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Abstract

In this paper, we present our system de-
signed to address the W-NUT 2020 shared
task for COVID-19 Event Extraction from
Twitter. To mitigate the noisy nature of the
Twitter stream, our system makes use of the
COVID-Twitter-BERT (CT-BERT), which is a
language model pre-trained on a large corpus
of COVID-19 related Twitter messages. Our
system is trained on the COVID-19 Twitter
Event Corpus and is able to identify relevant
text spans that answer pre-defined questions
(i.e., slot types) for five COVID-19 related
events (i.e., TESTED POSITIVE, TESTED
NEGATIVE, CAN-NOT-TEST, DEATH and
CURE & PREVENTION). We have experi-
mented with different architectures; our best
performing model relies on a multilabel clas-
sifier on top of the CT-BERT model that
jointly trains all the slot types for a single
event. Our experimental results indicate that
our Multilabel-CT-BERT system outperforms
the baseline methods by 7 percentage points in
terms of micro average F1 score. Our model
ranked as 4th in the shared task leaderboard.

1 Introduction

COVID-19, a highly infectious disease, has dramat-
ically influenced the world. According to official
COVID-19 related data from World Health Orga-
nization (WHO), the number of confirmed cases
has surpassed 29 million, and the death toll rises to
922,252 as of 15 September 20201. Many countries
have taken necessary measures, such as social dis-
tancing and mask wearing to prevent the spreading
of the virus. Because of these measures, the com-
munication among people has been changed. As
a result, people tend to share their opinions on so-
cial media while also obtaining useful information
from other users. Twitter, a popular social media

1https://www.who.int/emergencies/
diseases/novel-coronavirus-2019
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Figure 1: An example of an annotated tweet. That
tweet reports a TESTED POSITIVE case. The goal of
the task is to identify that the text spans “Tom Hanks”
and “Rita Wilson” are slots of type “who”, and “Aus-
tralia” is a slot of type “where”.

platform, allows its users to share views through
short Twitter messages (tweets). With a large num-
ber of COVID-19 related tweets shared in a daily
basis, Twitter is a valuable source for one to find
relevant information about COVID-19.

The “W-NUT 2020 shared task 3: COVID-19
event extraction from Twitter” is the task of finding
useful information from COVID-19 related tweets.
In this work, we focus on the provided dataset
COVID-19 Twitter Event Corpus to build a system
that can identify text spans (slots) that answer pre-
defined questions related to COVID-19 events (e.g.,
“Who is tested positive (negative)?”). This task
(i.e., identifying text spans that answer pre-defined
questions) has been framed as a slot filling problem
by the organizers of the competition and a detailed
description of that is available on the work of Zong
et al. (2020). Figure 1 illustrates an example of
an annotated tweet. That tweet reports a TESTED
POSITIVE case. The goal of the task is to identify
that the text spans “Tom Hanks” and “Rita Wilson”
are slots of type “who”, and “Australia” is a slot of
type “where”.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the related work on slot filling
tasks. Section 3 describes the dataset we used
to build our system along with the tweet pre-
processing technique. Section 4 presents our pro-

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
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posed Multilabel-CT-BERT system as well as the
underlying techniques. Section 5 presents the base-
line and other methods that have been tested in
the context of this competition. Section 6 shows
our experimental setup and results for the proposed
systems and the baseline model. Section 7 summa-
rizes our findings and concludes our work on this
W-NUT shared task.

2 Related Work

The slot filling task is the problem where the goal is
to identify fine-grained information (related to spe-
cific events of interest) from an input sequence.
Specifically, given a text sequence, the aim is
to find relevant text spans for certain types of
slots (Benson et al., 2011), where in our case are
the different slot types (e.g., “who”, “where”) for
different event types (e.g., TESTED POSITIVE,
TESTED NEGATIVE).

For the slot filling task, several approaches have
been proposed in the literature. In particular, con-
volutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been exploited in the
works of Peng et al. (2015); Kurata et al. (2016);
Vu (2016). More recently, Chen et al. (2019) de-
veloped a BERT-based joint intent classification
and slot filling model. Their system relies on the
pre-trained BERT model to encode the input se-
quences, and jointly trains the intent classification
and slot filling tasks by maximizing the condi-
tional probability between the two tasks. In another
work, Coope et al. (2020) introduced a slot filling
model called Span-ConveRT that is based on the
ConveRT language model (Henderson et al., 2019)
to extract text spans from dialogs. In this work,
we focus on developing a system that can extract
COVID-19 related information from Twitter mes-
sages. To do so, we make use of a language model
that is optimized for COVID-19 related tweets, and
we fine-tune the system by jointly training the dif-
ferent slots.

