
Proceedings of the 5th Conference on Machine Translation (WMT), pages 646–659
Online, November 19–20, 2020. c©2020 Association for Computational Linguistics

646

Findings of the WMT 2020 Shared Task on Automatic Post-Editing

Rajen Chatterjee(1), Markus Freitag(2), Matteo Negri(3), Marco Turchi(3)
(1) Apple Inc., Cupertino, CA, USA

(2) Google Research, Mountain View, CA, USA
(3) Fondazione Bruno Kessler, Trento, Italy

Abstract

We present the results of the 6th round of the
WMT task on MT Automatic Post-Editing.
The task consists in automatically correcting
the output of a “black-box” machine trans-
lation system by learning from existing hu-
man corrections of different sentences. This
year, the challenge consisted of fixing the er-
rors present in English Wikipedia pages trans-
lated into German and Chinese by state-of-
the-art, not domain-adapted neural MT (NMT)
systems unknown to participants. Six teams
participated in the English-German task, sub-
mitting a total of 11 runs. Two teams par-
ticipated in the English-Chinese task submit-
ting 2 runs each. Due to i) the different
source/domain of data compared to the past
(Wikipedia vs Information Technology), ii) the
different quality of the initial translations to
be corrected and iii) the introduction of a new
language pair (English-Chinese), this year’s
results are not directly comparable with last
year’s round. However, on both language di-
rections, participants’ submissions show con-
siderable improvements over the baseline re-
sults. On English-German, the top-ranked sys-
tem improves over the baseline by -11.35 TER
and +16.68 BLEU points, while on English-
Chinese the improvements are respectively
up to -12.13 TER and +14.57 BLEU points.
Overall, coherent gains are also highlighted by
the outcomes of human evaluation, which con-
firms the effectiveness of APE to improve MT
quality, especially in the new generic domain
selected for this year’s round.

1 Introduction

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee
et al., 2015), from the application point of view,
the task is motivated by its possible uses to:

• Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-
forming deeper text analysis that is too ex-
pensive at the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

In its 6th round, the APE shared task organized
within the WMT Conference on Machine Trans-
lation kept the same overall evaluation setting of
the previous five rounds. Specifically, the partic-
ipating systems had to automatically correct the
output of an unknown “black box” (neural) MT
system by learning from training data containing
human revisions of translations produced by the
same system.

This year, the task focused on two language
pairs: English-German and English-Chinese. The
former has been part of the APE evaluation cam-
paigns since 2016 (Bojar et al., 2016), while the
latter represents a new entry. A second differ-
ence with respect to previous rounds is that, for
both language pairs, the source/domain of the
data changed from Information Technology (IT) to
Wikipedia articles. The third major novelty factor
consists in the type of MT systems used to gener-
ate the translations to be corrected. Although for
the third year in a row the task focused on transla-
tions produced by neural MT (NMT) systems, this
year these models were not adapted to the target
domain.

These radical changes have advantages and dis-
advantages. On one side, moving away from the
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“narrow” IT domain allowed to test APE technol-
ogy on the challenging scenario represented by the
generic domain of Wikipedia articles. Indeed, as
shown in the previous rounds of the task (Chat-
terjee et al., 2018a, 2019), the high level of repet-
itiveness of IT data makes this domain easier to
model compared to a generic and less repetitive
domain, both for MT and APE technology. More-
over, fixing the output of generic NMT models that
are not domain-adapted allowed to test APE on
lower-quality initial data and verify its potential
as a downstream domain adaptation component.
On the other side, the disadvantage of changing
domain is the reduced possibility to compare re-
sults and measure progress across years. Specif-
ically, the lower quality of the original sentences
to be corrected (and, in turn, the larger room for
improvement left to APE) make the participants’
results and the overall technology advancements
difficult to analyze in the light of previous rounds.

Six teams participated in the English-German
task, submitting eleven runs in total. Two teams
participated in the English-Chinese task, submit-
ting two runs each. Similar to last year, all teams
developed their systems based on neural tech-

nology, which confirms to be the state-of-the-art
approach to APE. In most of the cases (see Sec-
tion 3), participants experimented with the Trans-
former architecture (Vaswani et al., 2017), either
directly or by adapting it to the task. As in previ-
ous rounds, their systems exploit information both
from the MT output to be corrected and from the
corresponding source sentence. This was done ei-
ther by concatenating the two, as in last year’s
winning system (Lopes et al., 2019), or by means
of multi-source solutions (Zoph and Knight, 2016)
successfully explored in the past (Libovický et al.,
2016; Chatterjee et al., 2017). Following the re-
cent trends in other NLP areas, the integration
of pre-trained BERT-like language models was
also considered. Model ensembling and the inte-
gration of word/sentence-level quality estimation
techniques geared to APE (similar to (Chatterjee
et al., 2018b)) were also explored. Finally, also
this year participants took advantage of data aug-
mentation techniques, either by creating their own
eSCAPE-like corpora (Negri et al., 2018), or by
generating synthetic data by adding artificial noise
to simulate post-editing errors, or by exploiting ex-
ternal MT candidates as a source of auxiliary in-
formation to be concatenated to the input.

The overall evaluation results show significant
improvements over the baseline on both the lan-
guage directions. On English-German, where the
“do-nothing” baseline (see Section 2.3) was 31.56
TER (Snover et al., 2006) and 50.21 BLEU (Pa-
pineni et al., 2002), the top-ranked system (20.21
TER, 66.89 BLEU) shows an impressive -11.35
TER reduction, which corresponds to a +16.68
gain in terms of BLEU score. Considering all
the submissions, the average gain is -4.89 TER
and +6.5 BLEU points, with only one system per-
forming slightly worse than the baseline. Dif-
ferent from last year, where the differences be-
tween the top four submissions were not statisti-
cally significant, this year we have a clear win-
ner, whose best submission is 6.78 TER points
(and 11.12 BLEU points) above the second ranked
team. Nevertheless, though possibly favoured by
the relatively low baseline results (+14.72 TER
and -24.52 BLEU compared to last year), the glob-
ally good performance of the participants is a good
indicator of overall progress.

