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Abstract

Dense video event captioning aims to gener-
ate a sequence of descriptive captions for each
event in a long untrimmed video. Video-level
context provides important information and fa-
cilities the model to generate consistent and
less redundant captions between events. In
this paper, we introduce a novel Hierarchical
Context-aware Network for dense video event
captioning (HCN) to capture context from var-
ious aspects. In detail, the model leverages
local and global context with different mech-
anisms to jointly learn to generate coherent
captions. The local context module performs
full interaction between neighbor frames and
the global context module selectively attends
to previous or future events. According to
our extensive experiment on both Youcook2
and Activitynet Captioning datasets, the video-
level HCN model outperforms the event-level
context-agnostic model by a large margin. The
code is available at https://github.com/
KirkGuo/HCN.

1 Introduction

With the increase of video data uploaded online ev-
ery day, the acquisition of knowledge from videos
especially for Howto tasks is indispensable for peo-
ple’s daily life and work. However, watching a
whole long video is time-consuming. Existing tech-
nologies focus on two main research directions
to compact video information: video summariza-
tion to trim long videos to short ones and (dense)
video captioning to generate a textual description
of the key events in the video. Typically for long
untrimmed videos, dense video event captioning
generates fine-grained captions for all events to
facilitate users quickly skimming the video con-
tent and enables various applications e.g. video
chaptering and search inside a video.

∗Equal contribution

Figure 1: A showcase of dense video event captioning.
Given a video and the speech text, the task is to gener-
ate event proposals and captions.

Dense video event captioning (Krishna et al.,
2017) and multi-modal video event captioning
(Iashin and Rahtu, 2020b) aims to generate a se-
quence of captions for all events regarding to
uni-modality (video) or multi-modality (video +
speech) inputs. Figure 1 presents a showcase,
which demonstrates the challenges of this task from
both vision and speech text perspective. For vision
understanding, the fine-grained objects are hard
to recognize due to ambiguity, occlusion, or state
change. In this case, the object ”dough” is oc-
cluded in event 1 and is hard to recognize from
the video. However, it can be recognized from
the previous neighbor video frame with a clear ap-
pearance. From speech text perspective, although
the speech text offers semantic concepts (Shi et al.,
2019; Iashin and Rahtu, 2020b), it brings another
challenge of co-reference and ellipsis in speech text
due to the informal utterance of oral speeches. In
the case of Figure 1, the entity ”dough” in event 3
is an ellipsis in the text. Nonetheless, it is capable
of generating consistent objects ”dough” in event 3
with the contextual information from other events
such as event 1 in this example. To sum up, both

https://github.com/KirkGuo/HCN
https://github.com/KirkGuo/HCN
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local neighbor-clip and global inter-event contexts
are important for event-level captioning to generate
coherent and less duplication descriptions between
events.

Previous endeavors widely used recurrent neu-
ral network(Krishna et al., 2017) which suffers
from capturing long dependency, while recently
attention-based model(Zhou et al., 2018b; Sun
et al., 2019b,a) is becoming the new paradigm
for dense video event captioning and effective for
multi-modal video captioning (Shi et al., 2019;
Iashin and Rahtu, 2020b). However, existing
attention-based models generate the captioning
only relying on the video clip inside each event,
and ignore video-level local and global context.
Motivated by this, we mainly investigate how to ef-
fectively and jointly leverage both local and global
context for video captioning.

In this paper, we propose a novel hierarchical
context-aware model for dense video event cap-
tioning (HCN) to capture both the local and global
context simultaneously. In detail, we first exploit a
local context encoder to embed the visual and lin-
guistic features of the source and surrounding clips,
then design a global context encoder to capture rel-
evant features from other events. Specifically, we
apply different mechanisms: a flat attention mod-
ule between the source and local context; a cross
attention module for the source to select the global
context. With regards to the neighbor frames (tem-
porally close) usually alike, e.g. with the same
objects, the flat attention is a full interaction to
generate accurate and coherent captions. Contem-
poraneously, the cross attention on global context
can selectively attend to the relevant events and cap-
ture prior temporal dependency between events to
generate coherent and less duplicate captions. The
experimental results demonstrate the effectiveness
of our model. Our contributions can be summa-
rized as:

1) We propose a hierarchical context-aware
model for dense video event captioning to capture
video-level context.

