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Abstract

Our understanding of why Transformer-based
NLP models have been achieving their recent
success lags behind our ability to continue
scaling these models. To increase the trans-
parency of Transformer-based language mod-
els, we present Ecco – an open-source1 li-
brary for the explainability of Transformer-
based NLP models. Ecco provides a set of
tools to capture, analyze, visualize, and in-
teractively explore inner mechanics of these
models. This includes (1) gradient-based fea-
ture attribution for natural language generation
(2) hidden states and their evolution between
model layers (3) convenient access and exami-
nation tools for neuron activations in the under-
explored Feed-Forward Neural Network sub-
layer of Transformer layers. (4) convenient ex-
amination of activation vectors via canonical
correlation analysis (CCA), non-negative ma-
trix factorization (NMF), and probing classi-
fiers. We find that syntactic information can
be retrieved from BERT’s FFNN representa-
tions in levels comparable to those in hidden
state representations. More curiously, we find
that the model builds up syntactic information
in its hidden states even when intermediate
FFNNs indicate diminished levels of syntac-
tic information. Ecco is available at https:
//www.eccox.io/.2

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has been powering many recent advances in NLP. A
breakdown of this architecture is provided by Alam-
mar (2018) and will help understand this paper’s
details. Pre-trained language models based on the
architecture (Liu et al., 2018; Devlin et al., 2018;
Radford et al., 2018, 2019; Liu et al., 2019; Brown

1The code is available at https://github.com/
jalammar/ecco

2Video demo available at https://youtu.be/
bcEysXmR09c

Figure 1: A set of tools to make the inner work-
ings of Transformer language models more trans-
parent. By introducing tools that analyze and visu-
alize input saliency (for natural language generation),
hidden states, and neuron activations, we aim to enable
researchers to build more intuition about Transformer
language models.

et al., 2020) continue to push the envelope in vari-
ous tasks in NLP and, more recently, in computer
vision (Dosovitskiy et al., 2020). Our understand-
ing of why these models work so well, however,
still lags behind these developments.

Ecco provides tools and interactive explorable
explanations3 aiding the examination and intuition
of:

• Input saliency methods that score input to-
kens importance to generating a token are dis-
cussed in section 2.

• Hidden state evolution across the layers of
the model and what it may tell us about each
layer’s role. This is discussed in section 3.

• Neuron activations and how individual and
groups of model neurons spike in response
to inputs and to produce outputs. This is dis-
cussed in section 4.

3http://worrydream.com/
ExplorableExplanations/

https://ar.pegg.io
https://www.eccox.io/
https://www.eccox.io/
https://github.com/jalammar/ecco
https://github.com/jalammar/ecco
https://youtu.be/bcEysXmR09c
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• Non-negative matrix factorization of neu-
ron activations to uncover underlying pat-
terns of neuron firings, revealing firing pat-
terns of linguistic properties of input tokens.
This is discussed in subsection 4.2.

Ecco creates rich, interactive interfaces directly
inside Jupyter notebooks (Ragan-Kelley et al.,
2014) running on pre-trained models from the Hug-
ging Face transformers library (Wolf et al., 2020).
Currently it supports GPT2 (Radford et al., 2018),
BERT (Devlin et al., 2018), and RoBERTa (Liu
et al., 2019). Support for more models and explain-
ability methods is under development and open for
community contribution.

2 Input Saliency

When a computer vision model classifies a picture
as containing a husky, an input saliency map (Fig-
ure 2) can tell us whether the classification was
made due to the visual properties of the animal
itself or because of the snow in the background
(Ribeiro et al., 2016). This is a method of attribu-
tion explaining the relationship between a model’s
output and inputs – helping us detect errors and
biases to better understand the system’s behavior.

Figure 2: Input saliency map attribute a model’s predic-
tion to input pixels.

Multiple methods exist for assigning feature im-
portance scores to the inputs of an NLP model (Li
et al., 2015; Arrieta et al., 2020). Instead of as-
signing scores to pixels, in the NLP domain these
methods assign scores to input tokens. The litera-
ture is most often concerned with this application
for classification tasks rather than natural language
generation. Ecco enables generating output tokens
and then interactively exploring the saliency values
for each output token.