3 Dataset

We use the dataset provided by the shared task
for our proposed system. The name of the dataset
is COVID-19 Twitter Event Corpus (Zong et al.,
2020).

3.1 COVID-19 Twitter Event Corpus

This corpus contains five COVID-19 related
event types: TESTED POSITIVE, TESTED

Event Type # of Annotated Tweets # of Collected Tweets # of Slots
TESTED POSITIVE 2,500 2,400 9
TESTED NEGATIVE 1,200 1,146 8

CAN NOT TEST 1,200 1,127 5
DEATH 1,300 1,231 6

CURE & PREVENTION 1,300 1,245 3
TOTAL 7,500 7,149 31

Table 1: Statistics of the COVID-19 Twitter Event Cor-
pus and the number of tweets for the collected corpus.

NEGATIVE, CAN-NOT-TEST, DEATH and
CURE & PREVENTION. These event types are
used to study the information that people are
sharing on social media during the COVID-19
era. Table 1 shows the statistics of the COVID-19
Twitter Event Corpus. The number of overall
annotated tweets is 7,500. However, due to the
Twitter policy, the redistribution of Twitter content
is restricted. Since the distributed corpus only
includes the tweet IDs, we collected the tweet text
from the Twitter server. The total number of the
collected annotated tweets is 7,149, and the reason
is that some of the tweets are deleted by the users
or the Twitter server. The models in Section 4 and
Section 5 are evaluated on the collected dataset.

3.2 Pre-processing

The COVID-19 Twitter Event Corpus provides
candidate chunks along with annotations for each
tweet text. To prepare instances for our system,
we first replace the URLs in the tweets by a spe-
cial [URL] token, and then enclose the current
candidate chunk within special entity start and end
tags: <E> and </E>, respectively (as in the work
of Zong et al. (2020)). Table 2 shows an example
of a processed tweet with an enclosed candidate
chunk. In the example, the current candidate chunk
is the word “Australia”. To process the tweet, we
enclose it inside the <E> and </E> tags. The pro-
cessed result is “Tom Hanks and Rita Wilson tested
positive for coronavirus, in <E> Australia </E>.”.

4 Proposed System

In this section, we first introduce the underlying
methods (BERT and CT-BERT) of our system.
Then, we describe the proposed Multilabel-CT-
BERT system in detail.

4.1 BERT

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) is a lan-
guage representation model based on Transform-
ers (Vaswani et al., 2017). The BERT model is
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tweet text “Tom Hanks and Rita Wilson tested positive for coronavirus, in Australia.”
candidate chunk “Australia”
processed tweet text “Tom Hanks and Rita Wilson tested positive for coronavirus, in <E> Australia </E>.”

Table 2: An example of a pre-processed tweet. Given the text of a tweet and the current candidate chunk, we
enclose the candidate chunk inside <E> and </E> tags within the tweet text. In this example, the candidate chunk
Australia is enclosed in the aforementioned tags and placed back to the original tweet.

pre-trained on large unlabeled corpora (by using
a bidirectional strategy) either in the masked lan-
guage model task or in the next sentence prediction
task. By applying appropriate inputs and outputs
to the pre-trained BERT model, it can be easily
fine-tuned end-to-end on a specific NLP (Natural
Language Processing) task, such as sentence classi-
fication, sentence tagging, and question answering.

BERT is basically a stack of multiple transformer
encoders. The encoder consists of a self-attention
layer that helps the encoder to pay attention to other
tokens of the input sequence while encoding a spe-
cific token, and a feed forward neural network that
processes the output encoding from the attention
layer. The BERT input representation is the sum of
three embeddings: (i) token, (ii) segment and (iii)
position embeddings. For the token embeddings,
a special [CLS] token is added at the beginning
of the input sequence, and a special [SEP] to-
ken is added at the end of each input sequence.
The segment embeddings can inform the BERT
model about the sequence that the current token
belongs to. The position embeddings indicate the
positions of the input tokens inside the sequence.
The outputs of the BERT model are high-level rep-
resentations of the input tokens. The hidden states
of the [CLS] token can be used to perform vari-
ous NLP tasks (e.g., text classification). There are
two model architectures for BERT: BERT-BASE
and BERT-LARGE. The BERT-LARGE model has
more model parameters (e.g., hidden dimensions)
than the BERT-BASE model.