The newly proposed English-Chinese task is no
exception. Here, both participating teams were
able to outperform the baseline (59.49 TER and
23.12 BLEU) by a significant margin. The largest
gains are up to -12.13 TER and +14.57 BLEU
points and, on average for the four submitted runs,
they are -8.15 TER and +10.1 BLEU points.

The good results observed with automatic met-
rics on both the language pairs are confirmed by
the human evaluation outcomes. On English-
German, for the first time, the top-ranked primary
submission is not significantly worse compared to
the human post-edited output (suggesting that au-
tomatic corrections are indistinguishable from the
human ones1). All the other systems except one,
moreover, are significantly better than the base-
line. This also happens for the two primary sub-
missions to the English-Chinese subtask which,
however, are both significantly worse than human
post-edits.

All in all, the improvements observed on both
the language pairs can be most likely ascribed
to the lower quality of the initial translations to
be corrected. On English-German, the baseline
(31.56 TER, 50.21 BLEU) was indeed much lower

1A number of factors (related to this year’s data and the
overall evaluation setting) may have determined this quite
surprising finding. Far from claiming to have reached the
“human parity” on the APE task, we leave this aspect to fu-
ture deeper analyses.
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than in the past, when the MT systems used were
always domain-adapted and hence more competi-
tive. Last year, for instance, the baseline was 16.84
TER (74.73 BLEU), while in none of the previous
rounds focusing on this language pair participants
had to confront with TER above 25.0 and BLEU
below 62.0. On English-Chinese, the baseline was
even lower (59.49 TER, 23.12 BLEU), with the
lowest scores across all the past six editions of the
APE task. On one side, the large gains observed
are in line with (and indirectly confirm) previous
observations (Bojar et al., 2017; Chatterjee et al.,
2018a, 2019) about the difficulty to improve high-
quality MT output. Conversely, as we can ob-
serve this year, translations of lower quality (like
those coming from generic, not domain-adapted
models) leave to APE technology a large margin
for improvement. On the other side, the observed
global gains in both settings motivate further re-
search on APE as a tool for downstream MT adap-
tation in black-box conditions.

2 Task description

In continuity with all the previous rounds of the
APE task, participants were provided with train-
ing and development data consisting of (source,
target, human post-edit) triplets, and were asked
to return automatic post-edits for a test set of un-
seen (source, target) pairs.

2.1 Data

For both English-German and English-Chinese,
the initial data were selected from English
Wikipedia articles and then automatically trans-
lated in the two target languages. Although the
original English Wikipedia pages were the same,
the source sentences eventually used to build the
datasets for the two language pairs are different as
they were randomly selected.

The released training and development sets con-
sist of (source, target, human post-edit) triplets in
which:

• The source (SRC) is a tokenized English sen-
tence;

• The target (TGT) is a tokenized Ger-
man/Chinese translation of the source, which
was produced by a generic, black-box system
unknown to participants. For both the lan-
guages, translations were obtained from neu-

ral MT systems.2

• The human post-edit (PE) is a tokenized
manually-revised version of the target, which
was produced by professional translators.

Test data consists of (source, target) pairs hav-
ing similar characteristics of those in the training
set. Human post-edits of the test target instances
are left apart to measure system performance.

For the English-German subtask, the train-
ing, development and test sets respectively con-
tain 7,000, 1,000 and 1,000 triplets. Participants
were also provided with two additional training
resources, which were widely used in the pre-
vious rounds. One is the corpus of 4.5 mil-
lion artificially-generated post-editing triplets de-
scribed in (Junczys-Dowmunt and Grundkiewicz,
2016). The other resource is the English-German
section of the eSCAPE corpus (Negri et al., 2018).
It comprises 14.5 million instances, which were
artificially generated both via phrase-based and
neural translation (7.25 millions each) of the same
source sentences.

Also for the English-Chinese subtask, the
training, development and test sets respectively
contain 7,000, 1,000 and 1,000 triplets. For this
language pair, however, no additional training re-
sources were provided.

2.1.1 Complexity indicators: repetition rate
Table 1 provides a view of the data from a task
difficulty standpoint. For each dataset released in
the six rounds of the APE task, it shows the rep-
etition rate of SRC, TGT and PE elements, the
TER (Snover et al., 2006) and the BLEU score
(Papineni et al., 2002) of the TGT elements (i.e.
the original target translations), as well as the TER
difference (δ TER) between the top-ranked sub-
mission and the task baseline.

The repetition rate measures the repetitiveness
inside a text by looking at the rate of non-singleton
n-gram types (n=1...4) and combining them us-
ing the geometric mean. Larger values indicate
a higher text repetitiveness and, as discussed in
(Bojar et al., 2016, 2017; Chatterjee et al., 2018a),

2Both the NMT systems are based on the standard Trans-
former architecture (Vaswani et al., 2017) and follow the im-
plementation details described in (Ott et al., 2018). They
were trained on publicly available MT datasets including
Paracrawl (Esplà et al., 2019) and Europarl (Koehn, 2005),
summing up to 23.7M parallel sentences for English-German
and 22.6M for English-Chinese.
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2015 2016 2017 2017 2018 2018 2019 2019 2020 2020
Language En-Es En-De En-De De-En En-De En-De En-De En-Ru En-De En-Zh
Domain News IT IT Medical IT IT IT IT Wiki Wiki
MT type PBSMT PBSMT PBSMT PBSMT PBSMT NMT NMT NMT NMT NMT
Rep. Rate SRC 2.905 6.616 7.216 5.225 7.139 7.111 7.111 18.25 0.653 0.81
Rep. Rate TGT 3.312 8.845 9.531 6.841 9.471 9.441 9.441 14.78 0.823 1.27
Rep. Rate PE 3.085 8.245 8.946 6.293 8.934 8.941 8.941 13.24 0.656 1.2
Baseline TER 23.84 24.76 24.48 15.55 24.24 16.84 16.84 16.16 31.56 59.49
Baseline BLEU n/a 62.11 62.49 79.54 62.99 74.73 74.73 76.20 50.21 23.12
δ TER +0.31 -3.24 -4,88 -0,26 -6.24 -0.38 -0.78 +0.43 -11.35 -12.13