2) We carefully design different mechanisms to
capture both local and global context: a flat atten-
tion model with full interaction between neighbor
frames and a cross attention model to selectively
capture inter-event features.

3) Experimental results on both Youcook2 and
Activitynet Captions dataset demonstrate the effec-
tiveness of our models and outperforms the context-

agnostic model to a large extent.

2 Preliminary

The dense video event captioning task is to produce
a sequence of events and generate a descriptive sen-
tence for each event given a long untrimmed video.
In this work, we focus only on the task to generate
captions and directly apply the ground-truth event
proposals similar to (Hessel et al., 2019; Iashin and
Rahtu, 2020b). The paradigm for video captioning
is an encoder-decoder network, which inputs video
features and outputs descriptions for each event.
In this section, we describe the task formulation
including the context-agnostic model as well as the
context-aware model in one framework.

2.1 Overview
Problem Definition We define a sequence of event
segment proposals as e =

{
ei|i ∈ [1,m]

}
, repre-

senting the video withm proposals, ei is the feature
of the i-th event including both video and text fea-
ture, ei = {vi, ti}, where vi is video feature and
ti is transcript text feature (if available) of the i-th
event. We take all the video frames and transcript
tokens of the event between the start and end time.
The number of video frames is likely to be dif-
ferent from the number of text tokens depending
on the actual video clip. Given all events e, the
goal is to predict the target descriptive sentences
Y =

{
yi|i ∈ [1,m]

}
. Each yi is a sequence of

descriptive words corresponding to each event ei.
The probability of the expected sentences Y.

P (Y |e) = −
m∏
i=1

P (yi | ei) (1)

which is to predict yi conditioned on the event ei.
The context-aware model considers local context
v 6=i (the neighboring video clip) and global context
e6=i (the clips of past and future events) respectively.
The context-aware probability can be approximated
as

P (Y |e) = −
m∏
i=1

P (yi | ei, v 6=i, e 6=i) (2)

3 Methodology

3.1 Context-agnostic model
The context-agnostic model of captioning is to
generate a descriptive sentence given the short-
trimmed video clip of each event. The paradigm
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for multi-modal video captioning is an encoder-
decoder network as in (Hessel et al., 2019). First,
we pre-process each event and extract features sep-
arately. For the event ei, we extract both video fea-
ture vi and transcript feature ti if available. Next,
both the video features and transcript features are
concatenated together as the input to the trans-
former encoder. This encoder implements self-
attention of each modality and cross attention be-
tween both modalities in one unified transformer.
Finally, a transformer decoder generates the text to-
kens of the description with the enhanced features.

3.2 Context-aware model
We propose a context-aware video event captioning
model with a hierarchical context-aware network
(HCN) and the architecture is a general framework
for either uni-modal or multi-modal inputs as ex-
plained in Figure 2.

Figure 2: HCN provides a general framework with 4
modules: local context module (LCM), global context
module (GCM), context gate, and decoder. LCM en-
hances the visual feature by local context and option-
ally fuse both visual and text features with multi-modal
inputs. GCM employs a cross attention model to en-
code the source visual feature with other event features,
which employs the SEncoder to encode source and con-
text separately and adopts the CEncoder to selectively
attend to context.

3.2.1 Multi-modal Feature Representation
For visual features, we adopt a pre-trained 3D fea-
ture extractor to extract k features as vi =

{
vj |j ∈

[1, k]
}

of the i-th event. We further add a pro-
jection layer to map the raw feature to the input
dimension through an embedding layer f(vi) =

{e|e = Embedding(vi)}. For transcript text, we
tokenize the text into words and represent each
word with 1-hot representation. The tokens within
each event are represented as ti = {tj |j ∈ [1, l]},
where l is the length of the tokens corresponding
to the number of the transcript text in the speech
of the event. Moreover, we embed each token to
continuous representation by an embedding layer
f(ti) = {e|e = Embedding(ti)}. Similar to the
work in (Hessel et al., 2019), we build the vocabu-
lary using all tokens in the captioning sentence.

