00 26.54 80M 306.91 sent./s 1.94×
+ WD 2 512 28.18 +0.71 26.97 80M 309.11 sent./s 1.95×

Table 1: Results of Transformer-base on different tasks (sent./s: translated sentences per second).

4.2 Model Setup

Our baseline system is based on the open-source
implementation of the Transformer model pre-
sented in Ott et al. (2019)’s work. For all ma-
chine translation tasks, we experiment with the
Transformer-base (base) setting. We additionally
run the Transformer-big (big) (Vaswani et al., 2017)
and Transformer-deep (deep) (Wang et al., 2019;
Zhang et al., 2020) settings on the large En-De
dataset. All systems consist of a 6-layer encoder
and a 6-layer decoder, except that the Transformer-
deep encoder has 48 layers (depth) (Li et al.,
2020). The embedding size (width) is set to 512 for
Transformer-base/deep and 1,024 for Transformer-
big. The FFN hidden size equals to 4× embedding
size in all settings. We stop training until the model
stops improving on the validation set. All exper-
iments are done on 8 NVIDIA TITIAN V GPUs
with mixed-precision training (Micikevicius et al.,
2018). At test time, the model is decoded with a
beam of width 4/6/4, a length normalization weight
of 1.0/1.0/0.6 and a batch size of 64 for the En-
Ro/Zh-En/En-De tasks with half-precision.

Note that our method can also be seen as an ad-
vanced version of Tucker Decomposition (Tucker,
1966). So we also implement a baseline based on

Tucker Decomposition. Unfortunately, this model
does not converge to a good optima and performs
extremely poor.

For the KD baseline, we adopt Kim and Rush
(2016)’s method, which has proven to be the most
effective for Seq2Seq models (Kim et al., 2019).
It generates the pseudo data from the source side
of the bilingual corpus. The choices of student
networks are based on the observation that the en-
coder has a greater impact on performance and the
decoder dominates the decoding time (Kasai et al.,
2020). Therefore we vary the depth and width of
the decoder. We test two student network configu-
rations: TINY halves the decoder width and uses
a 1-layer decoder (the fastest WD student network
with the performance close to the teacher network);
SMALL uses a 2-layer decoder whose width is the
same as the teacher network (the fastest KD student
network with the performance close to the teacher
network).

All hyper-parameters of WD are identical to the
baseline system, except that WD uses 1/4 warmup
steps in Phase 2. For the parameter generator initial-
ization, we use Glorot and Bengio (2010)’s method
to initialize WI ,WO,WL in Eqs. 3 - 5. W and B
in Eq. 6 are initialized to constants 1 and 0 respec-



2081

System Depth Width Test ∆BLEU Valid Params Speed Speedup

bi
g

Teacher 6 1024 29.11 - 27.66 281M 123.92 sent./s 1.00×
TINY 1 512 25.83 - 25.33 150M 353.42 sent./s 2.85×

+ KD 1 512 27.70 0.00 26.52 150M 353.82 sent./s 2.86×
+ WD 1 512 28.60 +0.90 26.83 150M 364.67 sent./s 2.94×

SMALL 2 1024 27.62 - 26.78 214M 252.46 sent./s 2.04×
+ KD 2 1024 29.01 0.00 27.54 214M 261.78 sent./s 2.11×
+ WD 2 1024 29.52 +0.51 27.97 214M 260.34 sent./s 2.10×

de
ep

Teacher 6 512 29.43 - 27.82 229M 134.26 sent./s 1.00×
TINY 1 256 26.34 - 26.05 187M 270.30 sent./s 2.01×

+ KD 1 256 29.36 0.00 27.39 187M 308.57 sent./s 2.30×
+ WD 1 256 29.92 +0.56 27.99 187M 285.43 sent./s 2.13×

SMALL 2 512 28.06 - 26.51 212M 245.82 sent./s 1.83×
+ KD 2 512 29.83 0.00 28.02 212M 258.45 sent./s 1.92×
+ WD 2 512 30.77 +0.94 28.33 212M 252.69 sent./s 1.88×

Table 2: Results of Transformer-big/deep on WMT14 En-De (sent./s: translated sentences per second).

