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Abstract
The goal of Automatic Post-Editing (APE) is
basically to examine the automatic methods
for correcting translation errors generated by
an unknown machine translation (MT) sys-
tem. This paper describes Alibaba’s submis-
sions to the WMT 2020 APE Shared Task
for the English-German language pair. We
design a two-stage training pipeline. First,
a BERT-like cross-lingual language model is
pre-trained by randomly masking target sen-
tences alone. Then, an additional neural de-
coder on the top of the pre-trained model is
jointly fine-tuned for the APE task. We also ap-
ply an imitation learning strategy to augment
a reasonable amount of pseudo APE training
data, potentially preventing the model to over-
fit on the limited real training data and boost-
ing the performance on held-out data. To ver-
ify our proposed model and data augmentation,
we examine our approach with the well-known
benchmarking English-German dataset from
the WMT 2017 APE task. The experiment re-
sults demonstrate that our system significantly
outperforms all other baselines and achieves
the state-of-the-art performance. The final re-
sults on the WMT 2020 test dataset show that
our submission can achieve +5.56 BLEU and
-4.57 TER with respect to the official MT base-
line.

1 Introduction and Related Work

Even machines can approach and achieve parity
with human translations (Hassan et al., 2018) em-
powered by a sequence-to-sequence fashion (Bah-
danau et al., 2014; Vaswani et al., 2017), post-
editing is still an important and necessary step
in the translation process, especially in scenarios
where extremely high-quality translation results
are essentially required such as business legal doc-
uments, technical product guides, medicine instruc-
tions and so on. It is the process whereby humans

∗* indicates equal contribution.

amend machine-generated translation to achieve an
acceptable final product. Translation crowdsourc-
ing paradigm, computer assisted translation (CAT)
thus comes into being as demanded, which includes
a hybrid of machine translation and human post-
editing to meet translation scenarios with different
quality requirements accordingly for accuracy, clar-
ity, fluency, and domain adaptation.

However, post-editing, while improving, that
can match human understanding of meaning, nu-
ance, tone, humor–the list goes on, it’s often worth
paying extra more. The time spent on translation
mistake corrections by humans remains substantial
to the extent (Läubli et al., 2013) so that it even
occasionally offsets the efficiency gained from the
neural machine translation (NMT) systems. In this
paper, we explore automatic post-editing (APE) in
a deep learning framework where a two-stage train-
ing pipeline is engaged. The goal of APE task is
to examine automatic methods of correcting trans-
lation mistakes produced by a black-box machine
translation engine to improve the MT results. Hu-
man efforts are correspondingly reduced in the later
editing process (Läubli et al., 2013) if our APE sys-
tem can approach human translations as much as
possible.

Traditionally, APE is a supervised learning task,
requiring sufficient training data in the triplet of
source (SRC), machine translation (MT) and post
editing (PE) that are usually expensively available.
Due to the limited number of such APE data re-
leased officially in this year’s APE tasks and the
specific domain, Wikipedia, which is quite different
from the previous years’(IT domain), we adopt an
imitation learning to mine WMT corpora, eSCAPE
(Negri et al., 2018), Opus Wikipedia corpus (Wołk
and Marasek, 2014) and our own English-German
corpus to augment APE training data. However,
pseudo data strategy is far from enough to train
the state-of-the-art APE system. Inspired by the
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Figure 1: The APE model structure including detailed operations in pre-training and training

masked language model objective in the encoder
BERT (Devlin et al., 2018), we introduce our Bert-
like cross-lingual training objective to the encoder-
decoder framework by adapting the decoder to be-
come a memory encoder (Fan et al., 2019), allow-
ing us to pre-train the target language model similar
to BERT but conditioned on the source language
text. Knowledge learned from the pre-training
can be extensively transferred to many second-
step downstream tasks, including but not limited
to translation quality estimation, parallel corpus
filtering and of course, automatic post-editing. The
overall framework of our APE model is the same
with the generative automatic post-editing model’s
structure in Wang et al. (2020).

