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Abstract

This paper reports our approach and the results
of our experiments for W-NUT task 2: Iden-
tification of Informative COVID-19 English
Tweets. In this paper, we test out the effective-
ness of transfer learning method with state of
the art language models as RoBERTa on this
text classification task. Moreover, we examine
the benefit of applying additional fine-tuning
and training techniques including fine-tuning
discrimination, gradual unfreezing as well as
our custom head for the classifier. Our best
model results in a high F1-score of 89.89 on
the task’s test dataset and that of 90.96 on the
public validation set without ensembling mul-
tiple models and additional data.

1 Introduction

Identification of Informative COVID-19 English
Tweets (Nguyen et al., 2020) is the task of “pro-
viding users the information related to the virus”.
It is meaningful in the sense that with an in-
creasing amount of tweets about the virus, many
among them are uninformative and even harmful
to the viewers. Manually identifying uninformative
tweets is costly. Therefore, a system which can per-
form the task automatically would be tremendously
helpful.

With the rise of deep learning, particularly trans-
fer learning for solving text classification prob-
lem, we would like to propose an approach that
leads to high performance (represents by a high
F1-score of 89.89) on the task’s test dataset. This
approach uses pre-training method with state-of-
the-art pre-trained language model RoBERTa (Liu
et al., 2019), combines with many existing fine-
tuning techniques including one-cycle-policy learn-
ing rate(Smith, 2018),fine-tuning discrimination,
gradual unfreezing (Howard and Ruder, 2018),
label smoothing (Pereyra et al., 2017), and our
custom-head model.

Other than using pre-training with a state-of-the-
art pre-trained language model, there is no clear
winning factor for our success as all fine-tuning
techniques need to incorporate to form our best
model. Our main contributions are:
• We perform numerous experiments to support

our hypothesis. Which is fine-tuning state-of-the-
art pre-trained language models such as RoBERTa
is more beneficial to the Identification of Informa-
tive COVID-19 English Tweets task than several
training-from-scratch models.
• We combine many fine-tuning techniques to

form our best model and experiments with the ef-
fect of each technique by gradually stacking them
onto our base model then observe their effects.

2 Related work

2.1 Language model pre-training

Universal feature representation function, through
pre-training language model on large amount of
unlabeled data, namely ELMo (Peters et al., 2018),
GPT (Radford, 2018), BERT (Devlin et al., 2018)
and XLNet (Yang et al., 2019) has brought tremen-
dous gains in performance for many NLP tasks.
The rise of those models has been most benefi-
cial to transfer learning for downstream tasks such
as text classification, Question Answering, Text
Summarization. Different from learning fixed fea-
ture vectors of words without regard to its context
such as Word2Vec (Mikolov et al., 2013) or Glove
(Pennington et al., 2014), those above self-training
method learn context-dependent word representa-
tion, results in high quality features learning for
text (Jawahar et al., 2019).

2.2 Tranfering training techniques

ULMfit (Howard and Ruder, 2018) introduced a
novel fine-tuning method which is task-adaptive
pre-training which boosts upmost NLP downstream
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task’s performance. The authors fine-tune the
pre-trained language model in order to adapt the
weights to a new task distribution. Moreover, the
authors experiment with a combination of several
training techniques, that they suggest, to bring a
gain in performance for many common transfer
learning settings, such as Learning Rate Discrimi-
nation, Gradual Unfreezing, and Slanted Triangular
Learning Rate. Our work has been mostly inspired
by this paper.

Don’t stop pre-training (Gururangan et al., 2020)
sheds light on the effectiveness of domain-adaptive
pre-training and task-adaptive pretraining in 4 dif-
ferent domains with 8 downstream tasks, 2 tasks
each domain, including tasks with limited and re-
dundant labeled data. The paper points out that
task – adaptive pre-training results in better per-
formance compared to only fine-tuning weights on
downstream tasks. Unfortunately, we did not ex-
periment with this technique for WNUT-2020 Task
2: Identification of informative COVID-19 English
Tweets competition.

2.3 RoBERTa

RoBERTa (Liu et al., 2019) was built based on
BERT’s language masking strategy. However,
RoBERTa model modifies several key hyperpa-
rameters in BERT including removing BERT’s
next-sentence pretraining objective and training
with much larger mini-batches as well as learning
rates. It outperforms BERT on a variety of NLP
tasks and archives comparable performance with
the SOTA model XLNET (Yang et al., 2019). Like-
wise BERT, RoBERTa has two different settings,
RoBERTa Base which uses 12 layers of Trans-
former Encoder and 24 Transformers Encoder Lay-
ers with RoBERTa Large. We experiment with
both RoBERTa Base and RoBERTa Large as out
base model and show a comparison in performance
between them.