System Test ∆BLEU Valid ∆BLEU

TINY (KD) 42.78 0.00 49.71 0.00
+ Init 43.36 +0.58 50.32 +0.61
+ WD 44.60 +1.82 51.56 +1.85

SMALL (KD) 44.89 0.00 51.87 0.00
+ Init 45.66 +0.77 52.57 +0.70
+ WD 46.20 +1.31 53.04 +1.17

Table 3: Initialization study (Init: initialize the student
network with the teacher parameters).

tively. All results are the average of three identical
runs with different random seeds.

4.3 Results

Table 1 shows the results of different approaches on
different student networks with Transformer-base
as the teacher network. In all three tasks and differ-
ent sized student networks, WD outperforms KD
by 0.77, 1.57, and 0.66 BLEU points on En-Ro, Zh-
En, and En-De on average. Our method (TINY) can
obtain similar performance to the teacher network
with only half of its parameters and is 2.57∼2.80×
faster, while KD (SMALL) uses more parameters
and has only a 1.94∼2.26× speedup in the same
case. We attribute the success of WD to that the
parameter generator uses parameters of the teacher
network to provide a good initialization for the
student network, as Phase 1 behaves like the ini-
tialization, and the effectiveness of a good initial-
ization has been widely proven (Erhan et al., 2010;
Mishkin and Matas, 2016). Interestingly, both KD
and WD surpass the teacher network when the stu-

dent network size is close to the teacher network
(SMALL). This is due to that KD has a form similar
to data augmentation (Gordon and Duh, 2019).

Table 2 shows the results of larger networks,
i.e., Transformer-big/deep. The phenomenon
here is similar to that in Table 1. The ac-
celeration on Transformer-big is more obvious
than on Transformer-base (2.94× vs. 2.57×
for TINY and 2.10× vs. 1.95× for SMALL in
WD). This is because the decoder in Transformer-
big occupies a larger portion of the decoding
time than in Transformer-base. But the acceler-
ation on Transformer-deep is less obvious than on
Transformer-base (2.13× vs. 2.57× for TINY and
1.88× vs. 1.95× for SMALL in WD), as a deeper
encoder consumes more inference time. Moreover,
compared with such a strong Transformer-deep
teacher, WD (SMALL) can still outperform it by
1.34 BLEU points with a 1.88× speedup, achieving
the state-of-the-art.

5 Analysis

To better understand WD, we conduct a series of
experiments on the NIST12 Zh-En validation set
with the Transformer-base teacher.

5.1 Initialization Study

To test whether KD misses knowledge in param-
eters, we initialize the student network with the
teacher parameters. If the teacher and student net-
works have different depths, we initialize the stu-
dent network with the bottom layers of the teacher
network (Sanh et al., 2019). If they have different



2082

Teacher Student KD WD

120 170 220

50

51

52

53

Speed (sentences/s)

B
L

E
U

1 3 5 7 9

45

50

Learning rate (×10−4)

B
L

E
U

1 2 3 4 5
50

51

52

53

#Warmup (×103)

B
L

E
U

Figure 3: Sensitivity analysis on SMALL.

System Test ∆BLEU Valid ∆BLEU

SMALL 44.30 0.00 50.83 0.00
+ KD 44.89 +0.59 51.87 +1.04
+ Encoder 45.40 +1.10 51.62 +0.79
+ Decoder 45.26 +0.96 51.34 +0.51
+ Embed (Enc) 44.67 +0.37 51.22 +0.39
+ Embed (Dec) 45.06 +0.76 51.26 +0.43
+ Output 45.10 +0.80 51.28 +0.45

Table 4: Ablation study of using different weight matri-
ces solely.