The input for each event comprises of three types
of embedding: 1) visual feature f(vi) (and speech
text feature f(ti) if available); 2) position embed-
ding p(vi) and p(ti) as introduced in the trans-
former model(Vaswani et al., 2017); 3) type em-
bedding s(vi) and s(ti) representing whether the
current embedding is from context or source.

E(vi) = [f(vi) + p(vi) + s(vi)] (3)
E(ti) = [f(ti) + p(ti) + s(ti)] (4)

where + is the add operator, E(vi) and E(ti) are
the embeddings of video and text respectively. For
multi-modal input, both visual and text features are
concatenated for further processing.

We extract two types of contextual information:
event-agnostic local context and event-aware global
context. Event-agnostic context takes frames tem-
porally close to the video event. Video is a continu-
ous signal and neighboring video frames are likely
to be semantically related to each other e.g. same
objects. This is especially helpful for recognizing
objects with state change or occluded in the current
event. Moreover, objects are likely to be explicitly
mentioned in the contextual transcript which can
be used to deal with object co-reference and ellip-
sis typically for instructional videos. Event-aware
context utilizes the video frames of both previous
and future events, which attempts to model the re-
lation between events. The global context provides
overall features and prior knowledge of temporal
dependency. Specifically for a particular domain
like a recipe, the event “mix the flour and water” is
often followed by “knead the dough”. This prior
knowledge of event dependency learned from a
global context is effective for understanding long
videos.

3.2.2 Hierarchical Context-aware Network
The overall pipeline includes 4 modules: 1) the
hierarchical model starts with a local context mod-
ule (LCM) to encode the local context features,
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the neighbor video clip temporally close to the
event. Specifically, the LCM adopts a flat atten-
tion model similar to (Ma et al., 2020) to enhance
the source video feature by local context. Besides,
given multi-modal inputs, LCM is a general model
to fuse both the visual features f(vi) and the text
features f(ti) inside the event with one unified
transformer as in (Hessel et al., 2019); 2) we fur-
ther employ a global context module (GCM) to
make the source event to interact with other event
features flexibly. The GCM is a cross attention
model, which contains one source encoder SEn-
coder and one cross encoder CEncoder. SEncoder
is a self-attention module for encoding event fea-
tures, and CEncoder is a cross attention module for
interaction between source and context events; 3)
the hierarchical context-aware model further com-
bines both the neighbor-clip (around the event) or
inter-event (other events) context from both previ-
ous and future using gating mechanism; 4) finally,
an auto-regressive decoder is used to generate the
sentence with a masked transformer model.

Local Context Module We first introduce the lo-
cal context module to encode multi-modal source
video features together with the event-agnostic con-
text features (surrounding frames). The flat trans-
former in (Ma et al., 2020) is effective for encod-
ing contextual information with full interaction be-
tween source and context features. In addition,
when the speech text is available for multi-modal
video captioning, this flat encoder can also perform
the fusion of visual and text modalities, which is
similar to (Hessel et al., 2019). To sum up, we em-
ploy one unified flat encoder to accomplish two ac-
tions: source-context interaction and multi-modal
fusion as explained in Figure 3a.