4.2 CT-BERT

COVID-Twitter-BERT (CT-BERT) (Müller et al.,
2020) is a transformer-based language model that is
pre-trained on a large number of COVID-19 related
tweets, while the BERT model is pre-trained on tex-
tual data from Wikipedia and book corpora. There-
fore, the main drawback of the BERT model in the
context of this competition is that the pre-trained
BERT model does not contain relevant informa-
tion about COVID-19, while it mainly includes
formal language. In this competition, the dataset

consists of user-generated noisy text from social
media like Twitter, which contains informal lan-
guage. To overcome the aforementioned shortcom-
ings of the BERT model, the CT-BERT is proposed
to better represent the COVID-19 related text.

The CT-BERT is based on the BERT-LARGE
model and uses the same pre-training techniques
as BERT, but the pre-training step of the CT-BERT
starts with the trained weights from the BERT-
LARGE model. The pre-trained CT-BERT can
then be used for a wide variety of NLP tasks, such
as classification and question answering.

4.3 Multilabel-CT-BERT

The idea of our multilabel system is motivated by
the following observation: for one event type, we
observed that some slot types are semantically re-
lated to each other, so we can use a multilabel clas-
sifier to jointly train all the slot types within one
event type. In addition, the use of the CT-BERT
pre-trained model mitigates the noisy nature of the
tweets.

Figure 2 illustrates the architecture of our pro-
posed Multilabel-CT-BERT system. The system
is based on the pre-trained CT-BERT model. It
takes a processed tweet with an enclosed candi-
date chunk as an input to the pretrained CT-BERT
model. The model produces hidden states for each
input token. Then the hidden representation of the
special entity tag <E> is used as input to the mul-
tilabel classifier on top of the CT-BERT to predict
the labels for the current chunk. Our system aims
to minimize the binary cross-entropy with logits
loss (BCEWithLogitsLoss), which is implemented
in PyTorch (Paszke et al., 2017).

5 Other systems

In this section, we describe several other systems
including the baseline model, the Multilabel-BERT
system, the NLI (Natural Language Inference) sys-
tem and the Pairwise system.
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Figure 2: Multilabel-CT-BERT system architecture.
This system consists of a pre-trained CT-BERT model
in blue rectangle, and a multilabel classifier on top
of the CT-BERT model in the grey rectangle. The
small yellow and green rectangles represent the input
sequence and the hidden representations, respectively.
C is the hidden state of the [CLS] token. Tx is the
corresponding hidden state of the input token X. The
red rectangle is the prediction of the current enclosed
chunk. The input to this system is a tweet text with an
enclosed candidate chunk, and the hidden state of the
entity tag <E> is used by the multilabel classifier for
making predictions.

5.1 Baseline

Multitask-BERT-BASE (Zong et al., 2020) is a
fine-tuned model that relies on BERT-BASE and
has been proposed by the task organizers. For this
model, each slot filling task is transformed into
a binary classification problem: given a tweet T
and a candidate slot S, the model predicts whether
the slot S answers the pre-defined question (Zong
et al., 2020). To leverage the semantically related
slot types such as the “gender” slot with the “who”
slot, this model jointly trains the slot types by shar-
ing the same parameters for these slot type clas-
sifiers. The input to this model is the text of the
tweet with the candidate chunk enclosed inside
the special start <E> and end </E> tags. The fi-
nal BERT hidden representation of the <E> tag is
passed to a fully connected layer with a softmax
activation function in order to validate or not the
candidate chunk (i.e., binary prediction). More-

over, the BERT-LARGE model was exploited and
is referred to as Multitask-BERT-LARGE.

5.2 Multilabel-BERT System
Multilabel-BERT-BASE is the variant of the
Multilabel-CT-BERT that instead of using the CT-
BERT pre-trained model, this model relies on
BERT-BASE. Equivalently, the Multilabel-BERT-
LARGE model is based on BERT-LARGE.

5.3 NLI System
NLI, which stands for Natural Language Inference,
is the task of determining whether a “hypothesis”
sentence is correct or not given a “premise” sen-
tence. For the NLI system that we used in this
work, the “premise” sentence is the slot filling ques-
tion that used to annotate the COVID-19 Twitter
Event Corpus, and the “hypothesis” sentence is
the pre-processed tweet with an enclosed candidate
chunk. A multiclass classifier, which consists of a
feed-forward neural network and a softmax layer,
is added on top of the BERT-BASE model. The
number of classes is determined by the slot types
in an event type, since one event type can have
several slot types. The input to this system is a
pair of one “premise” sentence and one “hypoth-
esis” sentence. The output of this system is the
predicted class, which is determined by the highest
prediction score from all the classes.There are two
variants of this system: NLI-CLS and NLI-E. The
input to the multiclass classifier in the NLI-CLS is
the hidden state of the [CLS] token while in the
NLI-E is the hidden state of the <E> token. This
system aims to minimize the cross entropy loss be-
tween the different classes. Figure 3 shows the NLI
system architecture.

