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Abstract

ASCENT is a fully automated methodology
for extracting and consolidating commonsense
assertions from web contents (Nguyen et al.,
2021). It advances traditional triple-based
commonsense knowledge representation by
capturing semantic facets like locations and
purposes, and composite concepts, i.e., sub-
groups and related aspects of subjects. In this
demo, we present a web portal that allows
users to understand its construction process,
explore its content, and observe its impact in
the use case of question answering. The demo
website! and an introductory video? are both
available online.

1 Introduction

Commonsense knowledge (CSK) is an enduring
theme of Al (McCarthy, 1960) that has been re-
cently revived for the goal of building more robust
and reliable applications (Monroe, 2020). Recent
years have witnessed the emerging of large pre-
trained language models (LMs), notably BERT (De-
vlin et al., 2018), GPT (Brown et al., 2020) and
their variants which significantly boosted the per-
formance of tasks requiring natural language under-
standing such as question answering and dialogue
systems (Clark et al., 2020). Although it has been
shown that such LMs implicitly store some com-
monsense knowledge (Talmor et al., 2019), this
comes with various caveats, for example regarding
degree of truth, or negation, and their commercial
development is inherently hampered by their low
interpretability and explainability.

Structured knowledge bases (KBs), in contrast,
give a great possibility of explaining and interpret-
ing outputs of systems leveraging the resources.
There have been great efforts towards build-
ing large-scale commonsense knowledge bases

'"https://ascent.mpi-inf.mpg.de
https://youtu.be/qMkJIXqu_Yd4
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(CSKBs), including expert-annotated KBs (e.g.,
Cyc (Lenat, 1995)), crowdsourced KBs (e.g., Con-
ceptNet (Speer and Havasi, 2012) and Atomic (Sap
et al., 2019)) and KBs built by automatic acqui-
sition methods such as WebChild (Tandon et al.,
2014, 2017), TupleKB (Mishra et al., 2017), Quasi-
modo (Romero et al., 2019) and CSKG (Ilievski
et al., 2020). Human-created KBs, although pos-
sessing high precision, usually suffer from low cov-
erage. On the other hand, automatically-acquired
KBs typically have better coverage, but also con-
tain more noise. Nonetheless, despite different
construction methods, these KBs are all based on a
simple subject-predicate-object model, which has
major limitations in validity and expressiveness.

We recently presented ASCENT (Nguyen et al.,
2021), a methodology for automatically collecting
and consolidating commonsense assertions from
the general web. To overcome the limitations of
prior works, ASCENT refines subjects with sub-
groups (e.g., circus elephant and domesticated ele-
phant) and aspects (e.g., elephant tusk and elephant
habitat), and captures semantic facets of assertions
(e.g., (lawyer, represents, clients, LOCATION: in
courts) or (elephant, uses, its trunk, PURPOSE: to
suck up watery)).

For a given concept, ASCENT searches through
the web with pattern-based search queries dis-
ambiguated using WordNet (Miller, 1995) hyper-
nymy. Then, irrelevant documents are filtered out
based on similarity comparison against the corre-
sponding Wikipedia articles. We then use a se-
ries of judicious dependency-parse-based rules to
collect faceted assertions from the retained texts.
The semantic facets, which come from preposi-
tional phrases and supporting adverbs are then la-
beled by a supervised classifier. Finally, asser-
tions are clustered using similarity scores from
word2vec (Mikolov et al., 2013) and a fine-tuned
RoBERTa (Liu et al., 2019) model.
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We executed the ASCENT pipeline for 10,000
prominent concepts (selected based on their respec-
tive number of assertions in ConceptNet) as pri-
mary subjects. In (Nguyen et al., 2021), we showed
that the content of the resulting CSKB (hereinafter
referred to as ASCENT KB) is a milestone in both
salience and recall. As extrinsic evaluation, we
conducted a comprehensive evaluation of the con-
tribution of CSK to zero-shot question answering
(QA) with pre-trained language models (Petroni
et al., 2020; Guu et al., 2020).

This paper presents a companion web portal of
the ASCENT KB, which enables the following in-
teractions:

1. Exploration of the construction process
of ASCENT, by inspecting word sense
and Wikipedia disambiguation, web search
queries, clustered statements, and source sen-
tences and documents.