E(ei) = [E(vi);E(ti)] (5)
H(mi) = FFN(MultiHead([E(vi±kl);E(ei)])) (6)

H(eli) = H(mi)[i1 : in] (7)

where [;] is concatenation operation, FFN
means the feed-forward network and MultiHead
is the multi-head attention network in trans-
former(Vaswani et al., 2017). We apply residual
connection for all components. We only perform
equation 5 for multi-modal video event captioning,
and E(ei) is the concatenation of the visual em-
bedding and text embedding for the event i. We
then feed the embedding E(ei) together with the
embedding of neighbor frames E(vi±kl) into the

(a) Local context module (b) Global Context Module

Figure 3: The Local context module (LCM) is a flat
attention model which adopts a unified attention model
for interaction and fusion, and only selects the output of
source embedding for further processing. Global Con-
text Module (GCM) is a cross attention model, which
adopts a cross attention model to selectively attend to
context. Finally, a GRU gate ⊕ is used to combine the
context-enhanced feature with the source feature.

transformer blocks and get context-aware encoding
H(mi), and kl is the local context length. Finally,
we only select the output of source encoding in-
stead of using all embedding for further processing.
Intuitively, the source is more important than the
context. In equation 7, H(eli) is the hidden state
of the source input, which requires the model to
focus on the current source event, i1 is the start of
the event i and in is the end of the event i. LCM
outputs the enhanced event representation by local
context and multi-modal inputs.

Global Context Module We then illustrate the
global context module to encode the output of
LCM together with event-aware context (previ-
ous or future events). GCM is a cross attention
model, which selectively attends to previous or
future events to enhance the source video repre-
sentation. Different from LCM, which applies a
unified transformer to encode a short context, GCM
exploits a cross attention model similar to (Maruf
et al., 2019) to encode long global context effi-
ciently. The unified transformer model is hard to
deal with long input sequences due to complexity.
The cross attention model facilitates the source to
interact with each context event and can easily be
scaled out for long videos. Figure 3b illustrates the
GCM model structure.

We exploit the GCM for each contextual event
and then combine all the encoding through a con-
text gating mechanism similar to (Maruf et al.,
2019). First, the self-attention module encodes
each source or context event separately. Then, the
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cross attention module empowers the source to at-
tend to context.

H(êi) = FFN(MultiHead([H(eli)])) (8)
H(ej) = FFN(MultiHead([E(ej)])) (9)
H(ecj) = FFN(MultiHead([H(êi), H(ej)])) (10)

where H(êi) is the encoding of source event i,
H(ej) is encoding of the j-th context event, and
H(ecj) is the source attended to the j-th event.

Next, we adopt a gated recurrent unit (GRU)
(Cho et al., 2014) to selectively update the source
feature with context enhanced feature which is
shown to be effective in our ablation study.

zj = σ(wzH(êi) + uzH(ecj) + bz) (11)
rj = σ(wrH(êi) + urH(ecj) + br) (12)

ĥj = φ(whH(êi) + uh(rj �H(ecj) + bh) (13)

hj = (1− zj)�H(ecj) + zj ĥj (14)

where σ is a logistic sigmoid operation, φ is the
activation function tanh, w and u are learnable
weight matrices, and hj is the encoded representa-
tion after the source event i attended to the context
event j.

Context Gating We adopt the gate in (Tu et al.,
2018) to regulate the source H(eli) and context
information hj . Then we get the context-enhanced
source embedding for further decoding.

γ = σ(wjhp + wkhf ) (15)
hc = γhp + (1− γ)hf (16)

λ = σ(wchc + wsH(eli)) (17)

H = λhc + (1− λ)H(eli) (18)

where hc is the integration of all previous context
hp and future context hf . The wj , wk, wc and ws

are learnable parameter matrices, and H is the final
representation.

3.2.3 Decoding and Loss
The decoder is an auto-regressive transformer
model to generate tokens one by one. We adopt
the cross-entropy loss to minimize the negative log-
likelihood over ground-truth words and apply the
label smoothing strategy.

L = −
m∑
i=1

logP (yi | ei, v 6=i, e 6=i) (19)

4 Experiment

4.1 Dataset and evaluation metrics

We run our experiments on both Youcook2 dataset
(Zhou et al., 2018a) and ActivityNet Caption
dataset (Krishna et al., 2017). YouCook2 is the
task-oriented instructional video dataset for video
procedural captioning on the recipe domain. We
follow the data partition in VideoBERT (Sun et al.,
2019b) which uses 457 videos in the YouCook2
validation set as the testing set and the rest for
development. In all, we use 1,278 videos for train-
ing and validation. We extract the visual feature
by S3D model pre-trained on Howto100M(Miech
et al., 2019) dataset through MIL-NCE(Miech et al.,
2020) model. This visual representation is a better
representation of Howto videos. The ASR tran-
script is automatically extracted from the off-the-
shelf recognition tool1.