Table 1: Basic information about the APE shared task data released since 2015: languages, domain, type of MT technology,
repetition rate and initial translation quality (TER/BLEU of TGT). The last row (δ TER) indicates, for each evaluation round,
the difference in TER between the baseline (i.e. the “do-nothing” system) and the top-ranked submission.

suggest a higher chance of learning from the train-
ing set correction patterns that are applicable also
to the test set.

Over the years, the relation between systems’
performance and the repetition rate observed in
the data has been analysed in the light of the dif-
ferent values reported in Table 1. Some rounds
of the task suggested the hypothesis that large dif-
ferences in repetitiveness across the datasets give
a possible explanation for the variable gains over
the baseline achieved by participants. Indeed, in
some cases (e.g. in the APE15 task and in the
APE17 German-English subtask), low repetition
rates seemed to motivate generally low systems’
results, while in others (e.g. APE17 English-
German subtask) also the opposite was true, with
large gains over the baseline associated to high
repetition rates. However, the outcomes of other
rounds of the task do not support this intuition. In
the 2018 round, despite the relatively high repe-
tition rate values observed in the data, evaluation
results shown that the influence of data repetitive-
ness on final APE performance is marginal. The
same happened in 2019 (Chatterjee et al., 2019),
when the highest repetition rates ever measured in
the APE data (English-Russian subtask) were not
enough to develop systems able to improve over
the baseline.

As discussed in Section 4, this year we are in the
opposite situation. On both English-German and
English-Chinese, the lowest repetition rates ever
measured in the APE data did not prevent partic-
ipants from achieving considerable gains over the
baseline. This confirms that, as hypothesized last
year, systems’ improvements over the baseline are
either scarcely correlated to text repetitiveness or
more influenced by other task difficulty indicators.

2.1.2 Complexity indicators: MT quality

Indeed, another important aspect that determines
the difficulty of APE is the initial quality of the
MT output to be corrected. This can be measured
by computing the TER (↓) and BLEU (↑) scores
(Baseline TER/BLEU rows in Table 1) using the
human post-edits as reference.

As discussed in (Bojar et al., 2017; Chatterjee
et al., 2018a, 2019), numeric evidence of a higher
quality of the original translations can indicate a
smaller room for improvement for APE systems
(having, at the same time, less to learn during
training and less to correct at test stage). On one
side, indeed, training on good (or near-perfect)
automatic translations can drastically reduce the
number of learned correction patterns. On the
other side, testing on similarly good translations
can drastically reduce the number of corrections
required and the applicability of the learned pat-
terns, thus making the task more difficult.

As observed in the previous APE evaluation
rounds, there is a noticeable correlation between
translation quality and systems’ performance. In
2016 and 2017, on English-German data featur-
ing a similar level of quality (24.76/24.48 TER,
62.11/62.49 BLEU), the top systems achieved sig-
nificant improvements over the baseline (-3.24
TER and +5.54 BLEU in 2016, -4.88 TER and
+7.58 BLEU in 2017). In 2017, on higher quality
German-English data (15.55 TER, 79.54 BLEU),
the observed gains were much smaller (-0.26 TER,
+0.28 BLEU). In 2018, the correction of English-
German translations produced by a phrase-based
system (24.24 TER, 62.99 BLEU) yielded much
larger gains (up to -6.24 TER and +9.53 BLEU)
compared to the correction of higher-quality neu-
ral translations (16.84 TER, 74.73 BLEU), which
resulted in TER/BLEU variations of less than 1.00
point. Similarly, in 2019 the very high translation
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Figure 1: TER distribution in the English-German test set Figure 2: TER distribution in the English-Chinese test set

quality featured by strong, domain-adapted neural
models made the task rather difficult. On English-
German, where the baseline system was again
very competitive (16.84 TER, 74.73 BLEU), the
largest TER reduction was indeed of 0.78 points
(corresponding to a BLEU increase of 1.23). On
English-Russian, where the initial MT quality was
even higher,3 (16.16 TER, 76.2 BLEU), the base-
line remained unbeaten.

As discussed in Section 4, also this year’s re-
sults confirm the strict correlation between the
quality of the initial translations and the actual po-
tential of APE. Indeed, with baseline TER and
BLEU scores significantly lower than in all the
other rounds of the task (31.56 TER and 50.21
BLEU for English-German, 59.49 TER and 23.12
BLEU for English-Chinese), almost all partici-
pants managed to obtain very large improvements
despite the low repetition rates featured by the
data.

2.1.3 Complexity indicators: TER
distribution

A third complexity indicator considered in pre-
vious rounds of the task is the TER distribu-
tion (computed against human references) for the
translations present in the test sets. What we ob-
served in the past is that harder tasks were typ-
ically characterized by TER distributions partic-
ularly skewed towards low values. For instance,
in 2019 around 50% of the English-German and

3Note that the higher quality of the initial transla-
tions added up to the higher difficulty of dealing with a
morphologically-rich target language like Russian. The two
aspects are clearly tightly connected and disentangling them
would require further analysis. Nonetheless, regarding the
correlation between MT quality and final results, also this
subtask was not an exception compared to the other settings
summarized in Table 1.