3 System description

3.1 Pretraining and backbone mode:

Fine-tuning the downstream task’s model in Nat-
ural Language Processing using pre-trained lan-
guage models, such as BERT, has been experi-
mentally shown to be effective, both in terms of
convergence time and performance (Gururangan
et al., 2020). However, the choice of the pre-trained
model affects the result of the downstream task.
Since RoBERTa Base and RoBERTa Large have

achieved significant gain in performance in many
common fine-tuning settings, we experiment using
both models as the backbone for our task’s base
model.

Our base model is simply designed to test out
the effectiveness of our choice of backbone, cus-
tom head, and training techniques. We use both
RoBERTa Base and RoBERTa Large (Liu et al.,
2019) as our backbone in all model settings to com-
pare the effectiveness of each backbone.

Our base model includes a backbone extract-
ing all information of an input sequence into the
[CLS] token‘s features of the last backbone’s layer.
Those features are then linearly projected onto 2D,
followed by a Softmax activation to predict the
probability of the label being “Informative” or “Un-
informative” given the input. Notice that we use
cyclical learning rate and label smoothing to all
model’s settings in our experiment including the
base model’s settings.

More complex model settings use a more com-
plex custom head and are gradually added ad-
vanced training techniques.

In order to emphasize the significant contribu-
tion of the pre-training method using the SOTA lan-
guage model, we also train used-to-be state of the
art models in text classification including Hierar-
chical Attention Networks (Yang et al., 2016) com-
bined with Weight-Dropped GRU (Merity et al.,
2017), Bidirectional Long Short-Term Memory
Networks with Two Dimensional Convolutional
Neural Network (Zhou et al., 2016) and Non-Static
Convolutional Neural Network (Kim, 2014). As
expected, the results of training those models from
scratch have been around 8.0 lower F1-score than
our base model. The detailed result is demonstrated
in the Experiment Results section.

3.2 Custom head design

The higher layer in RoBERTa model captures
higher-level features and semantic meaning (Jawa-
har et al., 2019) . We would like to incorporate
more types of features by using not only [CLS]
token’s features of the last backbone’s layers but
those of 4 last backbone layers. We concatenate all
those features, subsequently linearly project them
on lower-dimensional space. We refer to the out-
put of this process as features of branch one. Note
that with each linear layer except the last one, we
always stack one Batch Normalization (Ioffe and
Szegedy, 2015) layer following ReLU activation.
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We suspect that it is burdening to use only [CLS]
token’s features as the only source of information
for the prediction of the model. To resolve this,
we also utilize features of the rest of the tokens of
the last backbone layers in our custom head. We
put the rest tokens’ features through a Bidirectional
LSTM (Hochreiter and Schmidhuber, 1997), 1D
Convolutional Neural Network, and Max Pooling
Over Time to extract and summarize useful infor-
mation. The output of this process is referred to as
feature branch two. We then aggregate 2 branches’
features through concatenation. Finally, we apply
a linear classifier on top of those combined fea-
tures. The choice of 4 layers are the only heuristic,
not thoroughly scientific, this choice can be further
examined in our future works.

Figure 1: Architecture of the best proposed model.

Figure 1 describes our best architecture which
has RoBERTa Large as the backbone, and our cus-
tom head on top of it. We refer to section 3 as the
source of more details.

3.3 Transfer learning techniques

Learning rate discrimination: Intermediate lay-
ers in BERT model learn a “rich hierarchy of lin-
guistic information, starting with surface features
at the bottom, syntactic features in the middle fol-
lowed by semantic features at the top” (Jawahar
et al., 2019). We expect the same behavior for
its variants which is RoBERTa (Liu et al., 2019).
Therefore, when adapting to a new domain or a new
task, it would be more appropriate to strongly adapt
the layer that captures the semantic meaning and
slowly, slightly adapts the weights of lower layers

which contain most general knowledge (Yosinski
et al., 2014). We achieve that by setting the learn-
ing rate differently for each layer, the lower layer
has a small learning rate while higher ones update
their weights at a higher rate.

Cyclical learning rate: The cyclical learning
rate has been empirically shown to improve neural
network performance. The learning rate should
neither be set to be too large nor too small but first
to get warm up by a gradual increase, followed by
a gradual decrease. By doing that, learning would
less likely to over-fit (due to small learning rate)
or diverse (due to large learning rate). For more
specifications, we refer to the experiment section.

Gradual unfreezing: ULMfit (Howard and
Ruder, 2018) pointed out the risk of catastrophic
forgetting appears as the result of fine-tuning all
layers of the backbone model simultaneously. To
avoid that, the paper suggests to apply multi-phase
training, each unfreezes one layer, from top to bot-
tom gradually. In the experiments section, we show
that incorporating these techniques results in better
overall models’ performance

4 Experimental Results

4.1 Data preparation

Data description: The original dataset contains
7000 samples for training and 1000 ones for vali-
dating, and an additional public validation set. It
is an almost balanced dataset with 3303 samples
being labeled INFORMATIVE and 3697 are UN-
INFORMATIVE tweets. The average length of the
sample in each class is 40 tokens.