Different from the Youcook2 dataset, Activitynet
captions are open-domain videos with overlapping
proposals, while Youcook2 has non-overlapping
event proposals. We apply the same data parti-
tion in (Iashin and Rahtu, 2020b) with the ground
truth labels. We directly download the copy of
the dataset in (Iashin and Rahtu, 2020b) which
contains 9,167 (out of 10,009) training and 4,483
(out of 4,917) validation videos. The dataset only
contains partially available videos (91%) due to
no longer available Youtube links. To make a fair
comparison, we only list the experimental results
on the same dataset. This open-source code and
data portal contains the speech content extracted
from the closed captions (CC) from the YouTube
ASR system.

We employ the metrics BLEU3, BLEU4 (Pa-
pineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), ROUGE-L(Lin and Och, 2004) and
CIDEr(Vedantam et al., 2015) to evaluate the per-
formance. We follow the work in (Iashin and Rahtu,
2020a) on ActivityNet caption dataset which re-
ported BLEU3, BLEU4 and METEOR. We directly
apply the open-source tool 2 to evaluate our results
as in (Krishna et al., 2017).

1https://azure.microsoft.com/
en-us/services/cognitive-services/
speech-to-text/

2https://github.com/
ranjaykrishna/densevid_eval/tree/
9d4045aced3d827834a5d2da3c9f0692e3f33c1c

https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://github.com/ranjaykrishna/densevid_eval/tree/9d4045aced3d827834a5d2da3c9f0692e3f33c1c
https://github.com/ranjaykrishna/densevid_eval/tree/9d4045aced3d827834a5d2da3c9f0692e3f33c1c
https://github.com/ranjaykrishna/densevid_eval/tree/9d4045aced3d827834a5d2da3c9f0692e3f33c1c
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Methods V/T B-3 B-4 M R-L CIDEr
Bi-LSTM + TempoAttn (Shou et al., 2016) V - 0.87 8.15 - -
EMT(Zhou et al., 2018a) V - 4.38 11.55 27.44 38
VideoBERT(Sun et al., 2019b) V 6.80 4.04 11.01 27.50 49
VideoBERT (+S3D feature)(Sun et al., 2019b) V 7.59 4.33 11.94 28.80 55
CBT(Sun et al., 2019a) V - 5.12 12.97 30.44 64
DPC VT 7.60 2.76 18.08 - -
AT+video(Hessel et al., 2019) VT - 9.01 17.77 36.65 112
Transformer (w/o context) V 12.79 6.35 16.56 37.17 113
HCN V 13.74 7.26 17.11 38.35 121
Transformer (w/o context) VT 15.00 7.10 18.07 38.31 123
HCN VT 15.72 9.01 19.51 41.03 141

Table 1: The dense video event captioning results on the Youcook2 dataset, and these results are based on the
validation set. The column ”V/T” means whether the results come from uni-modal or multi-modal features. Trans-
former(w/o context) is the base method similar to (Hessel et al., 2019).

Methods V/T B-3 B-4 M
WLT (Rahman et al., 2019) V 3.04 1.46 7.23
MDVC (Iashin and Rahtu, 2020b) VT 4.52 1.81 10.09
BMT (Iashin and Rahtu, 2020a) VT 4.63 1.99 10.90
Transformer (w/o context) V 4.44 1.83 9.93
HCN V 5.54 2.48 10.90
Transformer (w/o context) VT 4.43 1.86 10.05
HCN VT 5.82 2.62 10.64

Table 2: The dense video event captioning results on
the Activitynet Captions dataset and these results are
based on the ground truth proposals of the validation
set. The column ”V/T” means whether the results come
from uni-modal or multi-modal features.