Inspection of the resulting KB, starting from
subjects, predicates, objects, or examining
specific subgroups or aspects.

. Observation of the impact of structured knowl-
edge on question answering with pretrained
language models, comparing generated an-
swers across various CSKBs and QA settings.

The web portal is available at https://ascent.

mpi-inf.mpg.de, and a screencast demonstrating
the system can be found at https://youtu.be/
agMkJIXqu_Yd4.

2 ASCENT

Two major contributions of ASCENT are its ex-
pressive knowledge model, and its state-of-the-art
extraction methodology. Details are in the techni-
cal paper (Nguyen et al., 2021). In this section, we
revisit the most important points.

2.1 Knowledge model

ASCENT extends the traditional triple-based data
model in existing CSKBs in two ways.

Expressive subjects. Subjects in existing CSKBs
are usually single nouns, which implies two short-
comings: (i) different meanings for the same word
are conflated, and (ii) refinements and variants of
word senses are missed out. ASCENT has addressed
this problem with the following means:
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1. When searching for source texts, ASCENT
combines the target subject with an informa-
tive hypernym from WordNet to distinguish
different senses of the word (e.g., “bus public
transport” and “bus network topology” for the
subject bus).

. ASCENT refines subjects with multi-word
phrases into subgroups and aspects. For ex-
ample, subgroups for the subject bus would
be tourist bus and school bus, while one of its
aspects would be bus driver.

Semantic facets. The validity of commonsense
assertions is usually non-binary (Zhang et al., 2017
Chalier et al., 2020), and depends on specific tem-
poral and spatial circumstances (e.g., lions live for
10-14 years in the wild but for more than 15 years
in captivity). Moreover, CSK triples often ben-
efit from further context regarding causes/effects
and instruments (e.g., elephants communicate with
each other by creating sounds, beer is served in
bars). In ASCENT’s knowledge model, such infor-
mation is added to SPO triples via semantic facets.
ASCENT distinguished 8 types of facets: cause,
manner, purpose, transitive-object, degree, loca-
tion, temporal and other-quality.

2.2 Extraction pipeline

ASCENT is a pipeline operating in three phases:
source discovery, knowledge extraction and knowl-
edge consolidation. Fig. 1 illustrates the architec-
ture of the pipeline.

Source discovery. We utilize the Bing Web
Search API to obtain documents specific to each
subject, with search queries refined by the sub-
ject’s hypernyms in WordNet. We manually de-
signed query templates for 35 prominent hyper-
nyms (e.g., if subject sg has hypernym animal.n.01,
we produce the search query “sg animal facts”,
similarly for the hypernym professional.n.01, the
search query will be “sg job descriptions”). We
then compute the cosine similarity between the
bag-of-words representations of each obtained doc-
ument and a respective Wikipedia article to deter-
mine the relevance of the documents. Low-ranked
documents will be omitted in further steps.

Knowledge extraction. The extractors take in the
relevant documents and their outputs include: open
information extraction (OIE) tuples, list of sub-
groups and list of aspects. To obtain OIE tuples,
we extend the STUFFIE approach (Prasojo et al.,
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Figure 1: Architecture of the ASCENT extraction pipeline (Nguyen et al., 2021).

2018), a list of carefully crafted dependency-parse-
based rules, to pull out faceted assertions from the
texts. Then we classify each facet into one of the
eight semantic labels using a fine-tuned RoBERTa
model. For subgroups, noun phrases whose head
word is the target subject are collected as candi-
dates and then are clustered using the hierarchical
agglomerative clustering (HAC) algorithm on av-
erage word2vec representations. Finally, we col-
lect aspects from possessive noun chunks and SPO
triples where P is either “have”, “contain”, “be
assembled of” or “be composed of”.

Knowledge consolidation. We perform cluster-
ing on SPO triples and facet values. As SPO
triples, we first filter triple-pair candidates with
fast word2vec similarity. After that, advanced simi-
larity of triple pairs computed by another fine-tuned
RoBERTa model is fed to the HAC algorithm to
group the triples into semantically similar clusters.
For facet values, we group phrases with the same
head words together (e.g., “during evening” and
“in the evening”).