5.4 Pairwise System
Figure 4 shows the architecture of the pairwise sys-
tem. The pairwise system contains two parts: the
BERT-BASE model and on top of that a binary
classifier. The binary classifier has a feed-forward
neural network with a tanh activation layer. This
system focuses on each slot type for a single event
type and treats each slot filling task as a binary pre-
diction problem. One sentence for this system is
defined as a tweet text with an enclosed candidate
chunk like the processed tweet text shown in Ta-
ble 2. For each candidate chunk, we generate such
a sentence. In total, the number of all the sentences
is the number of all the candidate chunks in the
provided corpus.
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[SEP]
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T[SEP]

Prediction

BERT

[CLS] Tok 1 <E>Tok N [SEP] Tok 1
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T[SEP]

Prediction

Figure 3: NLI system architecture. The left part is the NLI-CLS model and the right part is the NLI-E model.
These two models have a similar structure. Both have two components, a pre-trained BERT model in the blue
rectangle and a multiclass classifier in the grey rectangle. The small yellow rectangles represent the system input.
The green rectangles are the hidden states for the input tokens. C is the hidden state of the [CLS] token. Tx is
the corresponding hidden state of the input token X. The input to these models is a slot filling question and a tweet
text. These two models differ in the way they use the hidden state as the input to the multiclass classifier.
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[SEP]
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[SEP]
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Pairwise Ranking Loss

Figure 4: Pairwise system architecture. The left and right parts represent the same model structure but at different
time points. The blue part is the pre-trained BERT model, the yellow part is the input tokens, the green part is the
hidden states, the grey part is the binary classifier. C is the hidden state of the [CLS] token. Tx is the corresponding
hidden state of the input token X. During the training step, the system first takes as input a “positive” sentence at
time point 1 and produces a predicted score for the “positive” sentence. Then the system processes a “negative”
sentence at time point 2 to generate a predicted score for the “negative” sentence. The two predicted scores are
used to calculate the pairwise ranking loss to update the model parameters. For the prediction step, only the part
in the dotted rectangle is used, and the input is one sentence that we would like to know the slot type of the
enclosed candidate chunk within that sentence. By thresholding the predicted score for that sentence, we can get
the corresponding label for the enclosed candidate chunk.

There are two steps for this system, the training
and the prediction step. During training, the input
to this system is a pair of one “positive” sentence
and one “negative” sentence. The “positive” sen-
tence is the sentence that the inner enclosed candi-

date chunk answers the current slot filling question.
The “negative” sentence is determined by the “pos-
itive” sentence: for each “positive” sentence, all
the remaining sentences are considered as “nega-
tive” sentences. This system aims at minimizing
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the pairwise ranking loss using PyTorch (Paszke
et al., 2017), which is calculated as:

loss(x, y) = max(0,−y × (x1 − x2) + margin)
(4)

where x1 and x2 are input pairs (i.e., a “positive”
and a “negative” sentence), y = 1 or −1. If y = 1
then the first input x1 ranks higher than the second
input x2, and vice-versa for y = −1.

During prediction, the input is one sentence with
the unknown slot type of the enclosed candidate
chunk, and the output is the predicted label for the
enclosed chunk. The output is determined by using
a threshold value for the predicted scores of the
binary classifier.

6 Experiments and Results

We compare our Multilabel-CT-BERT system with
other systems (i.e., NLI, pairwise and baseline)
to demonstrate the effectiveness of the proposed
architecture. Our code is available on GitHub2.

6.1 Experimental Setup

Since each slot filling task in Multitask-BERT-
BASE (Zong et al., 2020) is modeled as a binary
classification problem, the non-binary “gender”
slot is split into “gender male” and “gender fe-
male” slots. The Multitask-BERT-BASE uses a
60/15/20 split ratio to split the collected dataset into
train/dev/test sets and is optimized using the Adam
algorithm (Kingma and Ba, 2015) with 2 × 10−5

as a learning rate. In order to compare with the
Multitask-BERT-BASE, the same parameters are
used for the rest of the models.

For the pairwise system, the number of training
instances (pairs of sentences) could be too large so
that the pairwise model becomes difficult to train.
Thus we used a downsampling strategy to reduce
the number of the sentence pairs. For every positive
sentence, we randomly select a specific number of
negative sentences. The ratio of the number of
negative sentences with respect to the number of
positive sentences is denoted as r. Two models are
built for this system: Pairwise-r50 (r = 50) and
Pairwise-r100 (r = 100).

