
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: System Demonstrations, pages 107–113, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

107

Erase and Rewind: Manual Correction of NLP Output
through a Web Interface

Valentino Frasnelli, Lorenzo Bocchi
Dept. of Psychology and Cognitive Science

University of Trento
Rovereto (Trento), Italy

[name.surname]@studenti.unitn.it

Alessio Palmero Aprosio
Digital Humanities Unit

Fondazione Bruno Kessler
Trento, Italy

aprosio@fbk.eu

Abstract
In this paper, we present Tintful, an NLP anno-
tation software that can be used both to manu-
ally annotate texts and to fix mistakes in NLP
pipelines, such as Stanford CoreNLP. Using a
paradigm similar to wiki-like systems, a user
who notices some wrong annotation can easily
fix it and submit the resulting (and right) entry
back to the tool developers. Moreover, Tint-
ful can be used to easily annotate data from
scratch. The input documents do not need to
be in a particular format: starting from the
plain text, the sentences are first annotated
with CoreNLP, then the user can edit the an-
notations and submit everything back through
a user-friendly interface.

A video showing Tintful and its feature is avail-
able on YouTube.1

1 Introduction

In the last years, NLP tools are being more and
more used in tasks such as textual inference, ma-
chine translation, hate speech detection (Socher
et al., 2012). Most of these tasks rely on machine
learning systems trained on large amounts of data,
which have been manually labeled by annotators,
often domain experts. In particular, recent deep
learning algorithms are more accurate, but they
need more data for training, making the data col-
lection a major challenge for the NLP community.

When the annotation task does not require a spe-
cialised competence, one can use a platform such as
Amazon Mechanical Turk (AMT),2 that enables the
distribution of low-skill but difficult-to-automate
tasks to a network of humans, who could work in
parallel, when and where they prefer.

However, not all NLP assignments can be solved
by non-experts because they may require back-
ground knowledge or linguistic expertise. For these

1https://youtu.be/iFDCbtfWdTg
2http://www.mturk.com/

tasks, expert annotators should be hired and receive
a specific training, which is time-consuming and
can become costly.

A similar problem arises when a known task
has to be ported to another domain, and existing
tools turn out to have a poor accuracy, because the
original training data does not include annotated in-
stances from that domain (Ben-David et al., 2007).
For example, the performance of standard NLP
tools (part-of-speech taggers, dependency parsers,
and so on) is severely degraded on tweets for this
very reason (Ritter et al., 2011). One of the solu-
tions to this set of problems would be to make NLP
tools more similar to wiki-like systems, where a
user who notices some wrong annotation can eas-
ily fix it and submit the resulting (and right) entry
back to the tool developers, so that they can add the
instance to the training examples and re-generate
the model.

This is basically the paradigm already used for
active learning (Settles, 2011) which uses “humans
in the loop” to increase the accuracy of a system,
by including in the workflow a targeted correction
of instances that are misclassified (Fan et al., 2017).
As someone said way back in 1969: “Computers
are incredibly fast, accurate and stupid. On the
other hand, a well trained operator as compared
with a computer is incredibly slow, inaccurate and
brilliant”. (Various Authors, 1969)

To obtain a seamless integration between auto-
matic classification and human correction, we need
to develop NLP tools that are accessible through
a user-friendly interface (Holzinger, 2013), easing
the interaction between non-technical persons and
the underlying technology.

In this paper, we present Tintful, a working ex-
ample of the described paradigm, an interface that
combines the output of Stanford CoreNLP (Man-
ning et al., 2014) with a newly created annotation
tool that allows the user to edit and fix the output

https://youtu.be/iFDCbtfWdTg
http://www.mturk.com/


108

data, in a wiki-like style. The user (registered or
not) can edit the tokens, the lemmas, the parts of
speech, the dependency trees and the named en-
tities (persons, locations, organizations). Thanks
to an API released with the web interface, the re-
sulting annotation can be stored for later use (for
example, the software retraining), so that users can
contribute to improving the system performance on
specific tasks or domains of interest.

Compared to other similar tools (see Section 2),
Tintful has some main strengths:

• There is no need to pre-process the data one
wants to annotate. The user can easily enter
the raw text into the system and directly edit
the output annotation.

• There is no need for an expert to setup the
environment. Just install the tool and start to
annotate.

• “Casual” users can contribute to the annota-
tion by submitting their anonymous annota-
tions to the system.