D
W 256 512

BLEUKD/WD Params BLEUKD/WD Params
1 38.46/40.34 30M 43.51/45.39 65M
2 45.33/47.21 32M 50.02/50.45 72M
3 47.30/49.09 34M 51.18/51.99 80M
4 47.90/50.08 36M 51.05/52.05 87M
5 48.87/50.70 38M 52.15/52.00 94M
6 49.78/50.73 40M 52.40/53.09 102M

Table 5: Compression study with various depth (D) and
width (W) of both the encoder and decoder.

widths, we slice the teacher weight matrices to fit
the student network (Wang et al., 2020). Table 3
shows that initializing the student networks with
the teacher parameters improves KD, supporting
our claim that knowledge in parameters is com-
plementary to KD but missed. We also see that
WD outperforms this simple initialization, which
implies that using all teacher parameters helps to
obtain a better student.

5.2 Sensitivity Analysis

The left part of Fig. 3 studies how sensitive the
performance (BLEU) of different methods are to
various levels of inference speedup (obtained by
varying decoder depth and width). It shows that
WD distributes on the upper right of the figure,
which means that WD produces student networks
that are consistently faster and better.

We also investigate how sensitive different meth-
ods are to the training hyper-parameters, i.e., the
learning rate and warmup steps. Here we focus
on Phase 2 of WD, as it directly impacts the final
performance. The middle part of Fig. 3 shows
that WD can endure learning rates in a wide range,
because its performance does not vary much. How-
ever, a very large learning rate still negatively im-
pacts the performance. The right part of Fig. 3
is the opposite, where WD is more sensitive to

the warmup steps than the learning rate. This is
because more warmup steps will run the network
with a high learning rate in a longer period. A
high learning rate has been proven to be harmful as
shown in the middle part of Fig. 3.

5.3 Ablation Study
Table 4 studies which weight matrices in the
teacher network are the most effective. It is
achieved by training the parameter generator with
only the intended weight matrices and without the
KD loss term in Eq. 7. We see that using any
weight matrix brings a significant improvement
over the baseline. This observation shows that
weight matrices in the teacher network do contain
abundant knowledge. Among these, the encoder
weight matrices produce the most significant result,
which agrees with the previous study claiming that
the encoder is more important than the decoder
(Wang et al., 2019; Bapna et al., 2018).

5.4 Compression Study
As the previous experiments focus on a lightweight
decoder for acceleration, the compression is lim-
ited as the encoder remains large. To examine the
effectiveness of WD on model compression, we
shrink the depth and width of the encoder and de-
coder simultaneously. As shown in Table 5, WD
consistently outperforms KD by about 1 BLEU



2083

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

10

#Epoch (Phase 2)

#E
po

ch
(P

ha
se

1)

50.0

51.0

52.0

BLEU

Figure 4: Training efficiency of WD on SMALL.

point under various compression ratios (ranging
from 1.00× to 3.40×). Note that decreasing the
width brings more significant compression. This is
because a large portion of the parameters is from
the embedding matrices and the output projection.
The sizes of these matrices are determined by the
width and a fixed vocabulary size.

5.5 Training Efficiency

Fig. 4 studies the training efficiency of WD by com-
paring the final BLEU scores when two training
phases end in different epochs. As shown in Fig. 4,
Phase 1 has little impact on Phase 2, because Phase
2 converges to optimums with similar BLEU scores
once Phase 1 runs for a few epochs (say, 3 epochs).
If we run Phase 1 longer, then Phase 2 converges
faster. This phenomenon suggests that Phase 1 al-
ready transfers the knowledge in the teacher param-
eters within the first few epochs, and the remaining
epochs merely do the fine-tuning (Phase 2) job.
This implies that the training of WD is efficient,
since we can just train the parameter generator for
several epochs first, then fine-tune the generated
network as in KD, and finally obtain a much better
result than KD.

Though we could train the parameter generator
for just a few epochs as suggested, Phase 1 is still
time-consuming. The reasons are two folds: 1) the
parameter generator consumes a lot of memory and
we have to resort to gradient accumulation; 2) the
parameter generator involves many large matrix
multiplications. For the experiments in Table 1 and
Table 2, it takes us 0.66 days for WD to finish train-
ing on average, whereas 0.55 days for the teacher
network baseline and 0.31 days for both the student
network baseline and KD.