For the Multitask-BERT-BASE, the Multilabel-
BERT-BASE, the NLI-CLS, the NLI-E, the
Pairwise-r50, and the Pairwise-r100, the batch size

2https://github.com/Glovesme/
covid19-event-extraction

and epochs are set to 32 and 8, respectively. For
the Multitask-BERT-LARGE, Multilabel-BERT-
LARGE, and Multilabel-CT-BERT, the batch size
and epochs are set to 64 and 15, respectively. For
all the models, except for the NLI-CLS and the
NLI-E, the best threshold for each slot filling task is
determined by performing a grid search on the cor-
responding dev set. For grid search, the candidate
thresholds for all the models, except for the NLI-
CLS, the NLI-E, the Pairwise-r50, and the Pairwise-
r100, are {0.1, 0.2, ..., 0.9}. The candidate thresh-
olds for the Pairwise-r50 and the Pairwise-r100 are
{−0.9,−0.8, ...,−0.1, 0, 0.1, ..., 0.9}. For each
model, the evaluation is performed on the test set.

Model micro avg F1 macro avg F1

Multitask-BERT-BASE 0.5826 0.5498
Multitask-BERT-LARGE 0.5827 0.5539
NLI-E 0.5567 0.4984
NLI-CLS 0.5694 0.4913
Pairwise-r50 0.5458 0.4978
Pairwise-r100 0.5580 0.5064
Multilabel-BERT-BASE 0.6005 0.5717
Multilabel-BERT-LARGE 0.6206 0.5928
Multilabel-CT-BERT 0.6585 0.6132

Table 3: The aggregated results in terms of micro avg
F1 and macro avg F1 scores. Micro avg F1 combines
the predictions (TP, FP, FN) from all the slot types and
macro avg F1 is the mean of all the F1 scores for all the
slot types.

6.2 Results
Table 3 shows the results3 of the Multitask-
BERT-BASE, Multitask-BERT-LARGE, NLI-E,
NLI-CLS, Pairwise-r50, Pairwise-r100, Multilabel-
BERT-BASE, Multilabel-BERT-LARGE, and
Multilabel-CT-BERT in terms of micro avg
F1 (combining the predictions from all the slot
types) and macro avg F1 (the mean of all the
F1 scores of all the slot types) scores. We observe
that our proposed Multilabel-CT-BERT is the
best system among the compared systems on
this shared task. The NLI and pairwise models
are not performing better with respect to the

3For the W-NUT shared task 3, the organizers initially
released an original dataset and then replaced it with a newer
version of the dataset. Before the release of the new dataset,
our experiments were performed on the original dataset and
we observed that the NLI and pairwise systems failed to out-
perform the other systems. Therefore, we only evaluated the
performance of the other systems on the new dataset. As a
result, the reported results on the NLI and pairwise systems
are based on the original dataset while the results of the rest of
the systems (Multilabel-CT-BERT, Multilabel-BERT system
and the baseline system) are based on the new dataset.

https://github.com/Glovesme/covid19-event-extraction
https://github.com/Glovesme/covid19-event-extraction
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Positive Multitask-BERT-BASE Multitask-BERT-LARGE Multilabel-BERT-BASE Multilabel-BERT-LARGE Multilabel-CT-BERT
slot # P R F1 P R F1 P R F1 P R F1 P R F1

who 471 0.75 0.72 0.73 0.71 0.78 0.75 0.76 0.78 0.77 0.78 0.74 0.76 0.83 0.74 0.78
c.contact 39 0.29 0.27 0.28 0.46 0.5 0.37 0.56 0.24 0.33 0.59 0.3 0.4 0.61 0.43 0.5
relation 12 0.4 0.31 0.35 0.4 0.67 0.5 0.35 0.67 0.46 0.39 0.69 0.5 0.47 0.69 0.56
employer 77 0.58 0.36 0.45 0.37 0.69 0.49 0.53 0.47 0.5 0.5 0.54 0.52 0.6 0.41 0.49
recent .v 34 0.44 0.33 0.38 0.47 0.33 0.38 0.67 0.41 0.51 0.48 0.41 0.44 0.43 0.46 0.44
age 15 0.71 0.67 0.69 0.76 0.72 0.74 0.76 0.72 0.74 0.81 0.72 0.76 0.86 0.67 0.75
where 150 0.58 0.59 0.58 0.57 0.68 0.62 0.55 0.66 0.6 0.58 0.63 0.6 0.65 0.66 0.65
gender m 126 0.64 0.71 0.67 0.68 0.66 0.67 0.64 0.72 0.68 0.67 0.65 0.66 0.64 0.7 0.67
gender f 47 0.76 0.54 0.63 0.67 0.63 0.65 0.64 0.65 0.65 0.68 0.54 0.6 0.64 0.7 0.67
when 13 0.29 0.43 0.35 0.48 0.43 0.45 0.37 0.39 0.39 0.4 0.61 0.48 0.67 0.5 0.57
micro F1 0.6193 0.6508 0.6452 0.6497 0.6834
macro F1 0.511 0.562 0.563 0.5726 0.608
Negative Multitask-BERT-BASE Multitask-BERT-LARGE Multilabel-BERT-BASE Multilabel-BERT-LARGE Multilabel-CT-BERT
slot # P R F1 P R F1 P R F1 P R F1 P R F1