2.3 Web portal

The web portal (https://ascent.mpi-inf.mpg.

de) is implemented in Python using Django, and
hosted on an Nginx web server. The underlying
structured CSK is stored in a PostgreSQL database,
while for the QA part, statements of all CSKBs
are indexed and queried via Apache Solr, for fast
text-based querying. All components are deployed
on a virtual machine with access to 4 virtual CPUs
and 8 GB of RAM.

In the demonstration session, we show how users
can interact with the portal for exploring the KB
(Section 4.1), understanding the KB construction
(Section 4.2), and observing its utility for question
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answering (Section 4.3).

3 Commonsense QA setups

One common extrinsic use case of KBs is question
answering. Recently, it was observed that prim-
ing language models (LMs) with relevant context
can considerably benefit their performance in QA-
like tasks (Petroni et al., 2020; Guu et al., 2020).
In (Nguyen et al., 2021), to evaluate the contri-
bution of structured CSK to QA, we conducted a
comprehensive evaluation consisting of four differ-
ent setups, all based on the above idea.

1. In masked prediction (MP), LMs are asked
to predict single masked tokens in generic
sentences.

In free generation (FG), LMs arbitrarily gen-
erate answer sentences to given questions.

. Guided generation (GG) extends free genera-
tion by answer prefixes that prevent the LMs
from evading answering.

. Span prediction (SP) is the task of locating
the answer of a question in provided context.

Examples of the QA setups can be seen in Ta-
ble 1. Generally, given a question, our system
will retrieve from CSKBs assertions relevant to it,
and then use the assertions as additional context
to guide the LMs. In the ASCENT demonstrator,
we provide a web interface for experimenting with
all of those QA setups with context retrieved from
several popular CSKBs.

4 Demonstration experience

In the demonstration session, attendees will experi-
ence three main functionalities of our demonstra-
tion system.
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Setup  Input Sample output

Elephants eat [MASK]. [SEP] Ele-
MP phants eat roots, grasses, fruit, and
bark, and they eat a lot of these things.

everything  (15.52%),
trees (15.32%), plants
(11.26%)

C: Elephants eat roots, grasses, fruit,
and bark, and they eat...

They eat a lot of
grasses, fruits, and...

FG Q: What do elephants eat?

A:

C: Elephants eat roots, grasses, fruit,  Elephants eat a lot of
GG and bark, and they eat... things.

Q: What do elephants eat?
A: Elephants eat

question="What do elephants eat?”
SP context="Elephants eat roots, grasses,
fruit, and bark, and they eat...”

start=14, end=46,
answer="roots, grasses,
fruit, and bark™

Table 1: Examples of QA setups (Nguyen et al., 2021).

4.1 Exploring the ASCENT KB

Concept page. Suppose a user wants to know
which knowledge ASCENT stores for elephants.
They can enter the concept into the search field in
the top right of the start page, and select the first
result from the autocompletion list, or press enter,
to arrive at the intended concept. The resulting
website (see Fig. 2) is divided into three main areas.

At the top left, they can inspect an image from
https://pixabay.com, the WordNet synset used
for disambiguation, the Wikipedia page used for
result filtering, and a list of alternative lemmas, if
existing.

At the top right, users can see subgroups and
related aspects, which in our knowledge represen-
tation model, can carry their own statements. This
way, they can learn that the most salient aspects of
elephants are their trunks, tusks and ears, or that
elephant trunks have more than 40,000 muscles.

The body of the page, presents the assertions,
organized into groups of same-predicate assertions.
In each group, assertions are sorted by their fre-
quency displayed beside their objects. For example,
the most commonly mentioned foods of elephants
are grasses, fruits, and plants. Many assertions
come with a red asterisk. This indicates that the as-
sertion comes with semantic facets. When clicking
on an assertion, it will show a small box display-
ing an SVG-based visualisation of the assertion in
which we illustrate all elements of the assertion: its
subject, predicate, object, facet labels and values,
frequency of the assertion as well as frequency of
each facet. For example, one can see that the pur-
pose of elephants using their trunks is to suck up
water.

