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Abstract

Punctuation restoration is a common post-
processing problem for Automatic Speech
Recognition (ASR) systems. It is important
to improve the readability of the transcribed
text for the human reader and facilitate NLP
tasks. Current state-of-art address this prob-
lem using different deep learning models. Re-
cently, transformer models have proven their
success in downstream NLP tasks, and these
models have been explored very little for the
punctuation restoration problem. In this work,
we explore different transformer based models
and propose an augmentation strategy for this
task, focusing on high-resource (English) and
low-resource (Bangla) languages. For English,
we obtain comparable state-of-the-art results,
while for Bangla, it is the first reported work,
which can serve as a strong baseline for future
work. We have made our developed Bangla
dataset publicly available for the research com-
munity.

1 Introduction

Due to the recent advances in deep learning meth-
ods, the accuracy of Automatic Speech Recognition
(ASR) systems has increased significantly (e.g.,
3.4% WER on LibriSpeech noisy test set (Park
et al., 2020)). The improved performance of ASR
enabled the development of voice assistants (e.g.,
Siri, Cortana, Bixby, Alexa, and Google Assistant)
and their wider use at the user end. Among differ-
ent components (e.g., acoustic, language model),
pre- and post-processing steps, the punctuation
restoration is one of the post-processing steps that
also needs to be dealt with to improve the readabil-
ity and utilize the transcriptions in the subsequent
NLP applications (Jones et al., 2003; Matusov et al.,
2007).1 This is because state-of-the-art NLP mod-
els are mostly trained using punctuated texts (e.g.,

1Example of downstream NLP applications include ques-
tion answering, information extraction, named entity recogni-
tion (Makhoul et al., 2005), text summarization, etc.

texts from newspaper articles, Wikipedia). Hence,
the lack of punctuation significantly degrades per-
formance. For example, there is a performance
difference of more than ∼ 10% when the model
is trained with newspaper texts and tested with
transcriptions for the Named Entity Recognition
system (Alam et al., 2015).

To address this issue, most of the earlier efforts
on the punctuation restoration task have been done
using lexical, acoustic, prosodic, or a combination
of these features (Gravano et al., 2009; Levy et al.,
2012; Zhang et al., 2013; Xu et al., 2014; Szaszák
and Tündik, 2019; Che et al., 2016a). For the punc-
tuation restoration task, lexical features have been
widely used because the model can be trained using
any punctuated text (i.e., publicly available newspa-
per articles or content from Wikipedia) and because
of the availability of such large-scale text. This is
a reasonable choice as developing punctuated tran-
scribed text is a costly procedure.

In terms of machine learning models, condi-
tional random field (CRF) has been widely used
in earlier studies (Lu and Ng, 2010; Zhang et al.,
2013). Lately, the use of deep learning models,
such as Long Short-Term Memory (LSTM), Convo-
lutional Neural Network (CNN), and transformers
have also been used (Che et al., 2016b; Gale and
Parthasarathy, 2017; Zelasko et al., 2018; Wang
et al., 2018) for this task.

There has been a variant of transformer based
language models (e.g., BERT (Devlin et al., 2019a),
RoBERTa (Liu et al., 2019)), which have not been
explored widely to address this problem. Hence,
we aimed to explore different architectures and fine-
tune pre-trained models for this task focusing on
English and Bangla. Punctuation restoration mod-
els are usually trained on clean texts but used on
noisy ASR texts. As such, the performance may
degrade due to errors introduced by ASR models
which are not present in the training data. We de-
sign an augmentation strategy (see Section 4.1.2)
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to address this issue. For English, we train and eval-
uate the models using IWSLT reference and ASR
test datasets. We report that our proposed augmen-
tation strategy yields a 3.8% relative improvement
in the F1 score on ASR transcriptions for English
and obtains state-of-the-art results. For Bangla,
there has not been any prior reported work for
punctuation restoration. In addition, no resource
has been found. Therefore, we prepare a train-
ing dataset from a news corpus and provide strong
baselines for news, reference, and ASR transcrip-
tions. To shade light in the current state-of-the-art
on punctuation restoration task, our contributions
in this study are as follows:

1. Explore transformer based language models
for the punctuation restoration task.

2. Propose an augmentation strategy.
3. Prepare training and evaluation datasets for

Bangla and provide strong benchmark results.
4. We have made our source code and datasets

publicly available.2

We organize the rest of the paper as follows.
In Section 2, we discuss recent works based on
lexical features. We describe English and Bangla
datasets used in this study in Section 3. Experimen-
tal details are provided in Section 4. We compare
our results against other published results on the
IWSLT dataset and provide benchmark results on
the Bangla dataset in Section 5. We conclude the
paper in Section 6.