Data preprocessing: We first exclude all emoji
in the dataset. Our justification is that: we observe
the same fraction of sequences containing emoji
in both INFORMATIVE and UNINFORMATIVE
data, indicating that information from emoji is un-
likely to be useful for this classification task.

For the tweet domain, there are typical elements
such as hashtags, URL-links, mentions that needed
to be handled. However, the given dataset has al-
ready replaced URL-links and mentions with spe-
cial tokens @USER and @HTTPURL respectively.
We choose to discard all other non-English lan-
guages in the dataset and keep hashtags elements.

4.2 Model’s hyper-parameters settings and
system configuration

In order to test out the effect of all model’s settings
in our experiments, we prefix hyper-parameters
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Model Precision Recall F1 Accuracy
BiLSTM + 2DCNN (*) 77.89 83.31 80.51 80.90
Non Static CNN (*) 81.63 80.38 81.00 82.18
HAN + WD-GRU (*) 82.65 82.08 82.36 83.40
RoBERTa Base 87.60 92.97 90.21 90.46
RoBERTa Large 88.40 92.84 90.57 90.86

Table 1: Comparing pretraining using RoberTa and training from scratch with previous SOTA models on text
classification. (*) denotes for our implementation.

Model Precision Recall F1 Accuracy
RoBERTa Base 87.60 92.97 90.21 90.46
RoBERTa Base + DLr 87.84 93.09 90.39 90.64
RoBERTa Base + DLr + Head 88.66 92.33 90.46 90.80
RoBERTa Base + DLr + Head + GU 88.40 93.22 90.75 91.02
RoBERTa Large 88.40 92.84 90.57 90.86
RoBERTa Large + DLr 87.84 93.74 90.69 90.90
RoBERTa Large + DLr + Head 88.75 92.84 90.75 91.06
RoBERTa Large + DLr + Head + GU 88.15 93.96 90.96 91.14

Table 2: Comparing models using RoBERTa Base and RoBERTa Large as backbone. DLr denotes Discrimination
Learning Rate, Head denotes Custom Head and GU denotes Gradual Unfreezing.

across all settings except for the number of mini-
batch sizes and the number of training epochs. Due
to the limits of GPU memory, each model uses
RoBERTa Base has a minibatch of size 50 whereas
those of model using RoBERTa Large are 10. We
train with the number of epochs which equals the
number of encoder layers plus 1 and 10 epochs
for the model using and not-using Gradual unfreez-
ing, the final result is averaged results of 10 times
training with different random seeds. In a different
setting, we set LSTM’s hidden size is the same as
RoBERTa hidden size, the kernel size of 1D CNN
is 3. The maximum learning rate using in the one-
cycle policy is 1e-5. Our choice of optimizer is
AdamW (Loshchilov and Hutter, 2017). All out
models were trained using only one GPU Tesla T4
with 16GB memory.

4.3 Evaluation metrics

We report our results with Accuracy, F1-score, Re-
call, and Precision metrics on the validation set.
However, most of our analysis focuses on F1-score
since it is the harmonic mean of Precision and Re-
call and it is a better representative of performance
than Accuracy when the data is not perfectly bal-
anced.

4.4 Results and analysis

Table 1 compared the performance of several ar-
chitectures training from scratch and pre-training
method using RoBERTa in our base settings. These
traditional architecture are Hierarchical Attention
Networks (Yang et al., 2016) combined with
Weight-Dropped GRU (Merity et al., 2017) (HAN
+ WD-GRU), Bidirectional Long Short-Term Mem-
ory Networks with Two Dimensional Convolu-
tional Neural Network (BiLSTM + 2DCNN) (Zhou
et al., 2016) and Non Static Convolutional Neu-
ral Network (Kim, 2014) (Non-static CNN) . As
far as we expect, the pre-training method signifi-
cantly out-performs training from scratch with tra-
ditional architecture results in a gain of around 8.0
F1-score.

Table 2 compared the performance of 4 mod-
els using RoBERTa Base and 4 models using
RoBERTa Large as the backbone. Each backbone
is tested out with a base setting (the only backbone
with a linear classifier, details are described in sec-
tion 3), then that base setting is gradually added
with fine-tuning techniques (DLr is discriminative
learning rate; GU is gradual Unfreezing) and our
custom head.

There are two standing out observations in table
2. Firstly, RoBERTa Large outperforms RoBERTa
Base in all model settings. Which meets our expec-
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tations.
Secondly, gradually adding up training technique

and custom head leads to a gradual increase in F1-
score. This emphasizes the positive effect of all
techniques and custom heads on this task’s perfor-
mance. Overall, our winning model results in an
89.89 F1-score.

5 Conclusion

In this paper, we experiment with the effectiveness
of transfer learning using state-of-the-art language
pre-trained model RoBERTa with the incorporation
of several fine-tuning and training techniques for
the informative tweet identifying the task. Our best
model results in high F1-scores in both public and
test dataset.

For future work, we would like to explore the
effectiveness of different text augmentation strate-
gies and task-adaptive pre-training instead of only
fine-tuning the classification task.
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