63.5% of the English-Russian test items had a
TER between 0 and 10, the latter subtask being
considerably more difficult than the former (recall
that, on English-Russian, none of the participants
was able to beat the baseline). Indeed, the higher
the proportion of (near-)perfect test instances (i.e.
items with 0<TER<10, which hence require few
edits or no corrections at all), the higher the proba-
bility that APE systems will perform unnecessary
corrections that will be penalized by automatic
evaluation metrics.

On the contrary, less skewed distributions can
be expected to be easier to handle as they give to
automatic systems a larger room for improvement.
In the lack of more focused analyses on this as-
pect, we can hypothesize that, in ideal conditions
from the APE standpoint, the peak of the distribu-
tion would be observed for “post-editable” trans-
lations containing enough errors that leave some
margin for focused corrections, but not too many
errors to be so unintelligible to require a whole re-
translation from scratch.4

As shown in Figures 1 and 2, the TER distri-
butions in the two test sets released this year is
quite different from previous rounds and actually
reflects a more balanced situation. For English-
German, about 55% of the samples falls in the 15-
45 TER interval, with no more ∼ 7% of the items
being perfect (i.e. TER=0). For English-Chinese,
for which the overall MT quality is significantly
lower (as shown by the worse baseline results re-
ported in Table 1), the vast majority of the samples
falls in the 40-85 interval, with less than 1% of the

4For instance, based on the empirical findings reported in
(Turchi et al., 2013, 2014), TER=0.4 is the threshold that, for
human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.
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ID Participating team
MinD Alibaba Group, Hangzhou, China (Wang et al., 2020)
BeringLab Bering Lab, Republic of Korea (Lee, 2020)
HW-TSC Huawei Translation Services Center & East China Normal University, China (Yang et al., 2020)
KAIST Korea Advanced Institute of Science & Technology, Republic of Korea
POSTECH Pohang University of Science and Technology, Republic of Korea (Lee et al., 2020b)
POSTECH-ETRI Pohang University & Electronics and Telecomm. Res. Inst., Republic of Korea (Lee et al., 2020a)

Table 2: Participants in the WMT20 Automatic Post-Editing task.

items being perfect.
In the light of previous years’ observations, both

the subtasks hence seem to be easier to handle. As
discussed in Section 4, also this year’s evaluation
results confirm the strict correlation between the
quality of the initial translations, the distribution
of TER scores across the test items, and the actual
potential of APE.

2.2 Evaluation metrics

System performance was evaluated both by means
of automatic metrics and manually. Automatic
metrics were used to compute the distance be-
tween automatic and human post-edits of the
machine-translated sentences present in the test
sets. To this aim, TER and BLEU (case-sensitive)
were respectively used as primary and secondary
evaluation metrics. Systems were ranked based
on the average TER calculated on the test set
by using the TERcom5 software: lower average
TER scores correspond to higher ranks. BLEU
was computed using the multi-bleu.perl package6

available in MOSES. The evaluation results com-
puted in terms of automatic metrics are presented
and discussed in Section 4).

Manual evaluation was conducted via source-
based direct human assessment (Graham et al.,
2013; Cettolo et al., 2017; Bojar et al., 2018). De-
tails are discussed in Section 6.

2.3 Baseline

In continuity with the previous rounds, the official
baseline results were the TER and BLEU scores
calculated by comparing the raw MT output with
human post-edits. In practice, the baseline APE
system is a “do-nothing” system that leaves all the
test targets unmodified. Baseline results, the same
shown in Table 1, are also reported in Tables 3 and

5http://www.cs.umd.edu/˜snover/tercom/
6https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

4 for comparison with participants’ submissions.7

For each submitted run, the statistical signif-
icance of performance differences with respect
to the baseline was calculated with the bootstrap
test (Koehn, 2004).

3 Participants

Six teams submitted a total of 11 runs for the
English-German subtask. Two of them partici-
pated also in the English-Chinese subtask by sub-
mitting 2 runs each. Participants are listed in Ta-
ble 2, and a short description of their systems is
provided in the following.

Alibaba Group (MinD). Alibaba participated
only in the English-German subtask. Their sub-
mission introduces a cross-lingual Bert-like con-
ditional model with a “memory-encoder”, which
can capture the semantic information of machine
translations conditional on the source sentences
(Fan et al., 2019). The system consists of three
parts, namely: i) a general Transformer encoder to
encode the source sentences, ii) a Transformer de-
coder without future mask adapted to a memory-
encoder to encode machine translations with cross
attention to the source encoder, and iii) a multi-
source Transformer decoder to generate the auto-
matic post-editing results with cross attentions to
both the encoders. In addition, data augmentation,
corpus filtering and imitation learning strategies
are exploited to overcome the scarcity of real APE
data and to further improve model’s performance,
together with model ensembling and conservative-
ness penalty strategies inspired by (Lopes et al.,
2019).

7In addition to the do-nothing baseline, in the first three
rounds of the task we also compared systems’ performance
with a re-implementation of the phrase-based approach firstly
proposed by Simard et al. (2007), which represented the com-
mon backbone of APE systems before the spread of neural
solutions. As shown in (Bojar et al., 2016, 2017), the steady
progress of neural APE technology has made the phrase-
based solution not competitive with current methods reducing
the importance of having it as an additional term of compar-
ison. Since 2018, we hence opted for considering only one
baseline.

http://www.cs.umd.edu/~snover/tercom/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Bering Lab (BerlingLab). Bering Lab partici-
pated only in the English-German subtask. Their
system relies on a Transformer architecture, in
which the encoder takes in input a concatenation
of the source and MT sentences to generate a
cross-lingual representation to be passed to the de-
coder. Additionally, they explored methods to im-
prove APE performance through word-level and
sentence-level quality estimation (QE). Based on
word-level QE, they mask incorrect or missing
words in the PE output. Then, the most proba-
ble word for each masked token is predicted us-
ing XLM-RoBERTa (Conneau et al., 2020), which
is fine-tuned based on the translation language
modeling (TLM) objective (Conneau and Lample,
2019). Finally, they propose an output selection
mechanism based on sentence-level QE to prevent
over-correction. To this aim, they select the sen-
tence with the lowest predicted HTER among the
PE outputs and the original MT sentence as the fi-
nal output. For data augmentation, they use a par-
allel corpus to train an NMT model and generate
artificial triplets, following the ideas from (Negri
et al., 2018).