2 Related Work

Recent lexical features based approaches for punc-
tuation restoration tasks are predominantly based
on deep neural networks. Che et al. (2016b) used
pre-trained word embeddings to train feedforward
deep neural network and CNN. Their result showed
improvements over a CRF based approach that uses
purely text data.

Since context is important for this type of task,
several studies explored the recurrent neural net-
work (RNN) based architectures combined with
CRF and pre-trained word vectors. For instance,
Tilk and Alumäe (2016) used a bidirectional recur-
rent neural network (RNN) with an attention mech-
anism to improve performance over DNN and CNN
models. In another study, Gale and Parthasarathy
(2017) used character-level LSTM architecture to

2https://github.com/xashru/
punctuation-restoration

achieve results that are competitive with the word-
level CRF based approach. Yi et al. (2017) com-
bined bidirectional LSTM with a CRF layer and
an ensemble of three networks. They further used
knowledge distillation to transfer knowledge from
the ensemble of networks to a single DNN network.

Transformer based approaches have been ex-
plored in several studies (Yi and Tao, 2019; Nguyen
et al., 2019). Yi and Tao (2019) combined pre-
trained word and speech embeddings that improves
performance compared to only word embedding
based model. Nguyen et al. (2019) used trans-
former architecture to restore both punctuation and
capitalization. Punctuation restoration is also im-
portant for machine translation. The study by Wang
et al. (2018) used a transformer based model for
spoken language translation. They achieved signifi-
cant improvements over CNN and RNN baselines,
especially on joint punctuation prediction task.

More recent approaches are based on pre-trained
transformer based models. Makhija et al. (2019)
used pre-trained BERT (Devlin et al., 2019a) model
with bidirectional LSTM and a CRF layer to
achieve state-of-the-art result on reference tran-
scriptions. Yi et al. (2020) used adversarial multi-
task learning with auxiliary parts of speech tagging
task using a pre-trained BERT model.

In this study, we also explore transformer based
models; however, unlike prior works that solely
studied one architecture (BERT), we experiment
with different models. We also propose a novel aug-
mentation scheme that improves the performance.
Our augmentation is closely related to the augmen-
tation techniques proposed in (Wei and Zou, 2019b)
where the authors consider synonym replacement,
random insertion, random swap, and random dele-
tion. While their work is intended for the text clas-
sification tasks, we propose a different version of
it for this study, which is a sequence labeling task.
We do not use synonym replacement and random
swap as they do not usually appear in speech tran-
scription.

3 Datasets

3.1 English Dataset
We use IWSLT dataset for English punctuation
restoration, which consists of transcriptions from
TED Talks.3 Though this dataset was originally re-
leased in the IWSLT evaluation campaign in 2012

3http://hltc.cs.ust.hk/iwslt/index.
php/evaluation-campaign/ted-task.html

https://github.com/xashru/punctuation-restoration
https://github.com/xashru/punctuation-restoration
http://hltc.cs.ust.hk/iwslt/index.php/evaluation-campaign/ted-task.html
http://hltc.cs.ust.hk/iwslt/index.php/evaluation-campaign/ted-task.html
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Dataset Total Period Comma Question Other (O)

English

Train 2102417 132393 (6.3%) 158392 (7.53%) 9905 (0.47%) 1801727 (85.7%)
Dev 295800 18910 (6.39%) 22451 (7.59%) 1517 (0.51%) 252922 (85.5%)
Test (Ref.) 12626 807 (6.39%) 830 (6.57%) 46 (0.36%) 10943 (86.67%)
Test (ASR) 12822 809 (6.31%) 798 (6.22%) 35 (0.27%) 11180 (87.19%)

Bangla

Train 1379986 98791 (7.16%) 65235 (4.73%) 4555 (0.33%) 1211405 (87.78%)
Dev 179371 13161 (7.34%) 7544 (4.21%) 534 (0.3%) 158132 (88.16%)
Test (news) 87721 6263 (7.14%) 4102 (4.68%) 305 (0.35%) 77051 (87.84%)
Test (Ref.) 6821 996 (14.6%) 279 (4.09%) 170 (2.49%) 5376 (78.82%)
Test (ASR) 6417 887 (13.82%) 253 (3.94%) 125 (1.95%) 5152 (80.29%)

Table 1: Distributions of English and Bangla datasets. The number in parenthesis represents percentage.

Dataset English Bangla

Avg. Std Avg. Std

Train 13.8 10.8 12.4 7.6
Dev 13.5 10.7 12.1 7.2
Test: News - - 12.4 7.2
Test: Ref. 13.8 9.6 4.8 3.2
Test: ASR 14.2 9.7 5.3 3.6

Table 2: Average sentence length (Avg.) with standard
deviation (Std.) for each language.