Searching and downloading assertions. Alter-
natively to exploring statements starting from a
subject, users can start from a search functional-
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ity under the Browse menu. This way, they can
search, for instance, for all concepts that eat grass
(capybara, zebra, kangaroo, ...).

The website also provides a JSON-formatted
data dump (678MB) of all 8.9 million assertions
extracted by the pipeline and their corresponding
source sentences and documents. This dataset is
also accessible via the HuggingFace Datasets pack-

age’.

4.2 Inspecting the construction of assertions

For many downstream use cases, it is important to
know about the provenance of information.

Users can inspect general properties of the con-
struction process by observing the WordNet lemma
and the Wikipedia page used for filtering, as well
as inspect specific statistics about the number of
retained websites, sentences, and assertions, in a
panel at the bottom of subject pages (e.g., 435 web-
sites were retained for elephant, from which 50k
OpenlE assertions could be extracted).

Furthermore, users can look deeply into the con-
struction process of each assertion on its own dedi-
cated page, which displays the following:

1. Clustered triples: These are triples that were
grouped together in the knowledge consolida-
tion phase (cf. Section 2.2), where the most
frequent triple was selected as cluster repre-
sentative. For example, for the assertion (lion,
eat, zebra, DEGREE: mostly) (14), the cluster
contains: (lion, eat, zebra) (9), (lion, prey on,
zebra) (2), (lion, feed on, zebra) (1), (lion,
feed upon, zebra) (1), (lion, prey upon, zebra)
(1). The numbers in parentheses indicate their
corresponding frequency.

2. Facets: The assertion’s facets are presented in
a table whose columns are facet value, facet
type and clustered facets. The frequency of
each clustered facet is also indicated.

3. Source sentences and documents: Finally, we
exhibit the sentences from which the asser-
tions were extracted and their parent docu-
ments (in the form of URLSs). Furthermore, in
the extraction phase, we also recorded the po-
sition of assertion elements (i.e., subject, pred-
icate, object, facet) in the source sentences.

*https://huggingface.co/datasets/

ascent_kb
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asian elephant 825

indian elephant 135

59 salient subgroups of Elephant

african elephant 773

female elephant 133
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Elephant
143 salient aspects of Elephant

WordNet

Wikipedia Elephant trunk 333 tusk 167 ear 166
2,828 assertions
Elephant is ... Elephant has ...
the largest land animals * 44 26teeth*® 8
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endangered * long trunk
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Bing query elephant animal facts

Bing results 500 Retained sites

Sites crawled successfully
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more

male elephant 128
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indesert fruit *

18
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insavanna’ root 16

more... more...

470 OpenlE assertions 50,229

435 Relevant assertions 4,085

28,319 Clustered assertions 2,828

Figure 2: Example of ASCENT’s page for the concept elephant.

We show that information to users by high-
lighting each kind of element with a different
color in the source sentences.

4.3 Experimenting with commonsense QA

The third functionality experienced in the demo ses-
sion is the utilization of commonsense knowledge
for question answering (QA).

Input. There are four main parts in the input in-
terface for the QA experiment:

1. QA setup: The user chooses one QA setup
they want to experiment with. Available
are Masked Prediction, Span Prediction and
Free/Guided Generation. If Masked Predic-
tion is selected, the user can choose how many
answers the LM should produce. For the Gen-
eration settings, users can provide an answer
prefix to avoid overly evasive answers.

. Input query: The user enters the text question
as input. The question can be in the form
of a masked sentence (in the case of Masked
Prediction), or a standard natural-language
question (in other setups).

. Retrieval options: The user can select one
supported retrieval method and the number of
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assertions to be retrieved per CSKB for each
question.

. Context sources: The user selects the sources
of context (i.e., “no context”, CSKBs and
“custom context”). If a CSKB is selected, the
system will retrieve from that KB assertions
relevant to the given input question. If “cus-
tom context” is selected, user must then enter
their own content. The “no context” option is
available for all setups but Span Prediction.

Output. The QA system presents its output in the
form of a table which has three columns: Source,
Answer(s) and Context. For Masked Prediction
and Span Prediction, answers are printed with
their respective confidence scores, meanwhile for
Free/Guided Generation, only answers are printed.
For Span Prediction in which answers come di-
rectly from given contexts, we also highlight the
answers in the contexts.