2.1 Saliency View

In Figure 3, we see an experiment to probe the
world knowledge of GPT2-XL. We ask the model
to output William Shakespeare’s date of birth. The
model is correctly able to produce the date (1564,

but broken into two tokens: 15 and 64, because
the model’s vocabulary does not include 1564 as a
single token). By hovering on each token, Ecco im-
poses each input’s saliency value as a background
color. The darker the color, the more that input
token is attributed responsibility for generating this
output token.

(a) Input saliency for the first output token, 15 (shown by
hovering over 15).

(b) Input saliency for the second output token, 64 (shown by
hovering over 64).

Figure 3: GPT2-XL is able to tell the birth date of
William Shakespeare. It expresses it in two tokens:
15 and 64. Ecco shows the input saliency of each of
these tokens using Gradient X Inputs. The darker the
background color of the token is, the higher its saliency
value.

2.2 Detailed Saliency View
Ecco also provides a detailed view to see the attri-
bution values in more precision. Figure 4 demon-
strates this interactive interface which displays the
normalized attribution value as a percentage and
bar next to each token.

Figure 4: Ecco’s detailed input saliency view for the
token 64 (shown by hovering over 64).

About Gradient-Based Saliency Ecco calcu-
lates feature importance based on Gradients X
Inputs (Denil et al., 2015; Shrikumar et al.,
2017) – a gradient-based saliency method shown
by Atanasova et al. (2020) to perform well across
various datasets for text classification in Trans-
former models.

Gradients X Inputs can be calculated using the
following formula:

‖∇Xifc(X1:n)Xi‖2
Where Xi is the embedding vector of the input

token at timestep i, and ∇Xifc(X1:n) is the back-
propagated gradient of the score of the selected
token. The resulting vector is then aggregated into
a score via calculating the L2 norm as this was
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Figure 6: Similarity of hidden states and
FFNN activations in a distilled BERT model.
Ecco enables capturing neuron activations and
comparing activation space similarity using Pro-
jection Weighted Canonical Correlation Analysis
(PWCCA).

Figure 7: Evolution of the rankings of a list of
countries across the 12 layers of GPT2-XL. The
prediction represented here is generated using GPT2-XL,
on the input sequence "The countries of the
European Union are:\n1. Austria\n2.
Belgium\n3. Bulgaria\n4". Output decoding
strategy used is top50 sampling.

empirically shown by Atanasova et al. (2020) to
perform better than other methods.

3 Hidden States Examination

Another method to glean information about the
inner workings of a language is by examining the
hidden states produced by every Transformer block.
Ecco provides multiple methods to examine the hid-
den states and to visualize how they evolve across
the layers of the model.

3.1 Canonical Correlation Analysis (CCA)
Recent work has used Canonical Correlation Anal-
ysis (Hotelling, 1992) to examine language model
internal representations. For example, Voita et al.
(2019) used hidden state to analyze the flow of
information inside Transformers and how the infor-
mational content of hidden states compares across
tasks. Singh et al. (2019) examined internal repre-
sentations of multilingual BERT. Wu et al. (2020)
compared the internal representations of multiple
NLP models. More specifically, these works used
recently developed methods like SVCCA (Raghu
et al., 2017), PWCCA (Morcos et al., 2018) and
CKA (Kornblith et al., 2019).

Ecco bundles these methods (cca(),
svcca(), pwcca(), and cka()) to allow
convenient similarity comparison of language
model representations. This includes hidden
state representations, yet also extends to neuron

activations (Ecco pays special attention to the
neurons after the largest dense FFNN layer as can
be seen in Section 4). Figure 6 shows a comparison
of the hidden states and FFNN neuron activations
as the model processes textual input. All three
CCA methods take two activation vectors (be they
hidden states or neuron activations) and assign a
similarity score from zero (no correlation) to one
(the two inputs are linear transformations of each
other).