(Cettolo et al., 2013; Federico et al., 2012), later,
Che et al. (2016b) prepared and released a refined
version of the IWSLT dataset publicly. For this
study, we use the same train, development, and test
splits released by Che et al. (2016b). The train-
ing and development set consist of 2.1M and 296K
words, respectively. Two test sets are provided
with manual and ASR transcriptions, each contain-
ing 12626 and 12822 words, respectively. These
are taken from the test data of IWSLT2011 ASR
dataset.3 A detailed description of the dataset can
be found in (Che et al., 2016b). There are four la-
bels including three punctuation marks: (i) Comma:
includes commas, colons and dashes, (ii) Period:
includes full stops, exclamation marks and semi-
colons, (iii) Question: only question mark, and (iv)
O: for any other token.

3.2 Bangla Dataset

To the best of our knowledge, there are no pub-
licly available resources for the Bangla punctuation
restoration task. Hence, we prepare a dataset using
a publicly available corpus of Bangla newspaper ar-
ticles (Khatun et al., 2019). This dataset is available
in train and test splits. For our task, we selected
4000 and 500 articles respectively for preparing
training and development sets from their train split,
and 200 articles for test from their test split. Train-
ing, development, and test sets consist of 1.38M,
180K, and 88K words respectively.

Additionally, we prepare two test datasets con-
sisting of manual and ASR transcriptions to eval-
uate the performance. We collected 65 minutes
of speech excerpts extracted from four Bangla
short stories (i.e., monologue read speech).4 These
are manually transcribed with punctuation. We
obtained ASR transcriptions for the same audios
using Google Cloud speech API.5 Note that the
Google speech API does not provide punctuation
for Bangla. The obtained ASR transcriptions from
Google speech API are then manually annotated
with punctuation. We computed the Word Error
Rate (WER) of the ASR transcriptions by com-
paring against our manual transcriptions, which
results in 14.8% WER. The number of words in
manual and ASR transcriptions consists of 6821
and 6417 words respectively. Similar to English,
we consider four punctuation marks for Bangla i.e.,
Period, Comma, Question, and O.

In Table 1, we present the distributions of the
labels for both English and Bangla. In parenthesis,
we provide the percentage of the punctuation. In
general, the distribution of questions is low (less
than 1%), which we observe both in English and
Bangla news data. However, this is much higher in
the Bangla manual and ASR transcriptions. This
is due to the fact that these texts are selected from
short stories where people often engage in conver-
sation and ask each other questions. The literary
style of the stories is different from news and as a
result, the distribution of Period is also higher in
the Bangla manual and ASR transcriptions. This
results in a much smaller average sentence length
in these datasets, as can be seen in Table 2. We can
compare these numbers with English as reported

4Due to the limited annotation resources we could not
collect more data, and this could be a future effort.

5https://cloud.google.com/
speech-to-text

https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text
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Figure 1: A general model architecture for our experi-
ments.

in (Zelasko et al., 2018). The authors reported
79.1% O token on the training data collected from
conversational speech. We have 78.82% O token
on our reference test data. This suggests that our
transcribed data are more similar in distribution to
natural conversations.

4 Experiments

For this study, we explored different transformer
based models for both English and Bangla. In ad-
dition, we used bidirectional LSTM (BiLSTM) on
top of the pre-trained transformer network, and an
augmentation method to improve the performance
of the models.

4.1 Models and Architectures

In Figure 1, we report a general network archi-
tecture that we used in our experiments. We ob-
tained d dimensional embedding vector from the
pre-trained language model for each token. This
is used as input for a BiLSTM layer, consisting of
h hidden units. This allows the network to make
effective use of both past and future contexts for
prediction. The outputs from the forward and back-
ward LSTM layers are concatenated at each time
step and fed to a fully connected layer with four
output neurons, which correspond to 3 punctuation
marks and one O token.

As can be seen in the Figure, the input sentence
“when words fail music speaks” does not have any
punctuation, and the task of the model is to predict
a Comma after the word “fail“ and Period after
the word “speaks“ to produce the output sentence
“when words fail, music speaks.”

We measure the performance of the models in
terms of precision (P ), recall (R), and F1-score

(F1).

4.1.1 Pretrained Language Model

Transfer learning has been popular in computer
vision, and the emergence of the transformers
(Vaswani et al., 2017) has shown the light to use
transfer learning in NLP applications. The mod-
els are trained on a large text corpus (e.g., BERT
is trained on 800M words from Book Corpus and
2,500M words from Wikipedia) and their success
has been proven by fine-tuning downstream NLP
applications. In our experiment, we used such
pre-trained language models for the punctuation
restoration task. We briefly discuss the monolin-
gual language models for English and multi-lingual
language models used in this study.