Similar training mechanism is applied in the win-
ner system of WMT 2019 APE Shared Task (Lopes
et al., 2019), that wisely takes full advantage of the
pre-trained multilingual BERT (mBERT) (Devlin
et al., 2018) and achieves top performances.They
concatenate the source and machine translation sen-
tences to feed into the encoder mBERT and then
fine tune the encoder and a transformer decoder
where the context attention block is initialized by
the self-attention weights of mBERT as well.

We examine our approach on the public En-
glish–German dataset from WMT 2017 APE
shared task. Our system outperforms the top ranked
methods in both BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) metrics. For this year’s

WMT APE task, we finally submitted two ensem-
ble English-German APE models according to dif-
ferent model selection methods and accomplish
+5.56 increase in BLEU and -4.57 decline in TER
on 2020 test set.

2 Methodology

In this section, we will introduce our APE model
in terms of general structure and some computa-
tion details together with our data augmentation
strategy.

2.1 APE Model Structure

The structure of our APE pre-training model origi-
nates from adapting the decoder in the transformer
(Vaswani et al., 2017) to a memory encoder, fol-
lowing the exactly same design in Fan et al. (2019).
We randomly pick 15% tokens in the target sen-
tences during each training step to be substituted
with a special [mask] token where predictions will
be requisites accordingly, covering 12% masked,
1.5% substituted and 1.5% unchanged. In order
to train a masked language model on the target
sentences conditional on the sources, we accord-
ingly remove the future mask matrix in the self-
attention of the decoder to form a memory encoder,
aiming to learn deep syntactic and alignment in-
formation of the ground truth. Therefore, during
pre-training stage, the model is trained with high-
quality English-German parallel corpora.
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After we fully train the conditional language
model on the target side, we apply an auto-
regressive decoder on top of the pre-trained
encoder-memory encoder model to decode the post-
editing results in the stage of APE training by using
the triplet data.

Figure 1 shows the details of our model struc-
ture. The part in the dotted line represents the
pre-training stage with the removal of future mask
in the memory encoder, and the whole picture de-
scribes the APE training process when the encoder-
memory encoder pre-training model has been
trained thoroughly. Note that the order of joint
attentions of encoder and memory encoder with
the decoder separately can be switched. Our exper-
imental results in the following section illustrate
this slight change can bring benefits to the diver-
sity of the models and enhance the final ensemble’s
performance.

2.2 Data Strategies

High-quality parallel corpus filtering Our pre-
training model requests high-quality parallel cor-
pora. The dual conditional cross-entropy model
(Junczys-Dowmunt, 2018) has been proven effec-
tive in WMT 2018 Corpus Filtering Shared Task.
The cross-entropy scores according to two inverse
translation models trained on clean data are used
as the quality indicator so that we are able to mine
qualified parallel sentences from noisy parallel cor-
pora.

APE training data augmentation. Domain
Adaption methods have been also investigated be-
cause of the small amount of official English-
German APE training set and the special domain,
Wikipedia. A semi-supervised CNN domain classi-
fication model (Chen and Huang, 2016) trained
with in-domain seed and other general-domain
data is utilized to extract in-domain source and
target sentences from English-German corpora to
augment pseudo sources and post-edits for APE
training. To generate the corresponding machine
translations of the classified in-domain source sen-
tences, we use the rest of our corpus to train a
neural machine translation model with model set-
ting in Vaswani et al. (2017) to produce the MT
results. The pseudo sources and post-edits are used
as supplementary data during pre-training, and the
pseudo triplets improve APE performance on the
basis of only using official APE training set.

Algorithm 1 Imitation Learning for Fine-tuning

Require: Reference Set R = {(si,mi, ei)}Mi=1, Full Train-
ing Set T = {(sj ,mj , ej)}Nj=1, hyperparameters K ∈
[1,+∞), α ∈ (0, 1).