who 140 0.6 0.58 0.59 0.59 0.58 0.59 0.67 0.58 0.63 0.64 0.6 0.62 0.72 0.64 0.68
relation 25 0.6 0.63 0.61 0.57 0.67 0.62 0.73 0.67 0.7 0.63 0.71 0.67 0.78 0.58 0.67
where 22 0.44 0.52 0.48 0.48 0.48 0.48 0.34 0.45 0.39 0.44 0.73 0.55 0.58 0.64 0.61
gender m 48 0.65 0.59 0.62 0.54 0.75 0.62 0.6 0.65 0.62 0.65 0.65 0.65 0.67 0.61 0.64
gender f 20 0.61 0.52 0.56 0.45 0.48 0.47 0.63 0.57 0.6 0.59 0.62 0.6 0.67 0.67 0.67
micro F1 0.586 0.5785 0.6095 0.6213 0.6614
macro F1 0.572 0.556 0.588 0.618 0.654
CAN NOT TEST Multitask-BERT-BASE Multitask-BERT-LARGE Multilabel-BERT-BASE Multilabel-BERT-LARGE Multilabel-CT-BERT
slot # P R F1 P R F1 P R F1 P R F1 P R F1

who 108 0.56 0.51 0.53 0.55 0.56 0.55 0.52 0.52 0.52 0.65 0.56 0.6 0.71 0.57 0.63
relation 44 0.71 0.45 0.56 0.54 0.47 0.51 0.58 0.57 0.57 0.8 0.45 0.58 0.61 0.57 0.59
where 23 0.68 0.39 0.5 0.61 0.45 0.52 0.59 0.42 0.49 0.62 0.68 0.65 0.7 0.61 0.65
symptoms 54 0.6 0.46 0.53 0.56 0.55 0.56 0.57 0.52 0.54 0.64 0.57 0.6 0.58 0.59 0.58
micro F1 0.5297 0.5409 0.5304 0.6069 0.6157
macro F1 0.53 0.535 0.53 0.6075 0.6125
DEATH Multitask-BERT-BASE Multitask-BERT-LARGE Multilabel-BERT-BASE Multilabel-BERT-LARGE Multilabel-CT-BERT
slot # P R F1 P R F1 P R F1 P R F1 P R F1

who 141 0.67 0.68 0.67 0.66 0.6 0.63 0.7 0.73 0.71 0.66 0.74 0.7 0.56 0.84 0.67
relation 26 0.7 0.27 0.39 0.64 0.35 0.45 0.68 0.58 0.62 0.55 0.62 0.58 0.63 0.38 0.48
when 23 0.66 0.63 0.64 0.68 0.5 0.58 0.64 0.46 0.53 0.68 0.74 0.71 0.62 0.78 0.69
where 54 0.74 0.53 0.62 0.78 0.53 0.63 0.55 0.79 0.65 0.61 0.72 0.66 0.46 0.79 0.59
age 33 0.68 0.87 0.76 0.72 0.93 0.81 0.58 0.77 0.66 0.7 0.77 0.73 0.69 0.83 0.76
micro F1 0.6516 0.6318 0.6613 0.6866 0.6527
macro F1 0.616 0.62 0.634 0.676 0.638
CURE&PREV

Multitask-BERT-BASE Multitask-BERT-LARGE Multilabel-BERT-BASE Multilabel-BERT-LARGE Multilabel-CT-BERT
slot #

P R F1 P R F1 P R F1 P R F1 P R F1

opinion 62 0.5 0.56 0.53 0.33 0.61 0.43 0.39 0.71 0.5 0.41 0.34 0.37 0.68 0.58 0.63
what 148 0.56 0.61 0.58 0.7 0.57 0.63 0.65 0.62 0.64 0.61 0.69 0.65 0.59 0.76 0.66
who 61 0.49 0.41 0.45 0.45 0.41 0.43 0.46 0.53 0.49 0.51 0.41 0.45 0.52 0.53 0.52
micro F1 0.532 0.5113 0.5559 0.5387 0.6125
macro F1 0.52 0.4967 0.5433 0.49 0.6033
micro avg F1 0.5826 0.5827 0.6005 0.6206 0.6585
macro avg F1 0.5498 0.5539 0.5717 0.5928 0.6132