BERT (Devlin et al., 2019a) is designed to learn
deep bidirectional representation from unlabeled
texts by jointly conditioning the left and right con-
texts in all layers. It uses a multi-layer bidirectional
transformer encoder architecture (Vaswani et al.,
2017) and makes use of two objectives during pre-
training: masked language model (MLM) and next
sentence prediction (NSP) task.

RoBERTa (Liu et al., 2019) performs a repli-
cation study of BERT pretraining and shows that
improvements can be made using larger datasets,
vocabulary, and training on longer sequences with
bigger batches. It uses dynamic masking of the
tokens i.e., the masking pattern is generated every
time a sequence is fed to the model instead of gen-
erating them beforehand. They also remove the
NSP task and use only MLM loss for pretraining.

ALBERT (Lan et al., 2020) incorporates a cou-
ple of parameter reduction techniques to design
an architecture with significantly fewer parameters
than a traditional BERT architecture. The first im-
provement is factorizing embedding parameters by
decomposing the embedding matrix V × H into
two smaller matrices V × E and E × H , where
V is the vocabulary size, E is the word piece em-
bedding size, and H is hidden layer size. This
reduces embedding parameters from O(V × H)
to O(V × E + E ×H), which can be significant
when E << H . The second improvement is pa-
rameter sharing across layers. This prevents the
parameter from growing as the depth is increased.
The NSP task introduced in BERT is replaced by a
sentence-order prediction (SOP) task in ALBERT.



136

DistilBERT (Sanh et al., 2019) uses knowledge
distillation from BERT to train a model that has
40% fewer parameters and is 60% faster while re-
taining 97% of language understanding capabilities
of the BERT model. The training objective is a
linear combination of distillation loss, supervised
training loss, and cosine distance loss.

Multilingual Models MLM has also been uti-
lized for learning language models from large scale
multi-lingual corpora. BERT multilingual model
(mBERT) is trained on more than 100 languages
with the largest Wikipedia dataset. To account for
the variation among Wikipedia sizes of different
languages, data is sampled using an exponentially
smoothed weighting (with a factor 0.7) so that high-
resource languages like English are under-sampled
compared to low resource languages. Word counts
are weighted the same way as the data so that low-
resource language vocabularies are up weighted by
some factor.

Cross-lingual models (XLM) (Conneau and
Lample, 2019) use MLM in multiple language set-
tings, similar to BERT. Instead of using a pair of
sentences, an arbitrary number of sentences are
used with text length truncated at 256 tokens.

XLM-RoBERTa (Conneau et al., 2020) is trained
with a multilingual MLM objective similar to XLM
but on a larger dataset. It is trained in one hundred
languages, using more than two terabytes of filtered
Common Crawl data (Wenzek et al., 2020).

4.1.2 Augmentation
For this study, we propose an augmentation method
inspired by the study of Wei and Zou (2019a), as
discussed earlier. Our augmentation method is
based on the types of error ASR makes during
recognition, which include insertion, substitution,
and deletion.

Due to the lack of large-scale manual transcrip-
tions, punctuation restoration models are typically
trained using written text, which is well-formatted
and correctly punctuated. Hence, the trained model
lacks the knowledge of the typical errors that ASR
makes. To train the model with such characteris-
tics, we use an augmentation technique that sim-
ulates such errors and dynamically creates a new
sequence on the fly in a batch. Dynamic augmen-
tation is different from the traditional augmenta-
tion approach widely used in NLP (Wei and Zou,
2019a); however, it is widely used in computer vi-
sion for image classification tasks (Cubuk et al.,

2020).
The three different kinds of augmentation corre-

sponding to three possible errors are as follows.

1. First (i.e., substitution), we replace a token
by another token. In our experiment, we ran-
domly replace a token with the special un-
known token.

2. Second (i.e., deletion), we delete some tokens
randomly from the processed input sequence.

3. Finally, we add (i.e., insertion) the unknown
token at some random position of the input.

We hypothesize that not all three errors are
equally prevalent, hence, different augmentation
will have a different effect on performance. Keep-
ing this in mind, to process input text, we used
three tunable parameters: (i) a parameter to deter-
mine token change probability, α, (ii) a parame-
ter, αsub, to control the probability of substitution,
(iii) a parameter, αdel, to control the probability
of deletion. Probability of insertion is given by
1− (αsub + αdel).

When applying substitution, we replaced the to-
ken in that position with the unknown token and
left the target punctuation mark unchanged. For
deletion, both the token and the punctuation mark
in that position are deleted. For insertion, we in-
serted the unknown token and O token, in that
position.

Since deletion and insertion operation may make
the sequence smaller or longer than the fixed se-
quence length we used during training, we added
padding or truncated as necessary.

4.2 Experimental Settings
We used pre-trained models available in the Hug-
gingFace’s Transformers library (Wolf et al., 2019).
More details about different architectures can be
found on HuggingFace website.6 For tokenization,
we used model-specific tokenizers.