Huawei (HW-TSC). Huawei participated both
in the English-German and English-Chinese sub-
tasks. Their system basically follows the architec-
ture of last year’s winning system (Lopes et al.,
2019), where src and mt sentences are concate-
nated as input to the encoder, and the decoder
is used for decoding the pe sentence. How-
ever, there are several differences with respect to
(Lopes et al., 2019). First, instead of using a pre-
trained BERT model, the system relies on a Trans-
former NMT model (implemented with fairseq
(Ott et al., 2019)), pre-trained on the WMT19
news translation corpora. Second, the model in-
tegrates bottleneck adapter layers to prevent from
over-fitting. Third, external MT candidates (from
Google Translate) are exploited as a source of aux-
iliary information. This results in a longer in-
put sequence composed of (src, mt, auxiliary mt)
triplets. Due to the domain change introduced
this year, system’s training does not exploit the
supplied additional corpora for data augmentation.
Finally, the system does not include methods to
prevent over-correction, such as the penalty men-
tioned in (Lopes et al., 2019).

POSTECH (POSTECH TERNoise). This
team participated only in the English-German

subtask. They mainly focused on increasing the
size of the APE data to overcome the scarcity of
training samples available. They first introduced
a noising module simulating the four types of
post-editing errors: insertion, deletion, substitu-
tion and shifting. This noising module implants
the simulated errors into the target text of the
parallel corpora, so to exploit a synthetic MT
output during the training phase. The quantity of
noise is determined by using the TER distribution
of the official training set. They then applied the
same generation method proposed in (Negri et al.,
2018), so to create a synthetic APE corpus to be
used as additional training data. For this data con-
struction process, they used the parallel corpora
and the NMT model released for the WMT20
Quality Estimation shared task. As APE model,
they chose the sequential model proposed in (Lee
et al., 2019), applying some minor modifications
to increase the training efficiency. They submitted
two ensemble models. Their primary submission
(TERNoise-Ops-Ens8) is an ensemble of eight
runs. It was obtained by first selecting the top-5
runs having the lowest TER on the development
set, for three individual weight initializations.
Out of them, they then selected the top-2 runs
showing most frequent corrections for each of the
four edit operations to form the ensemble. The
contrastive submission (TERNoise-nFold-Ens8)
is an ensemble of eight runs obtained from
models trained/validated in a 4-fold setting on the
integration of training data and development data,
aiming at the generalization to unseen data. Then,
the top-2 runs for each fold were selected to form
the ensemble.

POSTECH-ETRI (POSTECH-ETRI). This
team participated both in the English-German and
English-Chinese subtasks. Their models focus
on adapting to the APE task XLM (Conneau and
Lample, 2019), which can learn joint represen-
tations from two languages. Rather than using
the open model published on the XLM github
page8 trained on 15 languages, they built new
MLM+TLM models that are trained on datasets
consisting of only the source and target languages
for both language pairs (English-German and
English-Chinese). Their model architecture is an
extension of Transformer, in which the encoder
is initialized with the weights of the pre-trained

8https://github.com/facebookresearch/
XLM

https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
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TER BLEU

en-de HW-TSC DIRECT CONTRASTIVE.pe 20.21 66.89
HW-TSC CONCAT PRIMARY.pe 20.52 66.16
MinD-mem enc dec post-CONTRASTIVE 26.99 55.77
POSTECH-ETRI XLM-Top4Ens CONTRASTIVE 27.02 56.37
MinD-mem enc dec-PRIMARY 27.03 55.58
POSTECH-ETRI XLM-Top3Ens PRIMARY 27.37 55.83
BeringLab model1 PRIMARY 27.61 54.71
BeringLab model2 CONTRASTIVE 27.96 54.60
POSTECH TERNoise-nFold-Ens8 CONTRASTIVE 28.22 54.51
POSTECH TERNoise-Ops-Ens8 PRIMARY 28.41 54.22
Baseline 31.56 50.21
KAISTxPAPAGO EMT PRIMARY 32.00 49.21

Table 3: Results for the WMT20 APE English-German – average TER (↓), BLEU score (↑).

TER BLEU

en-zh HW-TSC CONCAT PRIMARY.pe 47.36 37.69
HW-TSC DIRECT CONTRASTIVE.pe 48.01 37.32
POSTECH-ETRI XLM-Top3Ens PRIMARY 54.92 28.90
POSTECH-ETRI XLM-Top4Ens CONTRASTIVE 55.08 28.97
Baseline 59.49 23.12

Table 4: Results for the WMT20 APE English-Chinese – average TER (↓), BLEU score (↑).

XLM, receiving the concatenation of the two
input sentences. The decoder is also initialized in
a similar manner as the encoder, while multi-head
attention layers are random-initialized. At the
APE training stage, in addition to the WMT20
official dataset, they generated new synthetic
triplets, following the same method used to build
eSCAPE (Negri et al., 2018). They used the NMT
model provided by the WMT20 quality estimation
shared task to generate new synthetic APE triplets
by translating the parallel corpus provided by
the same task. Finally, to generate their final
submissions, they built an ensemble of multiple
models.

4 Results

Participants’ results are shown in Tables 3
(English-German) and 4 (English-Chinese). The
submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as reference, which is
the APE task primary evaluation metric. The two
tables also report the BLEU score computed using
human post-edits, which represents our secondary
evaluation metric.