6 Related Work

6.1 Knowledge Distillation
Knowledge distillation (Hinton et al., 2015; Freitag
et al., 2017) is a widely used model acceleration
and compression technique (Jiao et al., 2019; Sanh
et al., 2019; Liu et al., 2020). It treats the network
predictions as the knowledge learned by the teacher
network, since these predicted distributions contain
the ranking information on similarities among cat-
egories. It then transfers this knowledge to the
student network by enforcing the student network
to have similar predictions. The followed work ex-
tends this idea by providing more knowledge from
different sources to the student network. FitNets
(Romero et al., 2015) uses not only the predictions
but also the intermediate representations learned
by the teacher network to supervise the student
network. For the Seq2Seq model, Kim and Rush
(2016) proposes to use the generated sequences as
the sequence-level knowledge to guide the student
network training. Moreover, self-knowledge dis-
tillation (Hahn and Choi, 2019) even shows that
knowledge (representations) from the student net-
work itself can improve the performance.

Our weight distillation, on the other hand, ex-
plores a new source of knowledge and a new way to
leverage this knowledge. It transfers the knowledge
in parameters of the teacher network to the student
network via a parameter generator. Therefore, it is
orthogonal to other knowledge distillation variants.

6.2 Transfer Learning
Transfer learning aims at transferring knowledge
from a source domain to a target domain. Based
on what knowledge is transferred to the model in
the target domain, transfer learning methods can
be classified into three categories (Pan and Yang,
2010): instance-based methods reuse certain parts
of the data in the source domain (Jiang and Zhai,
2007; Dai et al., 2007); feature-based methods use
the representation from the model learned in the
source domain as the input (Peters et al., 2018;
Gao et al., 2008); parameter-based methods directly
fine-tune the model learned in the source domain
with the target domain data (Yang et al., 2019; Liu
et al., 2019; Devlin et al., 2019).

Perhaps the most related work is Platanios
et al. (2018)’s work. Their method falls into the
parameter-based category. They use a universal
parameter generator to share the knowledge among
translation tasks. This parameter generator pro-



2084

duces a translation model from a given language-
specific embedding. Though we similarly employ
the idea of a parameter generator, our weight dis-
tillation aims at transferring knowledge from one
model to another rather than from one translation
task to another. Therefore our parameter genera-
tor takes a model instead of a language-specific
embedding as its input and is only used once.

7 Conclusion

In this work, we propose weight distillation to
transfer knowledge in the parameters of the teacher
network to the student network. It generates the
student network from the teacher network via a
parameter generator. Our experiments on three ma-
chine translation tasks show that weight distillation
consistently outperforms knowledge distillation by
producing a faster and better student network.

Acknowledgments

This work was supported in part by the National
Science Foundation of China (Nos. 61876035
and 61732005), the National Key R&D Program
of China (No. 2019QY1801), and the Ministry
of Science and Technology of the PRC (Nos.
2019YFF0303002 and 2020AAA0107900). The
authors would like to thank anonymous reviewers
for their comments.

References
Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao,

and Yonghui Wu. 2018. Training deeper neural
machine translation models with transparent atten-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3028–3033, Brussels, Belgium. Association
for Computational Linguistics.

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong
Yu. 2007. Boosting for transfer learning. In Ma-
chine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), Corvallis,
Oregon, USA, June 20-24, 2007, volume 227 of
ACM International Conference Proceeding Series,
pages 193–200. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Dumitru Erhan, Aaron C. Courville, Yoshua Bengio,
and Pascal Vincent. 2010. Why does unsupervised
pre-training help deep learning? In Proceedings
of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, AISTATS 2010, Chia
Laguna Resort, Sardinia, Italy, May 13-15, 2010,
volume 9 of JMLR Proceedings, pages 201–208.
JMLR.org.