3.2 Ranking of Output Token Across Layers

Nostalgebraist (2020) presents compelling visual
treatments showcasing the evolution of token rank-
ings, logit scores, and softmax probabilities for the
evolving hidden state through the various layers of
the model. The author does this by projecting the
hidden state into the output vocabulary using the
language model head (which is typically used only
for the output of the final layer).

Ecco enables creating such plots as can be seen
in Figure 7. More examples showcasing this
method can be found in(Alammar, 2021).

3.3 Comparing Token Rankings

Ecco also allows asking questions about which of
two tokens the model chooses to output for a spe-
cific position. This includes questions of subject-
verb agreement like those posed by Linzen et al.
(2016). In that task, we want to analyze the model’s
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Figure 8: Rankings, across model layers, of which to-
ken should go in the blank DistillGPT-2 is prompted
by the prompt shown at the top, while limited to two
output tokens shown on the bottom.

capacity to encode syntactic number (whether the
subject we’re addressing is singular or plural) and
syntactic subjecthood (which subject in the sen-
tence we’re addressing). Put simply, fill-in the
blank. The only acceptable answers are 1) is 2)
are:

The keys to the cabinet
Using Ecco, we can present this sentence to

DistilGPT-2, and visualize the rankings of is and
are using ecco.rankings watch(), which
creates Figure 8. The first column shows the rank-
ings of the token is as the completion of the sen-
tence, and the second column shows those for the
token are for that same position. The model ulti-
mately ranks are as the more probable answer, but
the figure raises the question of why five layers fail
to rank are higher than is, and only the final layer
sets the record straight.

4 Neuron Activations

The Feed-Forward Neural Network (FFNN) sub-
layer is one of the two major components inside a
Transformer block (in addition to self-attention). It
often makes up two-thirds of a Transformer block’s
parameters, thus providing a significant portion of
the model’s representational capacity. Previous
work (Karpathy et al., 2015; Strobelt et al., 2017;

Poerner et al., 2018; Radford et al., 2017; Olah
et al., 2017, 2018; Bau et al., 2018; Dalvi et al.,
2019; Rethmeier et al., 2020) has examined neuron
firings inside deep neural networks in both the NLP
and computer vision domains. Ecco makes it easier
to examine neuron activations by collecting them
and providing tools to analyze them and reduce
their dimensionality to extract underlying patterns.

4.1 Probing classifiers
Probing classifiers (Veldhoen et al., 2016; Adi et al.,
2016; Conneau et al., 2018) are the most com-
monly used method for associating NLP model
components with linguistic properties (Belinkov
and Glass, 2019). Ecco currently supports linear
probes with control tasks (Hewitt and Liang, 2019).
Section 5 is a case study on using this method to
probe FFNN representations for part-of-speech in-
formation.

4.2 Uncovering underlying patterns with
NMF

By first capturing the activations of the neurons in
FFNN layers of the model and then decomposing
them into a more manageable number of factors
through NMF, we can shed light on how various
neuron groups respond to input tokens.

Figure 9 shows intuitively interpretable firing
patterns extracted from raw firings through NMF.
This example, showcasing ten factors applied to
the activations of layer #0 in response to a text
passage, helps us identify neurons that respond to
syntactic and semantic properties of the input text.
The factor highlighted in this screenshot, factor 5,
seems to correlate with pronouns.

This interface can compress a lot of data that
showcase the excitement levels of factors (and,
by extension, groups of neurons). The sparklines
(Tufte, 2006) on the left give a snapshot of the
excitement level of each factor across the entire
sequence. Interacting with the sparklines (by hover-
ing with a mouse or tapping) displays the activation
of the factor on the tokens in the sequence on the
right.