Similar to last year, also in this round the pri-
mary and secondary evaluation metric produce
rankings that are only slightly different from each
other.9 In spite of these minor difference, for

9For English-German, the third and fourth-ranked sub-
missions in terms of TER are switched in terms of BLEU,

both both languages we have a clear separation
between the two top-ranked submissions (by the
same team) and the other submitted runs.

On English-German, the best results (20.21
TER, 66.89 BLEU) respectively outperform the
baseline by -11.35 TER and +16.68 BLEU points,
the second-best scores being lower by less than 1
point for both the metrics. All the other runs but
the last are quite close to each other, being concen-
trated respectively in a 1.42 TER and 1.55 BLEU
points interval.

On English-Chinese, the best results (47.36
TER, 37.69 BLEU) respectively outperform the
baseline by -12.13 TER and +14.57 BLEU points.
Also in this case, the second-best run is below the
top-ranked one by less than 1 point for both the
metrics, while the third and fourth submissions are
close to each other (the difference is less than 0.2
points for both metrics).

All in all, these results indicate that:

• Operating with lower-quality output pro-
duced by generic (i.e. not domain-adapted)
NMT systems run on a broad “domain” like
Wikipedia texts (as opposed to the narrow do-
mains of information technology or medical)
leaves considerable room for improvement to
state-of-the-art APE models. Looking at the
baseline scores and the δTER values shown

as well as the fifth and the sixth. For English-Chinese, this
happens for the third and fourth-ranked submissions. The
correlation between the ranks obtained by the two metrics is
however very high, and in both cases above 0.99.
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Systems Modified Improved Deteriorated Prec.
HW-TSC DIRECT CONTRASTIVE.pe 905 (90.5%) 625 (69.06%) 177 (19.56%) 0.69
HW-TSC CONCAT PRIMARY.pe 908 (90.8%) 618 (68.06%) 183 (20.15%) 0.68
MinD-mem enc dec post-CONTRASTIVE 662 (66.2%) 397 (59.97%) 148 (22.36%) 0.60
POSTECH-ETRI XLM-Top4Ens CONTRASTIVE 771 (77.1%) 438 (56.81%) 199 (25.81%) 0.57
MinD-mem enc dec-PRIMARY 665 (66.5%) 401 (60.30%) 144 (21.65%) 0.60
POSTECH-ETRI XLM-Top3Ens PRIMARY 778 (77.8%) 423 (54.37%) 207 (26.61%) 0.54
BeringLab model1 PRIMARY 708 (70.8%) 380 (53.67%) 157 (22.18%) 0.54
BeringLab model2 CONTRASTIVE 421 (42.1%) 279 (66.27%) 72 (17.10%) 0.66
POSTECH TERNoise-nFold-Ens8 CONTRASTIVE 535 (53.5%) 306 (57.20%) 108 (20.19%) 0.57
POSTECH TERNoise-Ops-Ens8 PRIMARY 536 (53.6%) 309 (57.65%) 112 (20.90%) 0.58
KAISTxPAPAGO EMT PRIMARY 724 (72.4%) 267 (36.88%) 314 (43.37%) 0.37
Average 69.2 58.2 23.6 0.58

Table 5: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted to the APE
2020 English-German subtask. The “Prec.” column shows systems’ precision as the ratio between the number of improved
sentences and the total number of modified instances.

Systems Modified Improved Deteriorated Prec.
HW-TSC CONCAT PRIMARY.pe 997 (99.7%) 673 (67.50%) 227 (22.77%) 0.68
HW-TSC DIRECT CONTRASTIVE.pe 995 (99.5%) 671 (67.44%) 223 (22.41%) 0.67
POSTECH-ETRI XLM-Top3Ens PRIMARY 968 (96.8%) 566 (58.47%) 265 (27.38%) 0.58
POSTECH-ETRI XLM-Top4Ens CONTRASTIVE 959 (95.9%) 551 (57.46%) 255 (26.59%) 0.57
Average 97.975 62.72 24.79 0.63

Table 6: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted to the APE
2020 English-Chinese subtask. The “Prec.” column shows systems’ precision as the ratio between the number of improved
sentences and the total number of modified instances.

in Table 1, we can observe that the largest im-
provements over the baseline were obtained
this year on the lowest-quality translations.

• Operating with data featuring low repetition
rates does not necessarily prevent from ob-
taining significant MT quality improvements.
Looking at the δTER and the repetition rate
values shown in Table 1, we can observe that
the lowest data repetitiveness observed this
year did not prevent from observing, at the
same time, the largest gains over the baseline.

• Operating with data featuring variable qual-
ity, with a distribution of the instances that
is not too peaked towards high-quality trans-
lations, sets ideal conditions for APE. Look-
ing at the δTER and the TER distributions
shown in Figures 1 and 2, we can observe that
the largest improvements over the baseline
achieved this year are also related to a qual-
ity distribution that is more uniformly spread
around central values of the 0-100 TER inter-
val.

5 System/performance analysis

As a complement to global TER/BLEU scores,
also this year we performed a more fine-grained
analysis of the changes made by each system to
the test instances.

5.1 Macro indicators: modified, improved
and deteriorated sentences

Tables 5 and 6 show, for each run submitted to the
two subtasks, the number of modified, improved
and deteriorated sentences, as well as the over-
all system’s precision (i.e. the proportion of im-
proved sentences out of the total number of mod-
ified instances). It’s worth noting that, as in the
previous rounds and in both the settings, the num-
ber of sentences modified by each system is higher
than the sum of the improved and the deteriorated
ones. This difference is represented by modified
sentences for which the corrections do not yield
TER variations. This grey area, for which qual-
ity improvement/degradation can not be automati-
cally assessed, contributes to motivate the human
evaluation discussed in Section 6.