• The annotated data is immediately available
just by querying the database, and can be used
in an incremental learning framework (Schlim-
mer and Fisher, 1986).3

We believe that this paradigm may foster the
adoption of NLP tools in domains and settings that
so far have not taken full advantage of text process-
ing. For example, social scientists or humanities
scholars would have the possibility to correct the
output of a parser or NER trained on news, which
may perform poorly on other types of texts, directly
through the tool interface, making it easier to adapt
the model to new domains and genres.

Finally, the whole tool is released open source
and available on Github (see Section 7).

2 Related work

Some of the available programs for the manual an-
notation of texts are generic and can be configured
and used for a great variety of tasks. These are
usually powerful but need some work for config-
uration. Some other, on the contrary, have been
developed for a particular purpose, and usually are
easier to launch and configure.

3This part is not included in Tintful out-of-the-box, yet.
For now, it can be done by external tool by a machine learning
expert. We plan to add a feature to make it easy also for
non-expert users in the future, see Section 8.

WebAnno4 (Eckart de Castilho et al., 2016) is
a general purpose web-based annotation tool for a
wide range of linguistic annotations and belongs to
the former category. It is multi-user and supports
different roles to guarantee a quality check of the
annotated data.

INCEpTION5 (Klie et al., 2018) is an open-
source and multi-user text annotation platform de-
veloped at the Technische Universität Darmstadt.
It is general-purpose and can be configured to per-
form a number of annotation tasks.

Similarly, Doccano6 (Nakayama et al., 2018)
provides annotation features for text classification,
sequence labeling and sequence to sequence tasks.

Regarding specifically the annotation of depen-
dency graphs, there several tools that help re-
searchers to manage complex output formats such
as CoNLL-U.7 For instance, ConlluEditor8 (Hei-
necke, 2019) is an actively maintained tool which
facilitates the editing of syntactic relations and mor-
phological features of files in CoNLL-U format.
Similarly, UD-Annotatrix9 (Tyers et al., 2018) is a
language-independent tool for editing dependency
trees according to the guidelines established by the
Universal Dependencies project. TrUDucer10 (Hen-
nig and Köhn, 2017) is a software for transforming
dependency treebanks from one schema to another,
especially to CoNLL-U.

Finally, Arborator11 is an annotation tool for
dependency trees that allows users to perform col-
laborative work. The tool has a specific focus on
HCI aspects, since most of the actions can be done
using mouse drag and drop.

In this paper, we propose a tool that is different
from all the ones described above. With Tintful
the user does not need the data to be in a particular
format: starting from the plain text, the sentences
are first annotated with Stanford CoreNLP, then the
user can edit the annotations and submit everything
back to the server.

4https://webanno.github.io/
5https://inception-project.github.io/
6https://github.com/doccano/doccano
7https://universaldependencies.org/

format.html
8https://github.com/Orange-OpenSource/

conllueditor
9https://github.com/jonorthwash/

ud-annotatrix
10http://nats.gitlab.io/truducer/
11https://arborator.ilpga.fr/

https://webanno.github.io/
https://inception-project.github.io/
https://github.com/doccano/doccano
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://github.com/Orange-OpenSource/conllueditor
https://github.com/Orange-OpenSource/conllueditor
https://github.com/jonorthwash/ud-annotatrix
https://github.com/jonorthwash/ud-annotatrix
http://nats.gitlab.io/truducer/
https://arborator.ilpga.fr/


109

Input text
CoreNLP

Toolname UI

Brat

Toolname
edit interface

MySQL
storage

Toolname
API

(a)

(b) (c) (d)

Figure 1: A graph representation of the Tintful archi-
tecture.

3 Existing components

Tintful is mainly based on two existing pieces of
software: Stanford CoreNLP and Brat.

3.1 Stanford CoreNLP
Stanford CoreNLP (Manning et al., 2014) is an
open-source framework written in Java that pro-
vides most of the common Natural Language Pro-
cessing tasks out-of-the-box for several languages.
The framework provides also an easy interface
to extend the annotation to new tasks and/or lan-
guages.

Tintful is agnostic w.r.t. the language. One can
use the plain Stanford CoreNLP software with Tint-
ful if they need to annotate texts in English, Ger-
man, Spanish, and so on. We processed Italian
texts and therefore used TINT (Palmero Aprosio
and Moretti, 2018), a language-specific extension
whose output is compatible with CoreNLP.

3.2 BRAT
The BRAT Rapid Annotation Tool12 (Stenetorp
et al., 2012) is a web-based tool for text annota-
tion and is developed at University of Manchester.
Although its last version is quite old (November
2012), a large number of research organization still
uses it, since it is very intuitive and can be used
also for visualization-only (the official demo pages
of Stanford Stanza13 (Qi et al., 2020) and CoreNLP
both use it). In Tintful, Brat is used for the graphi-
cal annotation of the syntactic dependencies. The

12http://brat.nlplab.org/
13http://stanza.run/

main issue of this library is that it is not responsive,
meaning that it is not optimized for mobile phones
and tablets. Therefore, we slightly modified it to
make Tintful usable on most devices.