Markus Freitag, Yaser Al-Onaizan, and Baskaran
Sankaran. 2017. Ensemble distillation for neural
machine translation. CoRR, abs/1702.01802.

Jing Gao, Wei Fan, Jing Jiang, and Jiawei Han. 2008.
Knowledge transfer via multiple model local struc-
ture mapping. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada,
USA, August 24-27, 2008, pages 283–291. ACM.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sar-
dinia, Italy, May 13-15, 2010, volume 9 of JMLR
Proceedings, pages 249–256. JMLR.org.

Mitchell A. Gordon and Kevin Duh. 2019. Explain-
ing sequence-level knowledge distillation as data-
augmentation for neural machine translation. CoRR,
abs/1912.03334.

Sangchul Hahn and Heeyoul Choi. 2019. Self-
knowledge distillation in natural language process-
ing. In Proceedings of the International Conference
on Recent Advances in Natural Language Process-
ing, RANLP 2019, Varna, Bulgaria, September 2-4,
2019, pages 423–430. INCOMA Ltd.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 3651–3657. Association
for Computational Linguistics.

Jing Jiang and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in NLP. In ACL
2007, Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics, June 23-
30, 2007, Prague, Czech Republic. The Association
for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling BERT for natural lan-
guage understanding. CoRR, abs/1909.10351.



2085

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A. Smith. 2020. Deep encoder, shallow
decoder: Reevaluating the speed-quality tradeoff in
machine translation. CoRR, abs/2006.10369.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 1317–1327. The
Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany
Hassan, Alham Fikri Aji, Kenneth Heafield, Ro-
man Grundkiewicz, and Nikolay Bogoychev. 2019.
From research to production and back: Ludicrously
fast neural machine translation. In Proceedings
of the 3rd Workshop on Neural Generation and
Translation@EMNLP-IJCNLP 2019, Hong Kong,
November 4, 2019, pages 280–288. Association for
Computational Linguistics.

Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao,
Chunliang Zhang, and Jingbo Zhu. 2020. Learn-
ing light-weight translation models from deep trans-
former. CoRR, abs/2012.13866.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling BERT with adaptive inference time. CoRR,
abs/2004.02178.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre-
cision training. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Dmytro Mishkin and Jiri Matas. 2016. All you need
is a good init. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Demonstra-
tions, pages 48–53. Association for Computational
Linguistics.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Trans. Knowl. Data Eng.,
22(10):1345–1359.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pages 2227–2237. Association for
Computational Linguistics.

Emmanouil Antonios Platanios, Mrinmaya Sachan,
Graham Neubig, and Tom M. Mitchell. 2018. Con-
textual parameter generation for universal neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - Novem-
ber 4, 2018, pages 425–435. Association for Com-
putational Linguistics.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets. In
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for
Computer Linguistics.

Ledyard R Tucker. 1966. Some mathematical notes
on three-mode factor analysis. Psychometrika,
31(3):279–311.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020. Hat:
Hardware-aware transformers for efficient natural
language processing.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2,



2086

2019, Volume 1: Long Papers, pages 1810–1822. As-
sociation for Computational Linguistics.

Tong Xiao, Jingbo Zhu, Hao Zhang, and Qiang Li.
2012. Niutrans: An open source toolkit for phrase-
based and syntax-based machine translation. In The
50th Annual Meeting of the Association for Com-
putational Linguistics, Proceedings of the System
Demonstrations, July 10, 2012, Jeju Island, Korea,
pages 19–24. The Association for Computer Lin-
guistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada, pages 5754–5764.

Yuhao Zhang, Ziyang Wang, Runzhe Cao, Binghao
Wei, Weiqiao Shan, Shuhan Zhou, Abudurexiti Re-
heman, Tao Zhou, Xin Zeng, Laohu Wang, Yongyu
Mu, Jingnan Zhang, Xiaoqian Liu, Xuanjun Zhou,
Yinqiao Li, Bei Li, Tong Xiao, and Jingbo Zhu.
2020. The niutrans machine translation systems for
WMT20. In Proceedings of the Fifth Conference on
Machine Translation, WMT@EMNLP 2020, Online,
November 19-20, 2020, pages 338–345. Association
for Computational Linguistics.