As shown in Table 5, on English-German the
amount of sentences modified by the participants
varies from the very high values of the top two
submissions (above 90.0%) to the lower scores of
the runs placed below them in the ranking (be-
tween 42.1% and 77.8%). However, in all the
cases the overall number of modified sentences
(69.2% on average) is considerably larger than
what we observed in the 2019 round (23.53% on
average, ranging from 4.01% to 39.1%). This dif-
ference can be ascribed to the different nature of
the data that, as previously discussed, this year
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(a) (b)
Figure 3: System behaviour (primary submissions) for English-German (a) and English-Chinese (b) – TER(MT, APE)

featured lower MT quality, combined with a dis-
tribution that is less skewed towards low TER val-
ues. In particular, while last year about 30.0% of
the test instances were to be considered as “per-
fect”, this year the proportion of test instances with
0≤TER≤5 is about 7.0%. In light of this, com-
pared to last year, the participants modified a num-
ber of test instances that is much closer to the tar-
get percentage of sentences to be modified (about
93.0%, i.e. those having TER>0). As one can
expect, besides systems’ aggressiveness, final per-
formance highly depends also on their precision
in applying corrections. The last column of Ta-
ble 5 shows systems’ precision (Prec.) as the ra-
tio between the number of improved sentences and
the total number of modified sentences. As can be
seen from the table, the two top-ranked submis-
sions are not only the most aggressive (more than
90% modified sentences) but also the most pre-
cise ones (precision above 0.68). Overall, all runs
but one have a precision above 0.5, with an aver-
age value of 0.58 that is larger than the values ob-
served on the same language (but different evalua-
tion conditions) in 2019 (0.46) and in 2018 (0.34).
As a consequence, the percentage of deteriorated
sentences out of the total amount of modified test
items shows a significant drop with respect to the
last two rounds of the task. On average, a quality
decrease is observed for 23.6% of the test items (it
was 47.85% in 2018 and 35.11% in 2019).

As shown in Table 6, on English-Chinese we
observe similar trends. The four submitted runs
are all characterized by a high percentage of mod-
ified sentences (97.97% on average) and a very
high precision (0.63 on average). This can be ex-
plained by the large room for improvement avail-
able to APE on this language pair, due to the low
MT baseline (59.49 TER, 23.12 BLEU) and to the

small number of “perfect” translations (as shown
in Figure 2, less than 0.5% of the test items have a
0≤TER≤5).

5.2 Micro indicators: edit operations

In the previous rounds of the APE task, possi-
ble differences in the way systems corrected the
test set instances were analyzed by looking at the
distribution of the edit operations done by each
system (insertions, deletions, substitutions and
shifts). Such distribution was obtained by com-
puting the TER between the original MT output
and the output of each system taken as reference
(only for the primary submissions). This analy-
sis has been performed also this year but it turned
out to be scarcely informative, as shown in Figure
3. For both the subtasks, the differences in sys-
tem’s behaviour are indeed barely visible. All the
submitted runs are characterized by a large num-
ber of deletions (on average, 61.11% for English-
German and 58.54% for English-Chinese), fol-
lowed by the insertions (respectively, 20.17% and
19.01%), the shifts (10.98% and 12.98%) and fi-
nally the substitutions (7.74 and 9.48). These dis-
tributions differ from what we observed in the
past. Especially in the last two rounds of the APE
task, the largest proportion of edit operations were
indeed substitutions (for English-German neural
translations, they were 53.6% in 2019 and 53.5%
in 2018). Also this difference can be explained
by the lower quality of this year’s initial transla-
tions. In the previous rounds, the generally high
fluency of domain-adapted neural MT systems in-
duced the trained APE models to perform light
changes, mainly with isolated word substitutions
oriented to improve lexical choice. This year, the
change of domain and the use of generic mod-
els that were not domain-adapted resulted in more
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aggressive structural modifications, where lexical
changes represent the minority of edit operations.

6 Human evaluation

In order to complement the automatic evaluation
of APE submissions, manual evaluation of the
primary systems submitted (seven for English-
German, three for English-Chinese) was con-
ducted. In this section, we present the evaluation
procedure, as well as the results obtained.

6.1 Evaluation procedure

We evaluated the overall quality of the MT and PE
output using source-based direct assessment (Gra-
ham et al., 2013; Cettolo et al., 2017; Bojar et al.,
2018). We used the same instructions that are
used in the News Translation track of WMT2020.
We hired 25 professional linguists for English-
German and 25 professional linguists for English-
Chinese. All involved linguists were either native
speaker in German or Chinese.

We acquired only a single rating per sentence
as we found that professional linguists were more
reliable than crowd workers (Toral, 2020). For ad-
equacy, we asked annotators to assess the semantic
similarity between the source and a candidate text,
labelled as “source text” and “candidate transla-
tion”, respectively. The annotation interface im-
plements a slider widget to encode perceived sim-
ilarity as a value between 0 and 100. Note that
the exact value is hidden from the human, and can
only be guessed based on the positioning of the
slider. Candidates are displayed in random order,
so to prevent biased assessments.

For our human evaluation campaign, we also
include the human post-edits (test.pe) and the
unedited, MT output (test.mt). We expect human
post-editing to be of higher quality than the out-
put from APE submissions, which in turn should
outperform the unedited MT output. We run hu-
man evaluation for all primary submissions, the
MT output and the human post-edited output.

6.1.1 English→German
Human evaluation results for English-German are
summarized in Table 7. The human post-edited
output test.pe scores best, while the APE output
HW-TSC CONCAT.pe is not significantly worse
compared to the human post-edited output. Con-
sequently, and rather surprisingly, human and au-
tomatic corrections for this language pair seem to

be indistinguishable to our evaluators. This in-
teresting finding can be motivated by a number
of reasons (the type/quality/quantity of data, the
size of the sample, the number of collected judge-
ments) that suggest to avoid exaggerated claims
about a reached human parity. Nonetheless, we
take it as indicator of a steady progress of APE
research. Interestingly, 5 out of 6 APE submis-
sions perform significantly better than the original
MT output test.mt, demonstrating that APE can be
used to improve machine translation output even
for high-resource language settings like English-
German, as already shown by Freitag et al. (2019).
These findings are different from last year’s APE
task (Chatterjee et al., 2019) where none of the
English-German APE submissions was signifi-
cantly better than the raw MT output.