4 Tintful architecture

The architecture of Tintful is represented in Fig-
ure 1.

1. First, the user inserts a text (a) in the Tintful
interface (Figure 6).

2. The NLP pipeline (Stanford CoreNLP or com-
patible variants) is then launched, using the
text as input.

3. The resulting JSON is parsed by Tintful and
shown in the UI (b). In this screen, the user
can browse through all the annotation layers
(tokens, lemma, POS, dependency parsing,
NER, and so on). See Figure 7. Additional
modules not included in CoreNLP are shown,
if the corresponding annotation is present in
the JSON file. Among these modules, the
Tint readability module (Palmero Aprosio and
Moretti, 2018), that estimates the difficulty
level of the document and calculates some
indexes, such as lexical density, semantic rich-
ness, Flesch score (Gulpease for Italian), and
so on.

4. If the annotation contains one or more mis-
takes, the user can enter the edit mode (c)
to fix them; otherwise, the annotation can be
saved as is (go to step 6). See, for example,
Figure 2.

5. The edit screen shows the parsing results to
the user sentence by sentence. One can edit
every aspect of the annotation: tokens, lemma,
POS, dependency labels, dependency tree hi-
erarchy, NER).

6. Once the editing is finished, the user can save
the resulting annotation, that is stored in the
server (d).

7. If the user is logged in when submitting the
edited data, they can recover the annotation
and edit/delete it (Figure 8).

8. Finally, the annotated data can be exported
and downloaded in CoNLL-U format.

http://brat.nlplab.org/
http://stanza.run/


110

Figure 2: The syntactic dependency editing inter-
face using Brat. Figure 3: The editing interface for POS.

Figure 4: Interface for editing named entities. Figure 5: Editing the text information using a tabu-
lar view.

Figures 2, 3, 4, and 5 show some screenshots of
the annotation interface. Manual annotations can
be performed both by occasional and registered
users, so that the administrator knows which data
belongs to whom.

5 Additional features

5.1 Modular structure

When running Tintful, one can edit everything that
normally is included in the CoNLL-U format (see
Section 2): token, lemma, POS, morphological
features, syntactic dependency hierarchy and labels.
There is also room for the miscellaneous data (last
field of the CoNLL-U file) and the named entities,
that are not included in the format but can be added
with our interface. It can happen that the casual
user only edits some parts of the text (for example,
the POS or the NER, without even touching the
syntactic tree). When saving the data, Tintful select
only the parts where the user did some edits. If
a sentence is already correct and therefore is not
edited by the user, no information is sent to the
server. The user can manually force the sending,

by clicking the ”already correct” button (see, for
instance, Figures 2, 3, and 5.

5.2 User management

The administrator can create users (with login and
password), so that the data sent by that user can be
identified. In addition, the registered user can re-
trieve the annotated sentences and edit them again.
When multiple submissions occur, the server will
merge the different parts in a smart way. For in-
stance, if the user first edits the syntactic tree of
sentence 5 and then it loads it again editing only
the POS, the system will merge the edited POS into
the syntactic structure. If the same user only edit
POS for sentence 2, only the POS information is
saved, ignoring the syntactic tree.

5.3 Contextual help

Since Tintful is meant to be used by non-expert
users, every screen of the tool provides information
buttons, where a quick documentation on how to
use that screen is provided (see Figure 10).



111

Figure 6: The input text screen of Tintful (light and
dark). Figure 7: Visualization interface for an English text.

Figure 8: The edit history of Tintful. Figure 9: An example of the editing interface for an
English text.

5.4 Language independence

Tintful is agnostic with respect to the language
of the texts. The whole architecture is based (for
now, see Section 8) on the Stanford CoreNLP json
output. A developer can easily adapt the inter-
face to work with any pipeline that work on top of
CoreNLP or that can give the same format.

6 User experience

In developing Tintful, a particular attention has
been paid to the interface, given that annotators
performing linguistic tasks need to be focused and
typically spend a lot of time interacting with the
tool.

6.1 Human-Computer interaction

Some tools for linguistic annotations are very
generic and can be configured for a potentially in-
finite set of guidelines. As a side effect of that
flexibility, they sometime suffer from slowness in
the practical use.