4.3 About Matrix Factorization of Neuron
Activity

Figure 10 explains the intuition behind dimension-
ality reduction using NMF. This method can reveal
underlying behavior common to groups of neurons.
It can be used to analyze the entire network, a sin-
gle layer, or groups of layers.
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Figure 9: Individual factor view: Activation pattern in response to pro-
nouns Ten Factors extracted from the activations the neurons in Layer 0 in
response to a passage from Notes from Underground. Hovering on the line
graphs isolates the tokens of a single factor and imposes the magnitude of
the factor’s activation on the tokens as a background color. The darker the
color the higher the activation magnitude. In addition to the pronouns fac-
tor highlighted in the figure, we can see factors that focus on specific regions
of the text ( beginning , middle , and end ). This indicates neurons that are
sensitive to positional encodings. View this interface online at (Alammar,
2020).

Neuron token 1 token 2 token 3

0 0 2 0

1 0.1 0 0

2 0 0.9 0

...

18,432 1.5 0.6 0

18,432 FFNN Neuron Activations

Factor token 1 token 2 token 3

0 0 1.2 0

... 0.2 0.5 0

10 0 0 0.3

Matrix Decomposition
e.g. NMF (Non-negative Matrix 
Factorization), PCA, or ICA

10 Underlying Factors

Figure 10: Decomposition of
activations matrix using Non-
negative Matrix Factorization.
NMF reveals underlying patterns
of neuron activations inside one
layer, a collection of layers, or the
entire model.

.

5 Case study: Probing FFNN neuron
activations for PoS information

In this section, we use Ecco to examine the rep-
resentations of BERT’s Feed-Forward Neural Net-
work using probing classifiers. Our work is most
similar to Durrani et al. (2020). There has been
plenty of work on probing BERT focused on the
hidden states, but none to our knowledge that
trained probes to extract token information from
the FFNN representation.

5.1 Method
We first forward-pass the entire dataset through
BERT. We capture all the hidden states of all the
model’s layers as well as the neuron activations of
the FFNN sublayers (namely, the widest layer com-
posed of 3072 neurons after the GELU activation).
We then train external linear classifiers to predict
the PoS of the tokens in the dataset and then report
the accuracy on the test set. Because probes have
been criticized as memorizing the inputs, we report
selectivity scores (Hewitt and Liang, 2019) next
to each accuracy score. Selectivity is metric that
is calculated by generating a control task where
each token is assigned a random part-of-speech
tag. A separate probe is then trained on this con-
trol set. The difference in accuracy between the
actual dataset and the control dataset is the selec-

tivity score. The higher selectivity is, the more
we can say that the probe really extracted part-of-
speech data from the representation of the model
as opposed to simply memorizing the training set.

5.2 Experimental Setup

We use the Universal Dependencies version 2 part-
of-speech dataset in English. We extract 10,000
tokens and split them into a 67% and 33% train/test
sets. We train linear probes for 50 epochs using the
Adam optimizer. We run experiments with learning
rates (0.1, 0.001, 1e-5) and report those of the best
achieving learning rate (0.001). We run five trials
and report their average results. For every trial,
we train a probe for each permutation of 1) model
layer 2) hidden state vs. FFNN activations 3) actual
labels vs. random controls to calculate selectivity
scores.

5.3 Results

We report accuracy and selectivity scores in Ta-
ble 1. We observe that FFNN neuron activations
do encode PoS information at levels comparable to
hidden states. We find intriguing the divergence of
scores in layers 2 and 3 between FFNN activations
(which drop slightly) and hidden states (which con-
tinue increasing). Future work can examine if this
divergence points towards layers storing different
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FFNN Activations Hidden States (context. embeds)
layer id accuracy selectivity accuracy selectivity
Embed - - - - - - 87.6 (±0.5) 6.1 (±1.1)
0 90.5 (±0.4) 9.1 (±0.7) 92.2 (±0.3) 13.6 (±0.8)
1 93.3 (±0.5) 14.8 (±0.8) 93.6 (±0.4) 17.9 (± 1)
2 87.3 (±0.5) 35.9 (±0.5) 94.2 (±0.3) 20.9 (±0.8)
3 84.7 (±0.5) 34.6 (±0.3) 94.7 (±0.3) 23.9 (±0.7)
4 94.2 (±0.3) 18.9 (±0.6) 94.9 (±0.2) 27.5 (±0.6)
5 94.6 (±0.3) 22.2 (±0.6) 94.8 (±0.3) 31.5 (±0.7)
6 93.6 (±0.5) 27.1 (±1.1) 94.1 (±0.4) 34.3 (±0.8)
7 92.8 (±0.6) 31.5 (±0.5) 93.7 (±0.6) 36.0 (±0.4)
8 91.9 (±0.6) 34.4 (±1.1) 92.4 (±0.7) 37.1 (±0.5)
9 90.5 (±0.4) 35.2 (±0.4) 91.6 (±0.6) 37.3 (±0.7)
10 88.8 (±0.5) 36.4 (±0.6) 90.6 (±0.5) 37.3 (±0.9)
11 87.9 (±0.5) 36.5 (±0.8) 89.0 (±0.7) 36.7 (±1.1)