An example of the QA demo’s output for the
question “What do rabbits eat?” under the Free
Generation setting can be seen in Fig. 3. One can
observe that language models’ predictions are heav-
ily influenced by given contexts. Without context,
GPT-2 is only able to generate an evasive answer.



When being given context, it tends to re-generate
the first sentence in the context first, (e.g., see the
answers aligning with ASCENT, TupleKB and Con-
ceptNet in Fig. 3). For the context retrieved from
Quasimodo, GPT-2 is able to overlook the erro-
neous first sentence, however its generated answer
is rather elusive despite the fact that subsequent
statements in the context all contain direct answers
to the question.

The question “Bartenders work in [MASK].” un-
der the Masked Prediction setting is another ex-
ample for the influence of context on LMs’ output.
Since bartender is a subject well covered by the As-
CENT KB, the assertions pulled out are all relevant
(i.e., Bartenders work in bar. Bartenders work in
restaurant. ..) which help guide the LM to a good
answer (bar). Meanwhile, because this subject is
not present in TupleKB, its retrieved statements are
rather unrelated (Work capitals have firm. Work
experiences include statement. . .). Given that, the
top-1 prediction for this KB was tandem which is
obviously an evasive answer.

5 Related work

CSKB construction. Cyc (Lenat, 1995) is the
first attempt to build a large-scale common-
sense knowledge base. Since then, there have
been a number of other CSKB construction
projects, notably ConceptNet (Speer and Havasi,
2012), WebChild (Tandon et al., 2014, 2017), Tu-
pleKB (Mishra et al., 2017), and more recently
Quasimodo (Romero et al., 2019), Dice (Chalier
et al., 2020), Atomic (Sap et al., 2019), and
CSKG (Ilievski et al., 2020). The early approach
to building a CSKB is based on human annota-
tion (e.g., Cyc with expert annotation and Con-
ceptNet with crowdsourcing annotation). Later
projects tend to use automated methods based on
open information extraction to collect CSK from
texts (e.g., WebChild, TupleKB and Quasimodo).
Lately, CSKG is an attempt to combine various
commonsense knowledge resources into a single
KB. The common thread of these CSKB is that
they are all based on SPO triples as knowledge
representation, which has shortcomings (Nguyen
etal., 2021). ASCENT is the first attempt to build
a large-scale CSKB with assertions equipped with
semantic facets built upon the ideas of semantic
role labeling (Palmer et al., 2010).

KB visualization. Most CSKBs share their con-
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tent via CSV files. Some, like ConceptNet*, We-
bChild’, Atomic® and Quasimodo7, have a web por-
tal to visualise their assertions. The most common
way for CSKB visualisation is to use a single page
for each subject and group assertions by predicate
(e.g., in ConceptNet and WebChild). Quasimodo,
on the other hand, implements a simple search in-
terface to filter assertions and presents assertions
in a tabular way (Romero and Razniewski, 2020).
The ASCENT demo has both functionalities: ex-
hibiting assertions of each concept in a separated
page, and supporting assertion filtering. Our demo
also uses an SVG-based visualisation of assertions
with semantic facets, which are a distinctive feature
of the ASCENT knowledge model.

Context in LM-based question answering.
Priming large pretrained LMs with context in
QA-like tasks is a relatively new line of research
(Petroni et al., 2020; Guu et al., 2020). In our orig-
inal paper, we made the first attempt to evaluate
the contribution of CSKB assertions to QA via four
different setups based on that idea. While others
use commonsense knowledge for (re-)training lan-
guage models (Hwang et al., 2021; Ilievski et al.,
2021; Ma et al., 2021; Mitra et al., 2020), to the
best of our knowledge, our demo system is the first
to visualize the effect of priming vanilla language
models, i.e., without task-specific retraining.

6 Conclusion

We presented a web portal for a state-of-the-art
commonsense knowledge base—the ASCENT KB.
It allows users to fully explore and search the
CSKB, inspect the construction process of each
assertion, and observe the impact of structured
CSKBs on different QA tasks. We hope that the
portal enables interesting interactions with the As-
CENT methodology, and that the QA demo allows
researchers to explore the potentials of combining
structured data with pre-trained language models.
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