Tintful, instead, is optimized for a small list of
possible annotations (syntactic tree, NER, part-of-
speech), and therefore the interaction with the user
is optimized, to spend as little time as possible for
the annotation.

As an example, the NER annotation can be per-
formed just by clicking on the word and looping

between the different labels. Since there are only
four possibility (PER, LOC, ORG, O), this action
can be done very quickly.

On the contrary, the list of tags for part-of-
speech is very long, therefore an intermediate
modal screen with a dropdown menu is more prac-
tical.

6.2 Design and accessibility

The design is inspired by Material,14 a set of guide-
lines, components, and tools developed by Google
that support the best practices of user interface de-
sign.

The interface also satisfies the most common
accessibility guidelines and it is responsive, there-
fore all the annotation steps can be performed on a
tablet or a smartphone.

6.3 Dark mode vs. light mode

The high density of the data in the interface may
lead to eyestrain, therefore we add a button that
switches the interface between dark and light. The
dark mode makes it more comfortable for users to
use their devices outside the light hours or in envi-
ronments with bad lighting conditions (Eisfeld and
Kristallovich, 2020; Kim et al., 2019). In addition,
reading white text from a black screen or tablet

14https://material.io/

https://material.io/


112

Figure 10: An example of contextual help.

may be a way to inhibit myopia (Aleman et al.,
2018). When there is enough light, instead, one
can have better reading performances on a white
background (Piepenbrock et al., 2013). For all
these reasons, users can switch independently be-
tween the two modes using the button in the Tintful
interface. Figure 6 shows an example of the input
screen of Tintful in light and dark mode.

6.4 Flat interface

Although in general there is criticism around using
flat design for everything (Burmistrov et al., 2015),
past studies showed that flat design allows expert
users to execute their task faster (Spiliotopoulos
et al., 2018). On the contrary, skeuomorphism15

visually distracts users from intended targets. We
therefore decide to use a flat design interface for
Tintful: on one side, we want our interface to be
as simple as possible; on the other side, NLP is a
specialized discipline and we expect our users to
have confidence with such tools.

7 Tintful release

The web interface of Tintful is written using
VueJS.16 and the structure of the website is built
with Tailwind CSS.17 The API is written in php
and needs a machine with at least version 7 of the
interpreter and MySQL server installed. It must be
configured to work in a web server (such as Apache
or Nginx).

The whole Tintful package is available on
GitHub18 and released under the Apache license.

15In graphical user interface design, skeuomorphism is the
term describing interface objects that mimic their real-world
counterparts in how they appear and how the user can interact
with them.

16https://vuejs.org/
17https://tailwindcss.com/
18https://github.com/dhfbk/tintful

8 Conclusions and Future Work

In this paper, we present Tintful, an NLP annotation
software that can be used both to annotate texts
from scratch and to fix mistakes in NLP pipelines.
Differently from other similar tools, data do not
need to be in a particular format: starting from plain
text, the sentences are first annotated with Stanford
CoreNLP, then the user can edit the annotations
and submit everything back to the server.

In the future, we will extend the tool to accept
more input formats, so that Tintful can work with
software different from CoreNLP, such as SpaCy
(Honnibal et al., 2020) and UDPipe (Straka, 2018).

In addition, we want to improve the user man-
agement part, by creating an admin interface to
simplify the user creation. We also want to add
the login through external services, such as Google,
Github, Facebook, and so on. For registered users,
this means that they do not need to remember the
password. For casual users, this allows them to
review already submitted annotations.

Finally, we are integrating Tintful with the
CoreNLP scripts that perform the training of the
models (in particular for part-of-speech, depen-
dency parsing and named-entities recognition),
to obtain a fullly automatic incremental learning
pipeline.

References
Andrea C. Aleman, Min Wang, and Frank Schaeffel.

2018. Reading and myopia: Contrast polarity mat-
ters. Scientific Reports, 8(1):10840.

Shai Ben-David, John Blitzer, Koby Crammer, Fer-
nando Pereira, et al. 2007. Analysis of representa-
tions for domain adaptation. Advances in neural in-
formation processing systems, 19:137.

Ivan Burmistrov, Tatiana Zlokazova, Anna Izmalkova,
and Anna Leonova. 2015. Flat design vs tradi-
tional design: Comparative experimental study. In
Human-Computer Interaction – INTERACT 2015,
pages 106–114, Cham. Springer International Pub-
lishing.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of se-
mantic and syntactic structures. In Proceedings of
the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages
76–84, Osaka, Japan. The COLING 2016 Organiz-
ing Committee.

https://vuejs.org/
https://tailwindcss.com/
https://github.com/dhfbk/tintful
https://doi.org/10.1038/s41598-018-28904-x
https://doi.org/10.1038/s41598-018-28904-x
https://www.aclweb.org/anthology/W16-4011
https://www.aclweb.org/anthology/W16-4011


113

Henriette Eisfeld and Felix Kristallovich. 2020. The
rise of dark mode: A qualitative study of an emerg-
ing user interface design trend.