Table 4: The results of Multitask-BERT-BASE, Multitask-BERT-LARGE, Multilabel-BERT-BASE, Multilabel-
BERT-LARGE, and Multilabel-CT-BERT. # indicates the number of golden slots in the test set. Positive is the
TESTED POSITIVE event. Negative is the TESTED NEGATIVE event. c.contact is the close contact slot type.
recent.v is the recent travel slot type. gender m is the gender male slot type while the gender f is the gender female
slot type.

baseline models. The reasons for this performance
difference are that the NLI system uses formal
language while the tweets contains informal
language and the pairwise models use only part of
the training data. Since these two systems are not
performing well on this shared task, the detailed
results for these two models are included only
in the Appendix (see A.1 and A.2). As we can
observe from the results, the multilabel BERT-
based models also perform better than the baseline
models. This is because that these systems not

only train the slots jointly, but also share the same
parameters for them by using a feed-forward neural
network on top of the underlying model (BERT
or COVID-Twitter-BERT). Multilabel-CT-BERT
outperforms the multilabel BERT-based models
because the CT-BERT-based model is optimized
on COVID-19 related tweets.

Table 4 shows the detailed results of Multitask-
BERT-BASE, Multitask-BERT-LARGE,
Multilabel-BERT-BASE, Multilabel-BERT-
LARGE, and Multilabel-CT-BERT. The results are
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based on the test set. For each model, the precision
(P), recall (R) and F1 (F1) scores are reported for
each slot type of each event type. In addition, the
micro F1 and macro F1 are reported for each event
type, and the micro avg F1 and macro avg F1 are
reported for all the event types.

From these detailed results of Table 4 (i.e., mi-
cro avg F1 and macro avg F1), we can observe that
the multilabel-based systems (Multilabel-BERT-
BASE, Multilabel-BERT-LARGE and Multilabel-
CT-BERT) outperform the multitask-based sys-
tems (Multitask-BERT-BASE and Multitask-BERT-
LARGE). We also notice that systems using BERT-
LARGE perform better than those using BERT-
BASE. Except for the slightly worse performance
in terms of micro F1 and macro F1 on the DEATH
event type compared to other multilabel systems,
the Multilabel-CT-BERT substantially improves
the system performance on the rest of the event
types. Compared to the baseline model, the
Multilabel-CT-BERT achieves a micro avg F1 of
65.85% (7.59 percentage points absolute improve-
ment) and macro avg F1 of 61.32% (6.34 percent-
age points absolute improvement).

To conclude, the Multilabel-CT-BERT system is
the best performing system among the compared
systems on the COVID-19 Twitter Event Corpus,
and it achieves a performance of 61.6% in terms of
F1 score in the test data4 of the shared task.

7 Conclusion

In this paper, a COVID-Twitter-BERT based
Multilabel-CT-BERT system is proposed in the con-
text of the W-NUT shared task to deal with the slot
filling problem of the recently introduced COVID-
19 Twitter Event Corpus. Our experimental results
illustrate that the proposed Multilabel-CT-BERT
system outperforms the baseline and other pro-
posed models in terms of micro avg F1 and macro
avg F1 scores.
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A Appendices

A.1 NLI System Results
Table 5 shows the detailed results of the NLI mod-
els: NLI-CLS and NLI-E.

Positive NLI-E NLI-CLS
slot # P R F1 P R F1

who 471 0.74 0.73 0.73 0.75 0.75 0.75
c.contact 39 0.39 0.44 0.41 0.3 0.33 0.31
relation 12 0.44 0.33 0.38 0.41 0.58 0.48
employer 77 0.37 0.39 0.38 0.5 0.22 0.31
recent .v 34 0.53 0.26 0.35 0.38 0.18 0.24
age 15 0.58 0.73 0.65 0.57 0.87 0.68
where 150 0.49 0.59 0.53 0.46 0.69 0.55
gender m 126 0.7 0.51 0.59 0.7 0.58 0.63
gender f 47 0.7 0.66 0.68 0.78 0.62 0.69
when 13 0.37 0.77 0.5 0.2 0.62 0.3
micro F1 0.6194 0.6245
macro F1 0.52 0.494
Negative NLI-E NLI-CLS
slot # P R F1 P R F1

who 140 0.55 0.66 0.6 0.61 0.62 0.62
relation 25 0.29 0.2 0.24 0.78 0.28 0.41
where 22 0.28 0.32 0.3 0 0 0
gender m 48 0.59 0.56 0.57 0.57 0.54 0.55
gender f 20 0.6 0.45 0.51 0.67 0.5 0.57
micro F1 0.5323 0.5567
macro F1 0.44 0.43
CAN NOT TEST NLI-E NLI-CLS
slot # P R F1 P R F1