During training, we used a maximum sequence
length of 256. Each sequence starts with a special
start of sequence token and ends with a special
end of sequence token. Since the tokenizers use
byte-pair encoding (Sennrich et al., 2016), a word
may be tokenized into subword units.7 If adding
the subword tokens of a word results in sequence
length exceeding 256, we excluded those tokens

6https://huggingface.co/transformers/
pretrained_models.html

7If the model predicts punctuation in the middle of a word,
these are ignored.

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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Test Model Comma Period Question Overall
P R F1 P R F1 P R F1 P R F1

Ref.

SAPR (Wang et al., 2018) 57.2 50.8 55.9 96.7 97.3 96.8 70.6 69.2 70.3 78.2 74.4 77.4
DRNN-LWMA-pre (Kim, 2019) 62.9 60.8 61.9 77.3 73.7 75.5 69.6 69.6 69.6 69.9 67.2 68.6
Self-attention (Yi and Tao, 2019) 67.4 61.1 64.1 82.5 77.4 79.9 80.1 70.2 74.8 76.7 69.6 72.9
BERT-Transfer (Makhija et al., 2019) 70.8 74.3 72.5 84.9 83.3 84.1 82.7 93.5 87.8 79.5 83.7 81.4
BERT-Adversarial (Yi et al., 2020) 76.2 71.2 73.6 87.3 81.1 84.1 79.1 72.7 75.8 80.9 75.0 77.8

BERT-base-uncased 71.7 70.1 70.9 82.5 83.1 82.8 75.0 84.8 79.6 77.0 76.8 76.9
BERT-large-uncased 72.6 72.8 72.7 84.8 84.6 84.7 70.0 91.3 79.2 78.3 79.0 78.6
RoBERTa-base 73.6 75.1 74.3 84.9 87.6 86.2 77.4 89.1 82.8 79.2 81.5 80.3
RoBERTa-large 76.9 75.8 76.3 86.8 90.5 88.6 72.9 93.5 81.9 81.6 83.3 82.4
ALBERT-base-v2 70.1 75.5 72.7 84.9 84.1 84.5 79.5 76.1 77.8 77.2 79.7 78.4
ALBERT-large-v2 75.1 72.4 73.7 82.0 88.0 84.9 77.6 82.6 80.0 78.7 80.2 79.4
DistilBERT-base-uncased 67.0 65.5 66.3 77.1 81.0 79.0 69.2 78.3 73.5 72.1 73.3 72.7
BERT-base-multilingual-uncased 70.4 68.1 69.2 80.1 85.4 82.7 62.7 80.4 70.5 75.0 76.7 75.9
XLM-RoBERTa-base 75.1 70.5 72.7 81.2 89.3 85.1 71.7 82.6 76.8 78.1 79.9 79.0
XLM-RoBERTa-large 73.3 80.4 76.7 87.9 86.4 87.1 82.0 89.1 85.4 80.1 83.5 81.8
DistilBERT-base-multilingual-cased 65.5 58.0 61.5 74.8 79.2 76.9 58.2 69.6 63.4 70.1 68.4 69.3
RoBERTa-large + augmentation 76.8 76.6 76.7 88.6 89.2 88.9 82.7 93.5 87.8 82.6 83.1 82.9

ASR

Self-attention (Yi and Tao, 2019) 64.0 59.6 61.7 75.5 75.8 75.6 72.6 65.9 69.1 70.7 67.1 68.8
BERT-Adversarial (Yi et al., 2020) 72.4 69.3 70.8 80.0 79.1 79.5 71.2 68.0 69.6 74.5 72.1 73.3

BERT-base-uncased 49.3 64.2 55.8 75.3 76.3 75.8 44.7 60.0 51.2 60.4 70.0 64.9
BERT-large-uncased 49.9 67.0 57.2 77.0 78.9 77.9 50.0 74.3 59.8 61.4 73.0 66.7
RoBERTa-base 51.9 69.3 59.3 77.5 80.3 78.9 50.0 65.7 56.8 62.8 74.7 68.2
RoBERTa-large 56.6 67.9 61.8 78.7 85.3 81.9 46.6 77.1 58.1 66.5 76.7 71.3
ALBERT-base-v2 48.7 66.0 56.1 75.7 79.9 77.7 59.3 45.7 51.6 60.6 72.4 66.0
ALBERT-large-v2 52.1 64.4 57.6 73.8 82.7 78.0 53.3 68.6 60.0 62.2 73.5 67.4
DistilBERT-base-uncased 46.8 59.1 52.2 70.0 74.8 72.3 48.9 65.7 56.1 57.3 67.0 61.8
BERT-base-multilingual-uncased 49.8 62.4 55.4 72.0 78.2 75.0 47.8 62.9 54.3 59.9 70.2 64.6
XLM-RoBERTa-base 54.7 61.7 58.0 73.2 83.3 77.9 47.7 60.0 53.2 63.6 72.3 67.7
XLM-RoBERTa-large 53.2 71.4 61.0 82.0 81.8 81.9 62.5 71.4 66.7 65.5 76.6 70.6
DistilBERT-base-multilingual-cased 47.5 52.8 50.0 66.7 71.9 69.2 41.3 54.3 46.9 56.7 62.2 59.3
RoBERTa-large + augmentation 64.1 68.8 66.3 81.0 83.7 82.3 55.3 74.3 63.4 72.0 76.2 74.0

