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Abstract
TEXTOIR is the first integrated and visualized
platform for text open intent recognition. It
is composed of two main modules: open in-
tent detection and open intent discovery. Each
module integrates most of the state-of-the-art
algorithms and benchmark intent datasets. It
also contains an overall framework connecting
the two modules in a pipeline scheme. In addi-
tion, this platform has visualized tools for data
and model management, training, evaluation
and analysis of the performance from different
aspects. TEXTOIR provides useful toolkits
and convenient visualized interfaces for each
sub-module1, and designs a framework to im-
plement a complete process to both identify
known intents and discover open intents2.

1 Introduction

Analyzing user intents plays a critical role in
human-machine interaction services (e.g., dialogue
systems). However, many current dialogue systems
are confined to recognizing user intents in closed-
world scenarios, and they are limited to handle the
uncertain open intents. As shown in figure 1, it is
easy to identify specific purposes, such as Flight
Booking and Restaurant Reservation. Nevertheless,
as the user intents are varied and uncertain, pre-
defined categories may be insufficient to cover all
user needs. That is, there may exist some unrelated
user utterances with open intents. It is valuable
to distinguish these open intents from known in-
tents, which is helpful to improve service qualities,
and further discover fine-grained classes for mining
potential user needs.

We divide open intent recognition (OIR) into
two modules: open intent detection and open in-
tent discovery. The first module aims to identify
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1Toolkit code: https://github.com/thuiar/TEXTOIR
2Demo code: https://github.com/thuiar/TEXTOIR-DEMO

Figure 1: An example for Open Intent Recognition.

n-class known intents and detect one-class open in-
tent (Yan et al., 2020; Lin and Xu, 2019; Shu et al.,
2017). It can identify known classes but fail to
discover specific open classes. The second module
further groups the one-class open intent into multi-
ple fine-grained intent-wise clusters (Vedula et al.,
2020; Lin et al., 2020; Perkins and Yang, 2019).
Nevertheless, the adopted clustering techniques are
not able to identify known categories.

The two modules have achieved huge progress
with various advanced methods on benchmark
datasets. However, there still exist some issues,
which bring difficulties for future research. Firstly,
there are no unified and extensible interfaces to inte-
grate various algorithms for two modules, bringing
challenges for further model development. Sec-
ondly, the current methods of the two modules lack
convenient visualized tools for model management,
training, evaluation and result analysis. Thirdly,
the two modules both have some limitations for
OIR. That is, neither of them can identify known
intents and discover open intents simultaneously.
Therefore, OIR remains at the theoretical level, and
it needs an overall framework to connect the two
modules for finishing the whole process.

To address these issues, we propose TEXTOIR,
the first integrated and visualized text open intent
recognition platform. The platform has the follow-
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Figure 2: The architecture of the TEXTOIR platform.

ing features:

(1) It provides toolkits for open intent detection
and open intent discovery, respectively. The toolk-
its contain flexible interfaces for data, configura-
tion, backbone and method integration. Specifi-
cally, it integrates a series of advanced models for
two modules. Each module supports a complete
workflow, including data and backbone preparation
with different assigned parameters, training, and
evaluation. It provides standard and convenient
modules to add new methods. More detailed in-
formation can be found on https://github.com/

thuiar/TEXTOIR.

(2) It designs an overall framework combining
two sub-modules naturally, achieving a complete
OIR process. The overall framework integrates the
advantages of two modules, which can automat-
ically identify known intents and discover open
intent clusters with recommended keywords.

(3) It provides a visualized surface for utiliza-
tion. Users can leverage the provided methods
or add their datasets and models for open intent
recognition. We provide the front end interface for
the two modules and the pipeline module. Each
of the two modules supports model training, eval-
uation and detailed result analysis of different
methods. The pipeline module leverages both the
two modules and shows the complete text OIR re-
sults. More detailed information can be found on
https://github.com/thuiar/TEXTOIR-DEMO.

2 Open Intent Recognition Platform

Figure 2 shows the architecture of the proposed
TEXTOIR platform, which contains four main
modules. The first module integrates a series of
standard benchmark datasets. The second and third
modules have toolkits for both open intent detec-
tion and open intent discovery. Besides, it visual-
izes the whole process (including model manage-
ment, training, evaluation and result analysis) of
two modules. The last module leverages the two
modules in a pipeline framework to finish open
intent recognition.