1: Set the output dataset R = {}.
2: for each (si,mi, ei) in R do
3: ~Vr = (TER(ei,mi), Length(ei))
4: Candidate Set C = {}
5: for each (sj,mj, ej) in T do
6: ~Vt = (TER(ej ,mj), Length(ej))
7: for m in 0,1 do
8: if

∥∥∥( ~Vr[m]− ~Vt[m])/ ~Vr[m]
∥∥∥ > α then

9: Skip this training sample
10: end if
11: end for
12: Add this training sample (sj,mj, ej) to C
13: end for
14: if size of C > K then
15: Sort candidates in C by its cosine similarity to ~Vr

16: Remain only the top K candidates in C
17: end if
18: for each candidate in C do
19: Add it to F
20: Remove it from T
21: end for
22: end for
23: return Filtered Dataset F .

Imitation learning. To boost the APE model per-
formance, we optimize our model during the APE
training stage with further filtered APE data by an
imitation learning method, since we noticed that
there are gaps between the distributions of TERs
in different types of our APE training set. Deeply
motivated by Junczys-Dowmunt and Grundkiewicz
(2016), we leverage the official training data con-
taining real 7000 in-domain APE triplets as a refer-
ence set and apply Algorithm 1 to sample a subset
of the whole training data in Table 1. Then we fine
tune the APE model further with such a subset that
has a similar distribution with this year’s official
training data. All the details of data usage will be
described in the following experiment section.

3 Experiment

We conduct our experiments on two different
datasets: First, to make a fair comparison with
other top-ranked systems on WMT APE tasks in
recent years, we perform a single model evaluation
on the WMT 2017 English-German APE Shared
Task without any other pseudo data except the
Artificial dataset (Junczys-Dowmunt and Grund-
kiewicz, 2016) provided officially (for fair compar-
isons, and we avoid using the Escape Corpus (Ne-
gri et al., 2018) which has not been released until
2018); Second, we carry out a series of experiments
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Real/Pseudo MT Engine In/Out Domain Up-sample Weight Description Size

Real SMT Out-domain 10 Train set of WMT 16&17 APE task 23k
Real NMT Out-domain 20 Train set of WMT 18 APE task 13.4k
Real NMT In-domain 40 Train set of WMT 20 APE task 7k

Pseudo SMT Out-domain 1 Artificial Dataset 4.4M
Pseudo NMT Out-domain 1 Escape Corpus (NMT) 4.9M
Pseudo NMT In-domain 1 Our in-domain pseudo data 20M

Total - - - Final training set 30M

Table 1: Compositions of the Training Data for the WMT 2020 APE Shared Task

28.06 27.83

30.37 30.37

26

27

28

29

30

31

SRC-First MT-First

TER

w Data Augmentation w/o Data Augmentation

(a) TER with/without Data Augmentation

54.25
54.88

51.46
51.07

48

49
50

51
52

53
54

55

SRC-First MT-First

BLEU

w Data Augmentation w/o Data Augmentation

(b) BLEU with/without Data Augmentation

Figure 2: Results in the English-German Development Set of WMT 2020 APE Shared Task of Different Model
Structures with/without Data Augmentation

on the WMT 2020 English-German APE Shared
Task with strategies including data argumentation,
quality filtering, domain adaptation, and model en-
semble to accomplish the overall performance of
our model.

3.1 Setup

Dataset. For the experiments on WMT 2017
APE, we verify our APE model design on the open
public WMT 2017 English-German APE Shared
Task (Ondrej et al., 2017). The official training
set consists of 23K real triplets (SRC, MT, PE) for
training and another 2K triplets for testing from
the Internet Technology (IT) domain. Besides, the
shared task offers a large-scale artificial synthetic
corpus containing around 500K high-quality and
4 million relatively low-quality synthetic triplets.
We over sample the APE real data by 20 times
and merge it with the synthetic data, resulting in
roughly 5 million of triplets for both pre-training
and APE training. The final APE system is selected
based on WMT 2016 APE test set.