4.2 Implementation details

We develop our model based on the open-source
code 3 of MDVC(Iashin and Rahtu, 2020b), and
will release our code later. The embedding size
of video, hidden size of the multi-head, and feed-
forward layer are 1024, 512, and 128 respectively.
The number of the head is 8 and the dropout rate
is 0.4. We set the local context length kl as 10,
that is, the 10 previous and 10 future frames as
a local event-agnostic context, and one previous
event and one next event as a global event-aware
context for a trade-off between performance and
efficiency. We adopt the Adam optimizer (Kingma
and Ba, 2015) with learning rate of 1e-4, and set
two momentum parameters β1= 0.9 and β2= 0.98.
For label smoothing, and the smoothing rate is 0.4.
We set the batch size to 128. For model complexity,
the HCN model introduces only 3% more parame-
ters to the base model. All models are trained on 1
Tesla P100 GPUs for 4 hours for Youcook2 and 30
hours for Activitynet Captions.

Video features We sampled frames at 16 fps
and took the feature activations before the final

3https://github.com/v-iashin/MDVC

linear classifier of the S3D backbone and applied
3D average pooling to obtain a 1024-dimension
feature vector. We got 1 feature per second and set
k to 80.

4.3 Compare with State-of-the-art results

We demonstrate the results of our context-aware
model on the Youcook2 dataset in Table 3. There
are several existing baseline models: (1) Bi-LSTM
with Temporal Attention (Bi-LSTM + TempoAttn)
(Shou et al., 2016), which adopts Bi-LSTM lan-
guage encoder; (2) End-to-End Masked Trans-
former (EMT) (Zhou et al., 2018b), an transformer
based model; (3,4) VideoBERT (Sun et al., 2019b)
and Contrastive Bidirectional Transformer (CBT)
(Sun et al., 2019a), the pre-training based meth-
ods; (5) AT+Video (Hessel et al., 2019), the multi-
modal transformer method. Besides the work
(Shou et al., 2016) using a recurrent network, other
baseline methods adopted the transformer model.
Our context-aware model achieves the best results
for uni-modal video event captioning and outper-
forms the context-agnostic base model by a large
margin. Furthermore, our HCN model with multi-
modal inputs can achieve comparable results with
state-of-the-art results.

We list experimental results on a partial dataset
of ActivityNet Captions as (Iashin and Rahtu,
2020b) and ignore others on the full dataset as (Kr-
ishna et al., 2017) to make a fair comparison. Table
2 presents the results of baseline methods and HCN.
There are several baseline methods: (1) WLT (Rah-
man et al., 2019), a weakly supervised method with
multi-modal input; (2) multi-modal video event
captioning (MDVC) (Iashin and Rahtu, 2020b), a
transformer-based model with multi-modal inputs;
(3) BMT (Iashin and Rahtu, 2020a), a better use of

https://github.com/v-iashin/MDVC
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visual-audio information. Among these methods,
WLT encoded the context using a recurrent net-
work, while others are transformer models. HCN
outperforms the base context-agnostic methods to
a large extent and achieves state-of-the-art results.

From both experimental results, we can see that
our methods with context-aware information can
improve the base context-agnostic model by a large
margin for both unimodal or multi-modal input.

4.4 Ablation Study

Methods B-4 M R-L CIDEr
HCN 7.26 17.11 38.35 121.41
- type embedding 6.95 17.02 38.02 122.12
- future event 6.82 16.69 37.23 118.71
- past event 6.43 16.65 37.25 116.97
- GRU gate 6.50 16.71 37.86 119.16
- global context 6.94 17.10 37.68 121.06
- local context 7.17 17.03 37.93 119.87
Base (w/o context) 6.35 16.56 37.17 113.34

Table 3: Ablation study on the Youcook2 dataset. ’-’
means to remove the setting from the full HCN model.