2.1 Data Management

Our platform supports standard benchmark datasets
for intent recognition, including CLINC (Larson
et al., 2019), BANKING (Casanueva et al., 2020),
SNIPS (Coucke et al., 2018), and StackOver-
flow (Xu et al., 2015). They are all split into train-
ing, evaluation and test sets.

As shown in Figure 3, we provide unified data-
processing interfaces. It supports preparing data in
the format of two modules. For example, it samples
known intents and labeled data with the assigned
parameters for training and evaluation. Besides
these labeled data, the remaining unlabeled data are
also leveraged for open intent discovery. Users can
see detailed statistics information from the front-
end webpage and manage their datasets.

https://github.com/thuiar/TEXTOIR
https://github.com/thuiar/TEXTOIR
https://github.com/thuiar/TEXTOIR-DEMO
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Figure 3: The architecture of Open Intent Recognition.

2.2 Models

Our platform integrates a series of advanced and
competitive models for two modules, and provides
toolkits with standard and flexible interfaces.

2.2.1 Open Intent Detection

This module leverages partial labeled known in-
tent data for training. It aims to identify known
intents and detect samples that do not belong
to known intents. These detected samples are
grouped into a single open intent class during test-
ing. We divide the integrated methods into two cat-
egories: threshold-based and geometrical feature-
based methods.

The threshold-based methods consist of
MSP (Hendrycks and Gimpel, 2017), DOC (Shu
et al., 2017), and OpenMax (Bendale and Boult,
2016). These methods are first pre-trained under
the supervision of the known intent classifica-
tion task. Then, they leverage the probability
threshold for detecting the low-confidence open
intent samples. The geometrical feature-based
methods include DeepUnk (Lin and Xu, 2019) and
ADB (Zhang et al., 2021a). DeepUnk adopts the
metric-learning method to learn discriminative
intent features, and the density-based methods to
detect the open intent samples as anomalies. ADB
further uses the boundary loss to learn adaptive
decision boundaries.

2.2.2 Open Intent Discovery

This module uses both known and open intent sam-
ples as inputs, and aims to obtain intent-wise clus-
ters by learning from similarity properties with clus-
tering technologies. As suggested in (Zhang et al.,
2021b; Lin et al., 2020), the integrated methods are
divided into two parts, including unsupervised and
semi-supervised methods.

The unsupervised methods include K-Means
(KM) (MacQueen et al., 1967), agglomerative clus-
tering (AG) (Gowda and Krishna, 1978), SAE-KM,
DEC (Xie et al., 2016), and DCN (Yang et al.,
2017). The first two methods adopt the Glove (Pen-
nington et al., 2014) embedding, and the last three
methods leverage stacked auto-encoder to extract
representations. These methods do not need any la-
beled data as prior knowledge and learn structured
semantic-similar knowledge from unlabeled data.

The semi-supervised methods include KCL (Hsu
et al., 2018), MCL (Hsu et al., 2019), DTC (Han
et al., 2019), CDAC+ (Lin et al., 2020) and
DeepAligned (Zhang et al., 2021b). These methods
can further leverage labeled known intent data for
discovering fine-grained open intents.

2.2.3 Interfaces

We provide a series of interfaces for the two mod-
ules. Firstly, the backbones are flexible and uni-
fied. For example, the primary backbone is the
pre-trained BERT (Devlin et al., 2019) model, and
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Figure 4: The pipeline framework of open intent recognition.

it supports adding new bert-based models with dif-
ferent downstream tasks. The open intent discovery
module also supports other backbones for unsuper-
vised clustering. Secondly, each module has the
common data-loaders following the needed formats
of the adopted backbones. They encode unified
data vectors from the prepared data as mentioned
in section 2.1. Thirdly, the parameter configura-
tions are convenient. We extract common param-
eters (e.g., known intent ratio, dataset, etc.) for
each module and support adding different sets of
hyper-parameters for tuning each method. Finally,
each approach integrates standard components of
training, evaluation, and other specific functions.

3 Pipeline Framework

The two modules of open intent detection and dis-
covery are closely related. However, there lacks
an overall framework to successively invoke the
two modules for both identifying known intents
and discovering open intents. TEXTOIR addresses
this issue with a proposed pipeline framework, as
shown in Figure 3 and Figure 4.