Yang Fan, Fei Tian, Tao Qin, Jiang Bian, and Tie-
Yan Liu. 2017. Learning what data to learn. arXiv
preprint arXiv:1702.08635.

Johannes Heinecke. 2019. ConlluEditor: a fully graph-
ical editor for Universal dependencies treebank files.
In Universal Dependencies Workshop 2019, Paris.

Felix Hennig and Arne Köhn. 2017. Dependency
schema transformation with tree transducers. In Pro-
ceedings of the first Workshop on Universal Depen-
dencies (22 May, Göteborg). Universität Hamburg.

Andreas Holzinger. 2013. Human-computer interac-
tion and knowledge discovery (hci-kdd): What is the
benefit of bringing those two fields to work together?
In Availability, Reliability, and Security in Informa-
tion Systems and HCI, pages 319–328, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Kangsoo Kim, Austin Erickson, Alexis Lambert, Gerd
Bruder, and Greg Welch. 2019. Effects of dark mode
on visual fatigue and acuity in optical see-through
head-mounted displays. In Symposium on Spatial
User Interaction, SUI ’19, New York, NY, USA. As-
sociation for Computing Machinery.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9. Association for Computational Linguis-
tics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya-
sufumi Taniguchi, and Xu Liang. 2018. doccano:
Text annotation tool for human. Software available
from https://github.com/doccano/doccano.

Alessio Palmero Aprosio and Giovanni Moretti. 2018.
Tint 2.0: an all-inclusive suite for nlp in italian. In
Proceedings of the Fifth Italian Conference on Com-
putational Linguistics CLiC-it, volume 10, page 12.

C. Piepenbrock, S. Mayr, I. Mund, and A. Buchner.
2013. Positive display polarity is advantageous
for both younger and older adults. Ergonomics,
56(7):1116–1124.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Alan Ritter, Sam Clark, Oren Etzioni, et al. 2011.
Named entity recognition in tweets: an experimen-
tal study. In Proceedings of the 2011 conference on
empirical methods in natural language processing,
pages 1524–1534.

Jeffrey Schlimmer and Doug Fisher. 1986. A case
study of incremental concept induction. pages 496–
501.

Burr Settles. 2011. From theories to queries: Ac-
tive learning in practice. In Active Learning and
Experimental Design workshop In conjunction with
AISTATS 2010, volume 16 of Proceedings of Ma-
chine Learning Research, pages 1–18, Sardinia,
Italy. JMLR Workshop and Conference Proceedings.

Richard Socher, Yoshua Bengio, and Christopher D.
Manning. 2012. Deep learning for nlp (without
magic). In Tutorial Abstracts of ACL 2012, ACL
’12, page 5, USA. Association for Computational
Linguistics.

Konstantinos Spiliotopoulos, Maria Rigou, and Spiros
Sirmakessis. 2018. A comparative study of skeuo-
morphic and flat design from a ux perspective. Mul-
timodal Technologies and Interaction, 2(2):31.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Francis M. Tyers, Mariya Sheyanova, and
Jonathan North Washington. 2018. Ud annota-
trix: An annotation tool for universal dependencies.
In Proceedings of the 16th International Workshop
on Treebanks and Linguistic Theories (TLT16),
pages 10–17.

Various Authors. 1969. Advances in Instrumentation,
Vol. 24: Proceedings of the 24th Annual ISA Confer-
ence, Houston, Oktober 27-30, 1969. pt. 4. Instru-
ment Soc. of America.

https://github.com/Orange-OpenSource/conllueditor/
https://github.com/Orange-OpenSource/conllueditor/
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1145/3357251.3357584
https://doi.org/10.1145/3357251.3357584
https://doi.org/10.1145/3357251.3357584
http://tubiblio.ulb.tu-darmstadt.de/106270/
http://tubiblio.ulb.tu-darmstadt.de/106270/
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
http://proceedings.mlr.press/v16/settles11a.html
http://proceedings.mlr.press/v16/settles11a.html
https://doi.org/10.3390/mti2020031
https://doi.org/10.3390/mti2020031
https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://books.google.it/books?id=bwKemwEACAAJ
https://books.google.it/books?id=bwKemwEACAAJ
https://books.google.it/books?id=bwKemwEACAAJ