We introduce the ablation study of the HCN
model on the Youcook2 dataset. In our experiment,
we use uni-modal input and illustrate the ablation
results in Table 3. We remove one component at
a time from the full HCN model to compare the
performance. Type embedding: we remove the type
embedding which is used to distinguish whether the
input is source or context event. From the results,
we can observe the performance drop by remov-
ing the type embedding. Past/Future context: we
investigate the model with the only past context
or future context and found that both past and fu-
ture contexts are effective and complementary with
each other. The model with the context in both
directions achieves the best result. Cross attention
gate: The GRU gate in the cross attention model is
more effective than the simple combination, which
shows that the GRU gate is better for modeling a
sequential context. Local/global context: From the
results in Table 3, we can see that the global con-
text is more effective than the local context. The
HCN model with both contexts outperforms all the
models. Context length. 1) With regards to the
local context, the results of 10 or 20 context frames
are similar with CIDEr as 141.1 and 141.3 corre-
spondingly, while the performance with 40 frames
drops with CIDEr as 138. 2) For the global context,
we have increased the number of previous and next
events as the global context, but there is no further

improvement. We found that irrelevant events even
bring noise or duplicated information to learn.

4.5 Qualitative Analysis
We analyzed several cases and found two interest-
ing videos shown in Figure 4 and 5. We depict the
visual thumbnail, ground-truth caption, predicted
results of our baseline and HCN methods.

Figure 4: In this case, it is hard to distinguish the
fine-grained object ”chicken” or ”pork” from both vi-
sual and the transcript (co-reference ”it”). The baseline
method would like to predict ”chicken” with a prior
bias for the ambiguous object leading to inconsistent
captions between events. Modeling event dependency
can make coherent captions. Besides, as shown in event
1, our HCN model can leverage local context to learn
the entity ”pork” from previous frames.

Figure 5: In this case, the baseline context-agnostic
model would like to generate the same captions given
similar visual inputs. With event-aware context, our
HCN model can sequentially generate reasonable sen-
tence sequences and reduce redundancy.

From the case in Figure 4, we can see that the
baseline context-agnostic model generates the cap-
tion of each event solely leading to inconsistent
captions. The baseline model predicts the ambigu-
ous object as ”chicken” for event 1 with prior bias,
but output the object as ”pork” for event 2. Our
HCN model can tackle this issue and is prone to
predict captions with a consistent object in the pro-
cedure. Besides, as shown in event 1, the entity
”pork” can also be learned from previous frames.
The context-aware model is effective in resolving
entity ambiguity and generating coherent captions.

The case in Figure 5 presents another challenge.
Since the visual cue of the three events is very
similar, the base context-agnostic model inevitably
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predicts the same caption as ”knead the dough”.
The HCN model can learn the prior dependency
between events, and hinder generating redundant
sentences for similar events in the video. Therefore,
the HCN model can generate the correct sentence
for event 3. However, although the model tries to
predict different captions for event 1, it is still hard
to recognize the fine-grained entity ”salt” from the
video, and all models predict the object by mistake.
Fine-grained entity recognition from a video is still
a challenging problem.

To sum up, from these cases we can see that, 1)
the neighboring context can provide extra informa-
tion to make an accurate and coherent prediction.
2) the HCN model can capture the temporal de-
pendency between events as prior knowledge, and
generate consistent and less duplicate captions be-
tween events. 3) fine-grained object recognition
from a video is still a challenging problem. Visual
coreference resolution (Kottur et al., 2018) can be
the future work to tackle this problem.