Avg Avg z

test.pe 83.5 0.298
HW-TSC CONCAT.pe 82.2 0.260
POSTECH-ETRI XLM-Top3Ens 77.3 0.031
MinD-mem enc dec 76.2 -0.008
POSTECH TERNoise-Ops-Ens8 75.8 -0.037
BeringLab model1 74.3 -0.098
test.mt 71.5 -0.194
KAISTxPAPAGO EMT 71.0 -0.252

Table 7: Results for the WMT20 APE English-German –
human evaluation. Systems ordered by DA score z-score;
systems within a cluster are considered tied; lines indicate
clusters according to Wilcoxon rank-sum test p < 0.05.

Avg Avg z

test.pe 86.3 0.363
HW-TSC CONCAT.pe 77.2 -0.063
POSTECH-ETRI XLM-Top3Ens 77.0 -0.079
test.mt 74.0 -0.221

Table 8: Results for the WMT20 APE English-Chinese –
human evaluation. Systems ordered by DA score z-score;
systems within a cluster are considered tied; lines indicate
clusters according to Wilcoxon rank-sum test p < 0.05.

6.1.2 English→Chinese
Human evaluation results for English-Chinese are
summarized in Table 8. In this case, the human
post-edited output does perform significantly bet-
ter than the two primary submissions. Similar to
the English-German task, both APE submissions
perform significantly better than the original MT
output test.mt. Nevertheless, both submissions
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perform very similarly, and both submissions can
be seen as similar quality.

7 Conclusion

We presented the results from the 6th shared task
on Automatic Post-Editing at WMT. This year,
we proposed two subtasks in which the MT out-
put to be corrected was respectively generated by
English-German and English-Chinese neural sys-
tems unknown to the participants. The latter lan-
guage pair represents a new entry for the task,
which previously focused on Spanish (in 2015),
German (since 2016) and Russian (in 2019) as tar-
get languages. The other major novelty factors are
that: i) both the subtasks dealt with data drawn
from the “generic” domain of Wikipedia articles,
and ii) the NMT systems used to generate the
translations were not domain-adapted. As a con-
sequence, participants had to confront with lower
quality translations that left to APE large room for
improvement.

Six teams participated in the English-German
task, with a total of 11 submitted runs, while
two teams participated in the English-Chinese task
submitting two runs each. Their results com-
puted with automatic metrics (TER and BLEU)
revealed significant gains over the “do-nothing”
baseline. On English-German, the top-ranked sys-
tem improved over the baseline by -11.35 TER
and +16.68 BLEU points, and the average im-
provements were the largest ones observed over
the years (-4.89 TER, +6.5 BLEU). On English-
Chinese the improvements of the top-ranked sys-
tem are respectively -12.13 TER and +14.57
BLEU points, with average gains of (-8.15 TER
and +10.1 BLEU). Our human evaluation con-
firmed that on both the language pairs, almost all
the primary submissions are significantly better
than the baseline. On English-German, the im-
provement is up to the point that the quality of the
automatic corrections produced by the top-ranked
primary submissions is substantially on par with
human corrections.

All in all, these results confirm the effectiveness
of APE to improve MT output in black-box con-
ditions, especially when the adaptation of generic
systems to a new “domain” is required.
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Koichiro Yoshino, and Christian Federmann. 2017.
Overview of the iwslt 2017 evaluation campaign. In
Proc. of IWSLT, Tokyo, Japan.

Rajen Chatterjee, M. Amin Farajian, Matteo Negri,
Marco Turchi, Ankit Srivastava, and Santanu Pal.
2017. Multi-source Neural Automatic Post-Editing:
FBK’s Participation in the WMT 2017 APE Shared
Task. In Proceedings of the Second Conference on
Machine Translation, pages 630–638. Association
for Computational Linguistics.

Rajen Chatterjee, Christian Federmann, Matteo Negri,
and Marco Turchi. 2019. Findings of the WMT
2019 shared task on automatic post-editing. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 3: Shared Task Papers, Day 2),
pages 11–28, Florence, Italy. Association for Com-
putational Linguistics.

Rajen Chatterjee, Matteo Negri, Raphael Rubino, and
Marco Turchi. 2018a. Findings of the WMT 2018

http://www.aclweb.org/anthology/W17-4717
http://www.aclweb.org/anthology/W17-4717
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W18-6401
http://www.aclweb.org/anthology/W18-6401
http://www.aclweb.org/anthology/W18-6401
http://aclweb.org/anthology/W17-4773
http://aclweb.org/anthology/W17-4773
http://aclweb.org/anthology/W17-4773
https://doi.org/10.18653/v1/W19-5402
https://doi.org/10.18653/v1/W19-5402
https://www.aclweb.org/anthology/W18-6452


658

shared task on automatic post-editing. In Proceed-
ings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 710–725, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Rajen Chatterjee, Matteo Negri, Marco Turchi,
Frédéric Blain, and Lucia Specia. 2018b. Combin-
ing Quality Estimation and Automatic Post-editing
to Enhance Machine Translation Output. In Pro-
ceedings of the 13th Conference of the Association
for Machine Translation in the Americas (Volume 1:
Research Papers), pages 26–38, Boston, MA. Asso-
ciation for Machine Translation in the Americas.

Rajen Chatterjee, Marion Weller, Matteo Negri, and
Marco Turchi. 2015. Exploring the Planet of the
APEs: a Comparative Study of State-of-the-art
Methods for MT Automatic Post-Editing. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 156–
161, Beijing, China. Association for Computational
Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 8440–8451. Associ-
ation for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 7057–7067.
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