Table 3: Results on IWSLT2011 manual (Ref.) and ASR transcriptions of test sets. Highlighted rows are the
comparable results between ours and previous study. For overall best results we use bold form, and for the best F1
of individual punctuation we use a combination of bold and italic form.

from the current sequence and start the next se-
quence from them. We use padding token after the
end of sequence token to fill the remaining slots of
the sequence. Padding tokens are masked to avoid
performing attention on them. We use a batch size
of 8 and shuffle the sequences before each epoch.
Our chosen learning rates are 5e-6 for large mod-
els, and 1e-5 for base models, which are optimized
using the development set. LSTM dimension h is
set to the token embedding dimension d. All mod-
els are trained with Adam (Kingma and Ba, 2015)
optimization algorithm for 10 epochs. Other pa-
rameters are kept as the default settings, discussed
in (Devlin et al., 2019b). The model with the best
performance on the development set is used for
evaluating the test datasets.

For the augmentation experiments, we used α ∈
{0.05, 0.1, 0.15, 0.2}, αsub ∈ {0.2, 0.3, 0.4, 0.5},
αdel ∈ {0.2, 0.3, 0.4, 0.5} with additional con-
straint 0.5 ≤ (αsub+αdel) ≤ 0.8. Optimum values
for these were obtained using the development set.

5 Results and Discussions

5.1 Results on English Dataset
In Table 3, we report our experimental results
with a comparison from previous results on the
same dataset. We provide the results obtained
using BERT, RoBERTa, ALBERT, DistilBERT,
mBERT, XLM-RoBERTa models without augmen-
tation. Large variants of the models perform better
than the Base models. Monolingual models per-
form better than their multilingual counterparts.
RoBERTa achieves a better result than other mod-
els as it was trained on a larger corpus and has a
larger vocabulary. Our best result is obtained using
the RoBERTa model with augmentation in which
the parameters were α = 0.15, αsub = 0.4, αdel =
0.4. Performance gain from augmentation comes
from improved precision.

We obtained the state of the art result on both
test sets in terms of the overall F1 score (rows are
highlighted). On Ref. test set, we obtained the
best result on Comma, and comparable results for



138

Test Model Comma Period Question Overall
P R F1 P R F1 P R F1 P R F1

News

BERT-base-multilingual-uncased 79.8 68.2 73.5 80.4 85.4 82.8 72.1 77.0 74.5 79.9 78.5 79.2
DistilBERT-base-multilingual-cased 72.1 60.8 66.0 74.5 71.6 73.0 56.9 67.5 61.8 73.0 67.3 70.1
XLM-MLM-100-1280 76.9 71.2 73.9 82.0 83.4 82.9 70.2 76.4 73.2 80.0 78.5 79.3
XLM-RoBERTa-large 86.0 77.0 81.2 89.4 92.3 90.8 77.4 85.6 81.3 87.8 86.2 87.0
XLM-RoBERTa-large + augmentation 85.8 77.5 81.4 88.8 92.5 90.6 77.9 86.6 82.0 87.4 86.6 87.0

Ref.

BERT-base-multilingual-uncased 35.6 34.4 35.0 67.4 64.7 66.0 39.8 28.8 33.4 58.5 54.6 56.5
DistilBERT-base-multilingual-cased 32.6 31.5 32.1 64.0 50.2 56.3 32.5 14.7 20.2 54.3 42.4 47.6
XLM-MLM-100-1280 33.4 39.8 36.3 70.3 64.0 67.0 42.4 22.9 29.8 59.2 54.5 56.7
XLM-RoBERTa-large 39.3 36.9 38.1 76.9 81.4 79.1 54.3 58.8 56.5 67.6 70.2 68.8
XLM-RoBERTa-large + augmentation 43.3 37.3 40.1 76.5 82.6 79.4 53.0 56.5 54.7 68.3 70.8 69.5

ASR

BERT-base-multilingual-uncased 29.3 30.0 29.7 60.6 60.2 60.4 36.1 38.4 37.2 51.7 52.0 51.9
DistilBERT-base-multilingual-cased 29.0 33.6 31.1 62.6 50.6 56.0 31.3 20.8 25.0 51.2 44.3 47.5
XLM-MLM-100-1280 31.2 38.7 34.6 63.4 59.5 61.4 32.0 24.8 27.9 52.8 51.9 52.4
XLM-RoBERTa-large 38.3 35.6 36.9 69.2 77.2 73.0 38.5 52.0 44.2 60.3 66.4 63.2
XLM-RoBERTa-large + augmentation 37.2 33.2 35.1 69.1 77.8 73.2 45.5 60.8 52.1 61.1 67.2 64.0

Table 4: Result on Bangla test datasets.