5 Related Work

Video Captioning The tasks mainly contain three
types of captioning: single-sentence captioning
(Xu et al., 2016; Wang et al., 2018b; Zhang et al.,
2018), paragraph-level captioning (Yu et al., 2016;
Lei et al., 2020; Ging et al., 2020) and event-level
captioning (Krishna et al., 2017; Li et al., 2018;
Wang et al., 2018a; Mun et al., 2019; Chen et al.,
2019; Zhou et al., 2018b). The difference between
these tasks is whether to generate one or multi-
ple sentences for the whole video or each sepa-
rate event of the video. In this paper, we focus
on the more challenging dense event-level video
captioning task to generate descriptions for each
event. Previous works (Krishna et al., 2017; Li
et al., 2018; Wang et al., 2018a) mainly exploited
recurrent neural models such as long short-term
memory network (LSTM) (Hochreiter and Schmid-
huber, 1997) or recurrent unit (GRU) (Cho et al.,
2014) to encode context. However, the recurrent
model suffers from modeling long dependency ef-
fectively. Zhou et al. (Zhang et al., 2018; Sun
et al., 2019b,a) introduced a self-attention model
(Vaswani et al., 2017) which generates the caption
based on the clip of each event solely. Compared
with these works, we are the first to implement a
novel video-level hierarchical context-aware net-
work for dense video event captioning.

Multi-modal Video Captioning Video natu-

rally has multi-modal inputs including visual,
speech text, and audio. Previous works explore
visual RGB, motion, optical flow features, audio
features (Hori et al., 2017; Wang et al., 2018b; Rah-
man et al., 2019) as well as speech text features (Shi
et al., 2019; Hessel et al., 2019; Iashin and Rahtu,
2020b) for captioning. According to the work in
(Shi et al., 2019; Hessel et al., 2019; Iashin and
Rahtu, 2020b), although the speech text is noisy
and informal, it can still capture better semantic
features and improve performance especially for
instructional videos. Later on, Lashin et al. (Iashin
and Rahtu, 2020b) proposed to embed all visual,
audio, and speech text for dense video event cap-
tioning. However, context-aware models are rarely
investigated in multi-modal video event captioning.
Therefore, we propose a novel attention model for
effectively encoding the local and global context to
tackle ambiguous object recognition and transcript
co-reference through jointly modeling multi-modal
inputs.

Context-aware Language Generation Our
work is inspired by context-aware language genera-
tion e.g. document-level neural machine translation
(NMT) (Miculicich et al., 2018; Maruf et al., 2019;
Ma et al., 2020). Miculicich et al. (Miculicich
et al., 2018) adopted a hierarchical context-aware
network in a structured and dynamic manner. Mar-
cuf et al. (Maruf et al., 2019) and Ma (Ma et al.,
2020) further explored a scalable and effective at-
tention mechanism. For the local neighbor-clip
and global inter-event context, we further design a
hierarchical context-aware network with a hybrid
mechanism of multi-modal video captioning to dy-
namically leverage various video-level information
through a gating scalar.

6 Conclusion and Discussion

Dense video event captioning is a typical video
understanding task to learn procedural events in
a long untrimmed video. It is essential to model
holistic video information for event understand-
ing. In this paper, we propose a novel hierarchical
context-aware network to encode both the local and
global context of long videos. Our HCN model is
effective in modeling context and outperforms the
context-agnostic model by a large margin.

In future work, we tend to extend our hierarchi-
cal network to further investigate how to effectively
attend to the long context to filter ambiguous and
irrelevant information.
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Satwik Kottur, José MF Moura, Devi Parikh, Dhruv Ba-
tra, and Marcus Rohrbach. 2018. Visual coreference
resolution in visual dialog using neural module net-
works. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 153–169.

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei,
and Juan Carlos Niebles. 2017. Dense-captioning

events in videos. In Proceedings of the IEEE inter-
national conference on computer vision, pages 706–
715.

Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara
Berg, and Mohit Bansal. 2020. Mart: Memory-
augmented recurrent transformer for coherent video
paragraph captioning. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2603–2614.

Yehao Li, Ting Yao, Yingwei Pan, Hongyang Chao,
and Tao Mei. 2018. Jointly localizing and describ-
ing events for dense video captioning. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7492–7500.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proceedings of the 42nd Annual Meet-
ing on Association for Computational Linguistics,
page 605. Association for Computational Linguis-
tics.

Shuming Ma, Dongdong Zhang, and Ming Zhou. 2020.
A simple and effective unified encoder for document-
level machine translation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3505–3511.
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