The pipeline framework first processes the origi-
nal data for two modules. Then, it feeds the labeled
known intent data to the open intent detection mod-
ule and trains the selected model by the users. As
there is still a mass of unlabeled data containing
both known and open intents, it leverages the well-
trained open intent detection model to predict the
unlabeled training data. The evaluated results on

training data contain identified known intents and
the detected open intent. We use the predicted
known intent data, detected open intent and orig-
inal labeled data as the inputs of the open intent
discovery module. In this case, the discovery mod-
ule benefits from the detection module to obtain the
augmented inputs for training. Next, the preferred
clustering method selected by the users is trained
to obtain the open intent clusters.

After training the two modules, they are used
to perform open intent recognition on unlabeled
data. Specifically, the well-trained open intent de-
tection method is first used to predict the identified
known intents and detected open intent. Then, the
open intent discovery method is utilized to predict
the detected open intent data to obtain the fine-
grained open intent clusters. Finally, the KeyBERT
toolkit (mentioned in section 4.2.2) is leveraged to
extract keywords for each open intent cluster with
similar-intent sentences. Therefore, our framework
identifies known intents and discovers open intent
samples in group with keywords as recommended
labels.

4 Visualization

4.1 Training and Evaluation
Our platform provides visualized surfaces for
model training and evaluation. For each method,
users can change the main hyper-parameters to tune
the model. When training starts, it automatically
creates a record for the training process, which state



171

2021/7/3 test (12).svg

file:///J:/浏览器下载/test (12).svg 1/1

Numbers of Samples

Confidence Score

-200

-150

-100

-50

0

50

100

150

0~0.1

0.1~0.2

0.2~0.3

0.3~0.4

0.4~0.5

0.5~0.6

0.6~0.7

0.7~0.8

0.8~0.9
0.9~1

Known_Intent Open_Intent

Figure 5: Known and Open intent distributions with
different confidence scores.

Figure 6: Visualization of the intent representations.

can be monitored by the users. When the training
process finishes successfully, the trained model and
related parameters are saved for further utilization.

For model evaluation, the predicted results are
observed from different views. Firstly, the overall
performance is shown with the number of correct
and false samples for each intent class. On this
basis, the number of fine-grained false-predicted
classes is further shown to analyze the easily-
confused intents regarding the ground truth. Sec-
ondly, the influences of the known intent ratio and
labeled ratio are correspondingly shown with line
charts. Users can observe the results on different
selected datasets and evaluation metrics.

4.2 Result Analysis

4.2.1 Open Intent Detection
This module shows the results of identified known
intent samples and detected open intent samples.
For threshold-based methods, it visualizes the dis-
tribution of known and open intents with different
confidence scores, which may be helpful for se-
lecting suitable probability threshold, as shown in
Figure 5.
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Figure 7: Intent center distribution.

For geometrical-based methods, it visualizes the
intent representations on the two-dimension plane.
Specifically, t-SNE (Maaten and Hinton, 2008) is
applied to the high-dimension features to achieve
the dimensionality reduction. Moreover, we show
some auxiliary information of each point (e.g., the
centre and radius of ADB), as shown in Figure 6.

4.2.2 Open Intent Discovery
For unsupervised and semi-supervised clustering
methods, it shows the geometric positions of each
produced cluster center with corresponding labels.
These centers are categorized into the known and
open classes, as shown in Figure 7. Users can mine
the similarity relations of both known and open
intents from observation of center distribution.

As the labels of clusters are not applicable in
real scenarios, we adopt the KeyBERT 3 toolkit to
extract keywords for open intents in the sentence-
level and cluster-level. Furthermore, it calculates
the confidence scores of the keywords in the cosine
similarity space. The top-3 keywords are recom-
mended for each discovered open intent with re-
spective confidence scores, as shown in Figure 4.