A Appendices

Hyper-parameters. We tune the learning rate and
warmup steps in Phase 2 of WD. We use the grid
search to select the learning rate in [1× 10−4, 3×
10−4, 5× 10−4, 7× 10−4, 9× 10−4] and warmup
steps in [1000, 2000, 3000, 4000, 5000] that have
the best average BLEU performance in all valida-
tion sets.
Datasets. Detailed data statistics as well as
the URLs of three machine translation tasks we
used, including WMT16 English-Roman (En-Ro),
NIST12 Chinese-English (Zh-En), and WMT14
English-German (En-De), are shown in Table 6.

For En-Ro, the training set consists of 0.6M bilin-
gual sentence pairs. The validation set newsdev-
2016 contains 1999 pairs and the test set newstest-
2016 contains 1999 pairs. For Zh-En, the training
set consists of 1.8M bilingual sentence pairs. The
validation set mt06 contains 1,664 pairs and the test
set mt08 contains 1,357 pairs. For En-De, the train-
ing set consists of 4.5M bilingual sentence pairs.
The validation set newstest-2013 contains 3,000
pairs and the test set newstest-2014 contains 3,003
pairs.
Runtime. To compare the average runtime for
each approach, Table 7 shows the actual number of

Lang.
Train Test Valid

Sent. Word Sent. Word Sent. Word
En-Ro 0.6M 33M 1999 112K 1999 118K
Zh-En 1.8M 115M 1357 247K 1664 280K
En-De 4.5M 262M 3003 164K 3000 156K

Table 6: Date statistics.

updates and runtime. For the baseline models (i.e.,
Teacher, TINY and SMALL) and KD, we record
their runtime in the Phase 1 entry because they
only need to be trained once.

One can observe that in Table 7, Phase 2 of WD
generally consumes similar or less time as well
as the number of updates than other approaches.
This is because the model is already close to the
optimum before the fine-tuning (Phase 2). Table 7
also shows that the number of updates in Phase 1
of WD is much less than other approaches, yet its
training time is much longer. This phenomenon is
more obvious in Transformer-deep models. This is
because one step in Phase 1 of WD is 2.11× slower
than in Phase 2 of WD.
Decoder. We also investigate how WD’s perfor-
mance (on the validation set) and speed change
given different decoder depths and widths. We
choose the speed of WD to compute the speedup of
different decoder depths and widths. Although the
actual speedup of KD will not be exactly the same
as the one of WD due to their different decoding
results, they are close.

As shown in Table 8, WD is robust to different
sized decoders, with both BLEU and speed signif-
icantly outperform KD. WD consistently outper-
forms KD by about 1 BLEU point under various de-
coder depths and widths. Interestingly, we find that
pruning the layers degrades the performance more
than shrinking its width, but it provides a higher
speedup. Taking the student network with depth
2 and width 512 as an example, if we shrink the
depth from 2 to 1, there is a decrease of 1.21 BLEU
points in WD but with 1.12× speedup. When we
shrink the width from 512 to 256, it leads to a mod-
erate decrease of 0.59 BLEU points yet with only
1.06× speedup. This might be because layers are
computed sequentially and wider matrices enjoy
the parallel computation acceleration provided by
modern GPUs.
Loss. In Table 7, we observe that WD generates
student networks that are superior to KD. We be-
lieve that this is because WD converges to a better

https://github.com/nyu-dl/dl4mt-nonauto
https://catalog.ldc.upenn.edu/
http://statmt.org/wmt14/translation-task.html


2087

System Depth Width Test Valid
Phase 1 Phase 2

#Update Time #Update Time

W
M

T
16

E
n-

R
o

Teacher (base) 6 512 31.64 32.07 70K 0.06 - -
TINY 1 256 29.65 29.73 70K 0.03 - -