Table 1: Probing BERT representations for Part-of-Speech information. We can see that raw embeddings already
have some PoS information encoded, but the low selectivity indicates this accuracy score is inflated. (Embed
layer) The model continues to build PoS information through the first half of the network, increasing in both
accuracy and selectivity (Layers 0-5). FFNN representations are comparable to hidden states in the quantity of
PoS information our probes can extract. It is interesting that a layer can increase PoS information despite its
FFNN showing lower accuracy (layer 3). This could indicate that different FFNN sublayers encode different
subsets of PoS information and the model is able to extract only the subset of information that layer specializes in.

subsets of PoS information which the model is able
to collect and assemble as it builds up its internal
representations across layers.

6 System Design

Ecco is implemented as a python library that pro-
vides a wrapper around a pre-trained language
model. The wrapper collects the required data
from the language model (e.g., neuron activations,
hidden states) and makes the needed calculations
(e.g., input saliency, NMF dimensionality reduc-
tion). The interactive visualizations are built using
web technologies manipulated through D3.js (Bo-
stock et al., 2012).

Ecco is built on top of open source libraries
including Scikit-Learn (Pedregosa et al., 2011),
Matplotlib (Hunter, 2007), NumPy (Walt et al.,
2011), PyTorch (Paszke et al., 2019) and Trans-
formers (Wolf et al., 2020). Canonical Correla-
tion Analysis is calculated using the code open-
sourced4 by the authors (Raghu et al., 2017; Mor-
cos et al., 2018; Kornblith et al., 2019).

7 Limitations

Ecco’s input saliency feature is currently only sup-
ported for GPT2-based models, while neuron ac-

4https://github.com/google/svcca

tivation collection and dimensionality reduction
are supported for GPT2 in addition to BERT and
RoBERTa.

We echo the sentiment of Leavitt and Morcos
(2020) that visualization has a role in building in-
tuitions, but that researchers are encouraged to use
that as a starting point towards building testable
and falsifiable hypotheses of model interpretability.

8 Conclusion

As language models proliferate, more tools are
needed to aid debugging models, explain their
behavior, and build intuitions about their inner-
mechanics. Ecco is one such tool combining ease
of use, visual interactive explorables, and multiple
model explainability methods.

Ecco is open-source software5 and contributions
are welcome.

Acknowledgments

This work was improved thanks to feedback pro-
vided by Abdullah Almaatouq, Anfal Alatawi,
Christopher Olah, Fahd Alhazmi, Hadeel Al-
Negheimish, Hend Al-Khalifa, Isabelle Augen-
stein, Jasmijn Bastings, Najwa Alghamdi, Pepa
Atanasova, and Sebastian Gehrmann.

5https://github.com/jalammar/ecco

https://github.com/google/svcca
https://github.com/jalammar/ecco


255

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. arXiv preprint arXiv:1608.04207.

J Alammar. 2018. The illustrated transformer.

J Alammar. 2020. Interfaces for explaining transformer
language models.

J Alammar. 2021. Finding the words to say: Hidden
state visualizations for language models.

Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez,
Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-
berto Barbado, Salvador Garcı́a, Sergio Gil-López,
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