5 Experiments

We use four intent benchmark datasets mentioned
in section 2.1 to verify the performance of our TEX-
TOIR platform. The known intent ratios are varied
between 25%, 50% and 75%. The labeled propor-
tions are varied between 50% and 100%. To evalu-

3https://github.com/MaartenGr/keyBERT/
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ADB + DeepAligned CLINC BANKING SNIPS StackOverflow

KIR LR Known Open Known Open Known Open Known Open

25% 50% 89.65 86.53 84.61 63.50 87.68 32.05 82.60 45.48
25% 100% 90.88 87.71 89.08 63.67 94.79 48.89 84.13 38.87
50% 50% 91.56 87.03 84.08 69.25 94.60 61.23 80.40 55.00
50% 100% 93.42 87.80 87.50 70.61 93.83 65.84 81.73 52.37
75% 50% 91.31 86.90 83.23 68.73 95.13 63.47 79.93 48.44
75% 100% 92.80 89.21 87.89 69.83 96.10 69.11 81.24 49.78

Table 1: The open intent recognition results of ADB+DeepAligned on four datasets. ”KIR” and ”LR” mean the
known intent ratio and labeled ratio respectively. ”Known” denotes the accuracy score on known intents, and
”Open” denotes the NMI score on open intents.

ate the fine-grained performance, we calculate the
accuracy score (ACC) on known intents and the
Normalized Mutual Information (NMI) score on
open intents. We use two state-of-the-art methods
of open intent detection and discovery (ADB and
DeepAligned) as the components of the pipeline
framework. The results are shown in Table 1.

The pipeline framework successfully connects
two modules, and achieves competitive and robust
results in different settings. It essentially over-
comes the shortcoming of two modules, and uses
the first module to identify known intents, the sec-
ond module to discover open intents.

6 Related Work

6.1 Open Intent Detection

Open intent detection has attracted much attention
in recent years. It aims to identify known intents
while detecting the open intent. The threshold-
based methods use an assigned threshold to detect
the open intent. For example, MSP (Hendrycks
and Gimpel, 2017) computes the softmax confi-
dence score of each known class and regards the
low-confidence samples as open. OpenMax (Ben-
dale and Boult, 2016) uses the Weibull distribution
to produce the open class probability. (Shu et al.,
2017) replaces the softmax with the sigmoid ac-
tivation function and fits Gaussian distribution to
the outputs for each known class. ODIN (Liang
et al., 2018) adopts temperature scaling and in-
put preprocessing technologies to obtain further
discriminative probabilities for detecting open in-
tent. The geometrical feature-based methods use
the characteristics of intent features to solve this
task. For example, DeepUnk (Lin and Xu, 2019)
first uses the margin loss to learn the discriminative
features. Then, it adopts a density-based algorithm,
LOF (Breunig et al., 2000) to discover the anomaly
data as the unknown intent. ADB (Zhang et al.,

2021a) learns the adaptive decision boundary for
each known class among Euclidean space. How-
ever, all these methods mentioned above fail to
discover fine-grained open classes.

6.2 Open Intent Discovery

Open intent discovery leverages clustering meth-
ods to help find fine-grained clusters as open in-
tents. Unsupervised clustering methods include
traditional partition-based method K-Means (Mac-
Queen et al., 1967), hierarchical method Agglom-
erative Clustering (Gowda and Krishna, 1978), and
density-based method (Ester et al., 1996). There
are also clustering methods based on deep neu-
ral networks, such as Deep Embedded Clustering
(DEC) (Xie et al., 2016), joint unsupervised learn-
ing (JULE) (Yang et al., 2016), and Deep Cluster-
ing Network (DCN) (Yang et al., 2017).

As unsupervised methods may not work well
on open settings (Lin et al., 2020), researchers try
to leverage some prior knowledge to improve the
performance. Some methods use pairwise con-
straints to guide the clustering process, such as
KCL (Hsu et al., 2018), MCL (Hsu et al., 2019)
and CDAC+ (Lin et al., 2020). DTC (Han et al.,
2019) extends DEC with temporal and ensemble
information. DeepAligned (Zhang et al., 2021b)
leverages clustering information to obtain aligned
targets for self-supervised feature learning. How-
ever, all these clustering methods fail to identify
the specific known intent classes.

7 Conclusion

We propose the first open intent recognition plat-
form TEXTOIR, which integrates two complete
modules: open intent detection and open intent
discovery. It provides toolkits for each module
with common interfaces and integrates multiple
advanced models and benchmark datasets for the
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convenience of further research. Additionally, it
realizes a pipeline framework to combine the ad-
vantages of two modules. The overall framework
achieves both identifying known intents and discov-
ering open intents. A series of visualized surfaces
help users to manage, train, evaluate, and analyze
the performance of different methods.
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