who 108 0.72 0.44 0.55 0.56 0.54 0.55
relation 44 0.7 0.36 0.48 0.53 0.43 0.48
where 23 0.48 0.65 0.56 0.4 0.61 0.48
symptoms 54 0.75 0.39 0.51 0.58 0.35 0.44
micro F1 0.5305 0.5023
macro F1 0.525 0.4875
DEATH NLI-E NLI-CLS
slot # P R F1 P R F1

who 141 0.72 0.44 0.55 0.64 0.76 0.69
relation 26 0.7 0.36 0.48 0.63 0.46 0.53
when 23 0.48 0.65 0.56 0.51 0.51 0.51
where 54 0.75 0.39 0.51 0.81 0.25 0.38
age 33 0.55 0.88 0.67 0.66 0.76 0.7
micro F1 0.5803 0.6197
macro F1 0.554 0.562
CURE&PREV

NLI-E NLI-CLS
slot #

P R F1 P R F1

opinion 62 0.49 0.42 0.45 0.53 0.55 0.54
what 148 0.63 0.62 0.63 0.6 0.56 0.58
who 61 0.39 0.21 0.28 0.46 0.26 0.33
micro F1 0.5209 0.5439
macro F1 0.453 0.4833
micro avg F1 0.5567 0.5694
macro avg F1 0.4984 0.4913

Table 5: The detailed results of NLI-E and NLI-CLS.

A.2 Pairwise System Results
Table 6 shows the detailed results of the pairwise
models: Pairwise-r50 and Pairwise-r100.

Positive Pairwise-r50 Pairwise-r100
slot # P R F1 P R F1

who 471 0.74 0.75 0.74 0.78 0.7 0.74
c.contact 39 0.23 0.38 0.29 0.24 0.31 0.27
relation 12 0.28 0.58 0.38 0.5 0.08 0.14
employer 77 0.44 0.4 0.42 0.44 0.44 0.44
recent .v 34 0.53 0.26 0.35 0.41 0.65 0.5
age 15 0.42 0.53 0.47 0.5 0.87 0.63
where 150 0.54 0.58 0.56 0.47 0.67 0.55
gender m 126 0.61 0.61 0.61 0.69 0.61 0.65
gender f 47 0.51 0.59 0.55 0.65 0.55 0.6
when 13 0.44 0.62 0.52 0.22 0.77 0.34
micro F1 0.6085 0.6177
macro F1 0.489 0.486
Negative Pairwise-r50 Pairwise-r100
slot # P R F1 P R F1

who 140 0.53 0.69 0.6 0.6 0.56 0.58
relation 25 0.39 0.48 0.43 0.37 0.64 0.47
where 22 0.32 0.68 0.43 0.32 0.55 0.41
gender m 48 0.38 0.27 0.32 0.54 0.46 0.5
gender f 20 0.61 0.55 0.58 0.36 0.75 0.48
micro F1 0.5202 0.5245
macro F1 0.472 0.4879
CAN NOT TEST Pairwise-r50 Pairwise-r100
slot # P R F1 P R F1

who 108 0.5 0.55 0.52 0.52 0.57 0.54
relation 44 0.52 0.55 0.53 0.5 0.52 0.51
where 23 0.3 0.61 0.41 0.28 0.61 0.38
symptoms 54 0.34 0.65 0.45 0.45 0.41 0.43
micro F1 0.487 0.4899
macro F1 0.4775 0.465
DEATH Pairwise-r50 Pairwise-r100
slot # P R F1 P R F1

who 141 0.63 0.77 0.69 0.69 0.63 0.66
relation 26 0.32 0.73 0.45 0.33 0.69 0.45
when 23 0.47 0.92 0.62 0.48 0.78 0.6
where 54 0.46 0.6 0.52 0.57 0.55 0.56
age 33 0.58 0.85 0.69 0.61 0.82 0.7
micro F1 0.6227 0.6221
macro F1 0.594 0.594
CURE&PREV

Pairwise-r50 Pairwise-r100
slot #

P R F1 P R F1

opinion 62 0.29 0.76 0.42 0.45 0.5 0.47
what 148 0.52 0.68 0.59 0.6 0.63 0.62
who 61 0.32 0.39 0.36 0.34 0.43 0.38
micro F1 0.4907 0.5357
macro F1 0.4566 0.49
micro avg F1 0.5458 0.558
macro avg F1 0.4978 0.5046

Table 6: The detailed results of Pairwise-r50 and
Pairwise-r100.


