@inproceedings{dhar-etal-2020-linguistically,
title = "Linguistically Motivated Subwords for {E}nglish-{T}amil Translation: {U}niversity of {G}roningen{'}s Submission to {WMT}-2020",
author = "Dhar, Prajit and
Bisazza, Arianna and
van Noord, Gertjan",
editor = {Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Graham, Yvette and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2020.wmt-1.9/",
pages = "126--133",
abstract = "This paper describes our submission for the English-Tamil news translation task of WMT-2020. The various techniques and Neural Machine Translation (NMT) models used by our team are presented and discussed, including back-translation, fine-tuning and word dropout. Additionally, our experiments show that using a linguistically motivated subword segmentation technique (Ataman et al., 2017) does not consistently outperform the more widely used, non-linguistically motivated SentencePiece algorithm (Kudo and Richardson, 2018), despite the agglutinative nature of Tamil morphology."
}