For the experiments on WMT 2020 APE, we use

all available APE triplets of WMT English-German
APE tasks released since 2016, including about
43.4K real triplets as well as 9.3M synthesized
data made up with Artificial (Junczys-Dowmunt
and Grundkiewicz, 2016) and Escape (Negri et al.,
2018). Considering the application domain for this
year’s task changes from IT to Wikipedia and the
size of the official in-domain training set is quite
small (only 7000 samples), we generate about 20M
in-domain pseudo data for our model training as
follows:

1. We apply the cross-entropy scoring algorithm
described in section 2.2 on our own English-
German parallel corpus and filter out about
200 million high-quality parallel data with a
proper threshold.

2. We collect the Wikipedia corpus from Wołk
and Marasek (2014), which contains more
than 2 million of English-German parallel sen-
tences. We up-sample the SRC of this year’s
training data 20 times and mix them with the
English side of Wikipedia corpus as our in-
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domain seeds and train a domain classifica-
tion model as described in section 2.2 with
other general-domain data including the news
and biomedical dataset from the WMT 2020
website. Afterwards, the domain classfication
model is applied to extract about 20 million of
in-domain parallel sentences from the 200M
high-quality parallel data mentioned above.

3. The left 180 million are used to train a English-
German transformer-based neural machine
translation model (Vaswani et al., 2017) with
the OpenNMT (Klein et al., 2017) source
code. The sources and targets of the 20M high-
quality in-domain parallel corpus are treated
as SRCs and PEs and the decoding results
from the trained NMT model are regarded as
corresponding MTs. These in-domain pseudo
triplets are mixed with all available training
set from the WMT APE Shared Task since
2016 with differentiated up-sample weights
as our final training set, as shown in Table 1.

Pre-processing. In all of our experiments, we
apply truecasers trained independently for English
and German seperately (Koehn et al., 2007) and
process our data into subword units (Kudo, 2018)
with a 32K shared vocabulary. Triplets with more
than 70 subword units in any one of the SRCs, MTs
or PEs are removed.

Evaluation Metrics. We mainly evaluate our
systems with the metrics, translation edit rate
(TER) (Snover et al., 2006) and bilingual evalu-
ation understudy (BLEU) (Papineni et al., 2002),
since they are standard and widely employed in
evaluation of the WMT APE tasks.

Model Setting. All experiments are trained on 8
NVIDIA P100 GPUs for maximum 100,000 steps
for about two days until convergence, with a to-
tal batch-size of 65536 tokens per step and the
Adam optimizer (Kingma and Ba, 2014). Parame-
ters are being tuned with 12,000 steps of learning
rates warm-up (Vaswani et al., 2017). Except these
modifications, we follow the default transformer-
based configuration (Vaswani et al., 2017) for other
hyper-parameters settings.

3.2 Results on WMT 2017 APE Shared Task

We verify the validity and efficiency of our pro-
posed model on WMT 2017 APE test data since
all of the winners of WMT APE Shared Tasks of

recent years do report their results of single mod-
els on this dataset (Junczys-Dowmunt and Grund-
kiewicz, 2018; Correia and Martins, 2019). To
make a fair comparison, we do not use any extra
data for training as described in the data setup.

The main results of APE systems are presented
in Table 2, demonstrating that our single model,
even without pre-training, outperforms all winners
of the WMT APE Shared Task from 2017 to 2019
on both BLEU and TER metrics.
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Set of WMT 2020 APE Shared Task from the Further
Optimized Models with Different Values of Conserva-
tiveness Penalty

3.3 Results on WMT 2020 APE Shared Task

For this year’s task, we adopt various of strategies
including data augmentation, further optimization
by imitation learning and model ensemble.

Data Augmentation As described in section 2.2,
we utilize several algorithms, quality filtering and
domain adaption, to construct our own in-domain
pseudo data for APE training. We conduct experi-
ments with and without in-domain pseudo data on
two different model structures described in Section
2.1 for decoder joint attention switching (referred
as SRC-First and MT-First respectively in the fol-
lowing discussion). Results on the 2020 develop-
ment set in Figure 2 indicate that our data augmen-
tation strategies can generate powerful pseudo data
which significantly improve the model performance
in this year’s APE task.