Question (highlighted using a combination of the
bold and italic form). However, SAPR (Wang et al.,
2018) method performed much better compared to
others for Period on this data. On ASR test set,
our result is marginally better than Yi et al. (2020)
for overall F1 score. Our model performed better
for Period but comparatively lower for Comma and
Question. Overall, our model has better recall than
precision on this dataset.

5.2 Results on Bangla Dataset

In Table 4, we report results on the Bangla test set
comprised of news, manual, and ASR transcrip-
tions. Since no monolingual transformer model
is publicly available for Bangla, we explored dif-
ferent multilingual models. We obtained the best
result using XLM-RoBERTa (large) model as it
is trained with more texts for low-resource lan-
guages like Bangla and has larger vocabulary for
them. This is consistent with the findings reported
in (Liu et al., 2019), where the authors report im-
provement over multi-lingual BERT and XLM
models in cross-lingual understanding tasks for
low-resource languages. We apply augmentation
on XLM-RoBERTa model and best result is ob-
tained using augmentation parameters α = 0.15,
αsub = 0.4, and αdel = 0.4. However, the per-
formance gain from augmentation is marginal on

Dataset 4-Classes 3-Classes 2-Classes

P R F1 P R F1 P R F1

News 87.4 86.6 87.0 88.0 87.2 87.6 94.1 93.3 93.7
Ref. 68.3 70.8 69.5 72.9 75.6 74.2 83.6 86.6 85.1
ASR 61.1 67.2 64.0 65.1 71.5 68.1 77.0 84.7 80.6

Table 5: Result on Bangla test datasets by merging
classes.

the Bangla dataset. Overall, performance on the
news test set is better compared to the manual and
ASR data. Performance for Comma is lower than
Period and Question. Compared to English, we
notice a performance drop of about 10% for Period
and Question, but for Comma, this is more than
30% on the ASR test set.

For many applications (e.g., semi-automated sub-
titles generation), it is of utmost importance to facil-
itate human labelers to reduce their time and effort
and make the manual annotation process faster. In
such cases, identifying the correct position of the
punctuations is important, as reported in (Che et al.,
2016b). For Bangla, we wanted to understand what
we can gain while merging the punctuation and
identifying their position. For this purpose, we
evaluate performance on 3-Classes and 2-Classes
test sets. We combine Period and Question together
to form the 3-classes test sets. Comma is further
combined with those to form the 2-Classes test
sets, i.e., punctuation or no punctuation. In Table
5, we report the results with binary and multiclass
settings using XLM-RoBERTa (large) model cou-
pled with augmentation. As can be seen, the model
performs well for predicting punctuation positions.
For manual (Ref.) and ASR transcriptions, we have
a significant gain while merging the number of
classes from four towards two. It could be because–
as the number of classes reduces, the classifier’s
complexity reduces, which leads to an increase in
the model’s performance. The performance gain is
comparatively lower for news while merging four
classes into three classes; however, it increased sig-
nificantly when reduced to two. Considering these
findings, we believe this type of model can help
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Test Type Comma Period Question Overall
P R F1 P R F1 P R F1 P R F1

Ref.
Linear 76.9 75.8 76.3 86.8 90.5 88.6 72.9 93.5 81.9 81.6 83.3 82.4
CRF 75.7 76.9 76.3 88.1 89.0 88.5 77.8 91.3 84.0 81.7 83.1 82.4

ASR
Linear 56.6 67.9 61.8 78.7 85.3 81.9 46.6 77.1 58.1 66.5 76.7 71.3
CRF 56.7 69.0 62.3 78.5 82.8 80.6 50.9 80.0 62.2 66.4 76.1 70.9

Table 6: Results of CRF on IWSLT2011 Ref. and ASR test data with RoBERTa-large model

Test Augmentation Comma Period Question Overall
P R F1 P R F1 P R F1 P R F1

Ref.