+ KD 1 256 30.03 29.98 70K 0.03 - -
+ WD 1 256 30.89 30.89 47K 0.04 70K 0.03

SMALL 2 512 31.22 31.19 70K 0.04 - -
+ KD 2 512 30.97 30.77 70K 0.04 - -
+ WD 2 512 31.65 31.27 47K 0.06 70K 0.04

N
IS

T
12

Z
h-

E
n

Teacher (base) 6 512 45.14 51.91 30K 0.08 - -
TINY 1 256 41.90 48.28 30K 0.05 - -

+ KD 1 256 42.78 49.71 30K 0.05 - -
+ WD 1 256 44.60 51.56 20K 0.07 30K 0.05

SMALL 2 512 44.30 50.83 30K 0.06 - -
+ KD 2 512 44.89 51.87 30K 0.06 - -
+ WD 2 512 46.20 53.04 20K 0.09 30K 0.06

W
M

T
14

E
n-

D
e

Teacher (base) 6 512 27.47 26.79 100K 0.24 - -
TINY 1 256 24.62 24.88 100K 0.14 - -

+ KD 1 256 26.51 26.01 100K 0.14 - -
+ WD 1 256 27.12 26.42 50K 0.18 80K 0.11

SMALL 2 512 26.68 26.07 100K 0.19 - -
+ KD 2 512 27.47 26.54 100K 0.19 - -
+ WD 2 512 28.18 26.97 50K 0.25 80K 0.15

Teacher (big) 6 1024 29.11 27.66 200K 1.71 - -
TINY 1 512 25.83 25.33 200K 0.58 - -

+ KD 1 512 27.70 26.52 200K 0.58 - -
+ WD 1 512 28.60 26.83 67K 0.57 100K 0.29

SMALL 2 1024 27.62 26.78 200K 0.79 - -
+ KD 2 1024 29.01 27.54 200K 0.79 - -
+ WD 2 1024 29.52 27.97 67K 0.55 100K 0.40

Teacher (deep) 6 512 29.43 27.82 60K 0.67 - -
TINY 1 256 26.34 26.05 60K 0.57 - -

+ KD 1 256 29.36 27.39 60K 0.57 - -
+ WD 1 256 29.92 27.99 30K 1.51 30K 0.29

SMALL 2 512 28.06 26.51 60K 0.60 - -
+ KD 2 512 29.83 28.02 60K 0.60 - -
+ WD 2 512 30.77 28.33 30K 1.53 30K 0.30

Table 7: Results of Transformer on different tasks (Time is measured by GPU days).

D
W 256 512

KD WD ∆BLEU Speedup KD WD ∆BLEU Speedup
1 49.71 51.56 +1.85 2.80× 50.89 51.83 +0.94 2.53×
2 51.25 52.45 +1.20 2.12× 51.87 53.04 +1.17 2.25×
3 51.52 52.49 +0.97 1.78× 52.46 52.81 +0.35 1.68×
4 51.41 52.42 +1.01 1.62× 52.07 53.66 +1.59 1.56×
5 51.27 52.71 +1.44 1.33× 52.07 52.74 +0.67 1.30×
6 50.79 52.65 +1.86 1.18× 51.91 53.09 +1.18 1.02×

Table 8: BLEU and speed vs. decoder depth and width (Transformer-base, NIST12 Zh-En).



2088

2 5 10 15 20 25 30

4

5

#Update (×103)

L
os

s
KD
WD (Phase 1)
WD (Phase 2)

Figure 5: Train (solid)/valid (dash) loss of SMALL.

optimum. To examine this hypothesis, we study its
loss in Fig. 5. As can be seen, WD does obtain
much lower train and valid losses than KD. We also
see that Phase 1 already outperforms KD at the end.
Given the fact that Phase 1 does the initialization
job for Phase 2 and Phase 2 is KD exactly, the way
WD works can be treated as providing a good start.