Further Optimization via Imitation Learning
The hyper-parameters α and K in Algorithm 1 are
set to 0.3 and 500 according to empirical studies.
Finally, around 2M triplets are filtered from the full
training set via the imitation learning algorithm.
We compare TERs before and after APE fine tun-
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Model BLEU↑ TER↓ Note

Official Baseline 62.49 24.48 Do nothing to the original machine translation
FBK (Ensemble) 70.07 19.60 Ensemble model, winner of WMT17 APE task

MS-UEdin 69.72 19.49 Single model, winner of WMT18 APE task
Unbabel (BED) 70.66 19.03 Single model, winner of WMT19 APE task.

Proposed Model w/o pre-training 70.90 18.90 Single model without pre-training
Proposed Model w pre-training 71.52 18.44 Single model with pre-training

Table 2: Performance Comparisons on WMT 2017 APE English-German Test Set

Model BLEU↑ TER↓ Note

Official Baseline 50.37 31.37 Do nothing with the original machine translation
Ensemble×5 of BED 55.09 27.85 The winning system of last year

Our Single Model 54.88 27.83 MT-First structure
+ Optimizing 54.50 27.76 Optimized on filtered subset
+ Conservativeness Penalty 54.87 27.64 Conservativeness penalty = 0.5

Our Ensemble×5 55.87 27.02 Our contrastive submission
Our Ensemble×5 56.06 26.99 Our primary submission

Table 3: Main Results in the English-German Development Set of the WMT 2020 APE Shared Task

Model BLEU↑ TER↓

Official Baseline 50.21 31.56

Our Primary Submission 55.58 27.03
Our Contrastive Submission 55.77 26.99

Table 4: Submission Results in the English-German
Test Set of the WMT 2020 APE Shared Task

ing with the filtered data in Figure 4 with the two
different model structures. It can be clearly shown
that the APE model can be further improved.
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Figure 4: TERs on the English-German Development
Set of WMT 2020 APE Shared Task for Different
Model Structures with/without Further Optimizing

Ensemble We train the two different APE mod-
els (SRC-First & MT-First), each for three times
with 30M APE training set to get 6 primary APE
models and fine tune all of them with 2M filtered
APE data via imitation learning for further opti-
mization. Then, we obtain 12 APE models, 6
primary models and 6 optimized ones. Our final
primary submission is an ensemble of the top 5
primary models with lowest TERs. In contrast, an
ensemble of the top 5 optimized models is sub-
mitted as well for validation of imitation learning
method.

Following the winning system of last year, we
apply the conservativeness penalty (Lopes et al.,
2019) on each model before ensemble. As shown in
Figure 3, the local optimal solutions for the conser-
vativeness penalty may be various among models.
Therefore, instead of a fixed constant, we apply the
most appropriate penalties for each model accord-
ing to their performance on the 2020 development
set. Results of our ensemble models in the devel-
opment set and the test set can be found at Table 3
and Table 4 respectively.

Besides, we also train last year’s winning sys-
tem five times (BED (Lopes et al., 2019)) with the
exactly same data we use for WMT 2020 APE task
based on the source code they released1 and pro-

1https://github.com/deep-spin/OpenNMT-APE
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duce an ensemble result reported in Table 3. Eval-
uated on 2020 development set, both of our final
ensemble model in primary and contrastive sub-
missions outperform the winning system of 2019.
The final results on the 2020 test set released offi-
cially show that our ensemble models significantly
improve the machine translations with significant
margins in TER and BLEU (-4.57 TER and +5.56
BLEU).

4 Conclusion

This paper describes our automatic post-editing
system for the WMT 2020 English-German APE
Shared Task. We introduce a cross-lingual Bert-
like conditional model with an innovative memory
encoder which can capture the deep semantic in-
formation of machine translations conditional on
the source sentences. In addition, efforts on data
augmentation strategies, corpus filtering and imi-
tation learning, are able to overcome the scarcity
of real APE data and further improve the model
performance together with the ensemble strategy.
Our single APE model outperforms all winner sys-
tems of recent years’ WMT APE Shared Tasks
on the WMT 2017 English-German test set and
achieves impressive performances on the WMT
2020 English-German APE test set.
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