None 76.9 75.8 76.3 86.8 90.5 88.6 72.9 93.5 81.9 81.6 83.3 82.4
Substitution (α = 0.1) 77.6 77.6 77.6 87.7 90.7 89.2 76.4 91.3 83.2 82.4 84.3 83.3
Substitution (α = 0.15, random) 76.5 76.4 76.4 87.2 90.6 88.9 86.3 95.7 90.7 82.0 83.7 82.9
Delete (α = 0.1) 75.0 76.0 75.5 88.6 88.4 88.5 84.3 93.5 88.7 81.7 82.4 82.1
Insert(α = 0.05) 77.6 75.5 76.6 87.1 90.6 88.8 82.7 93.5 87.8 82.5 83.2 82.9
All(α = 0.15, αsub = 0.4, αdel = 0.4) 76.8 76.6 76.7 88.6 89.2 88.9 82.7 93.5 87.8 82.6 83.1 82.9

ASR

None 56.6 67.9 61.8 78.7 85.3 81.9 46.6 77.1 58.1 66.5 76.7 71.3
Substitution (α = 0.1) 57.0 70.8 63.1 80.8 85.4 83.1 50.9 77.1 61.4 67.5 78.1 72.4
Substitution (α = 0.15, random) 57.2 69.3 62.7 79.2 83.9 81.5 56.3 77.1 65.1 67.3 76.7 71.7
Delete (α = 0.1) 60.0 70.4 64.8 82.7 82.8 82.8 52.1 71.4 60.2 70.0 76.6 73.1
Insert(α = 0.05) 57.4 67.2 61.9 79.6 84.8 82.1 49.2 82.9 61.7 67.5 76.2 71.6
All(α = 0.15, αsub = 0.4, αdel = 0.4) 64.1 68.8 66.3 81.0 83.7 82.3 55.3 74.3 63.4 72.0 76.2 74.0

Table 7: Results of Augmentation IWSLT2011 Ref. and ASR test data with RoBERTa-large model

human annotators in such applications.

5.3 Ablation Studies

We experimented with using CRF after the linear
layer for predicting the most probable tag sequence
instead of using the softmax layer. However, we did
not notice any performance improvement and even
a slight decrease in ASR test data performance. The
results using RoBERTa large model are reported in
Table 6.

We also analyzed the effect on performance
when substitution, insert and delete augmentations
are applied in isolation. These results are reported
in table 7 for RoBERTa large model. We explored
substitution with a random token from vocabulary
(reported in row Substitution (α = 0.15, random).
However, it performed worse compared to substi-
tuting with the unknown token. We notice that the
performance gain from different augmentations is
larger on the ASR test set than the reference test
set.

5.4 Discussion

For English, we obtained state-of-art results for
manual and ASR transcriptions using our augmen-
tation technique coupled with the RoBERTa-large
model. There is still a large difference between
manual and ASR transcriptions results. In Figure 2,
we report the confusion matrix (in percentage), for

manual and ASR transcriptions. From the figure,
we observe that for ASR transcriptions, a high pro-
portion of cases Question and Comma are predicted
as O and Period. We will investigate this finding
further in our future study.

Compared to English, the performance of Bangla
is relatively low. We hypothesize several factors are
responsible for this. First, the pre-trained monolin-
gual language models for English usually perform
better than multilingual models. Even in the case
of multilingual models, the content of the English
language is higher in the training data, and as a
result, the models are expected to perform better
for English. Second and perhaps a more important
factor is the nature of training data. For Bangla,
due to the lack of punctuated transcribed data, we
used a news corpus for training. Hence, the trained
model does not learn the nuances of transcriptions,
which reduces prediction accuracy. Third, our ASR
transcriptions are taken from some story excerpts,
containing monologue and a significant amount of
conversations (dialogue), which varies in terms of
complexity (e.g., the dialogue has interruptions and
overlap, short vs long utterance). An aspect of such
a complexity is also evident in Table 1, where we
see that the distribution of Period is almost double
compared to news data and the distribution of Ques-
tion is more than six times greater. On the other
hand, for English, both train and test data are taken
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Figure 2: Confusion matrix (in percentage) for English test datasets.

Figure 3: Confusion matrix (in percentage) for Bangla test datasets.

from TED talks, and there is no such discrepancy
between the data distributions.

Similarly to English, we also wanted to see error
cases for Bangla. In Figure 3, we report the con-
fusion matrix. We observed similar phenomenon
as English for Bangla, comparatively much higher
in proportion, i.e., Question and Comma are pre-
dicted as O and Period for news, manual and ASR
transcriptions.

6 Conclusion

In this study, we explore different transformer mod-
els for high-and low-Resource languages (i.e., En-
glish and Bangla). In addition, we propose an
augmentation technique, which improves perfor-
mance on noisy ASR texts. There has not been
any reported result and resources for punctuation
restoration on Bangla. Our study, findings, and
developed resources will enrich and push the cur-
rent state-of-art for this low-resource language. We
have released the created Bangla dataset and code
for the research community.
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