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Abstract

This paper reports the results for the Machine
Translation (MT) system submitted by the NL-
PRL team for the Hindi – Marathi Similar
Translation Task at WMT 2020. We apply
the Transformer-based Neural Machine Trans-
lation (NMT) approach on both translation di-
rections for this language pair. The trained
model is evaluated on the corpus provided by
shared task organizers, using BLEU, RIBES,
and TER scores. There were a total of 23
systems submitted for Marathi to Hindi and
21 systems submitted for Hindi to Marathi in
the shared task. Out of these, our submission
ranked 6th and 9th, respectively.

1 Introduction

In the last decade and a half, neural machine trans-
lation (NMT) (Sutskever et al., 2014) has achieved
great success in automatically translating human
language text, outperforming statistical machine
translation (SMT) (Koehn et al., 2003). Both the
system require very large corpus sizes to train and
evaluate the results. They, however, don’t work
very well for low resource data (He et al., 2016;
Koehn and Knowles, 2017; Dowling et al., 2018).
Translation from or to low resource languages is the
major challenges faced by today’s NMT systems.

Different methods have been proposed to over-
come the data sparsity problem for low resource
languages by researchers around the world. These
include using monolingual data (Wu et al., 2019),
fine-tuning (Miceli Barone et al., 2017) the high
resource monolingual and parallel data on low re-
source data, back translation (Hoang et al., 2018),
etc. They succeed up to some extent, but the suc-
cess is limited, as the reported results show when
compared to those for resource rich languages.

In this paper, we use the Transformer network-
based NMT system (Vaswani et al., 2017) because
it is among the state of the art models for machine

translation. The work reported for this shared task
is an extension of the work done by (Kumar and
Singh, 2019) for similar languages task for 2019,
which had also used a transformer based NMT
system.

2 Similar Languages

Two languages are considered similar or closely
related if they are close relatives in terms of the
linguistic family of the linguistic family tree (or
forest), or if the speakers of the two languages
are in close contact over a long period of time.
Contact over a long period leads to the exchange
of cognates and loanwords between the speakers,
sometimes even grammatical constructs.

Leveraging the close similarity of languages is
one way to overcome the problem of data scarcity.
Using similar features between such languages and
improving translation is one of the directions for
research for low resource machine translation.

For this submission, the motives behind conduct-
ing the shared task experiments are:

• To find out whether it is advantageous to
use transformer-based NMT for similar lan-
guages.

• Whether using the SentencePiece 1 library
without tokenization is beneficial for trans-
lation between similar languages or not.

3 Submitted System

We submitted two systems, namely,
Marathi→Hindi and Hindi→Marathi. Both
are the NMT systems trained on a Transformer
(Vaswani et al., 2017) network. In this experiment,
we did not tokenize data using any tokenizer.
We directly applied SentencePiece library on
the corpus. We found that directly applying

1https://github.com/google/sentencepiece
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Parameters Value
Encoder and decoder layers 5
Encoder embedding dimension 512
Decoder embedding dimension 512
Encoder attention heads 2
Decoder attention heads 2
Dropout 0.4
Attention dropout 0.2
Optimizer Adam
Learning rate scheduler inverse sqrt
Learning rate 1e-3
Minimum learning rate 1e-9
Adam-betas (0.9, 0.98)
Number of epochs 100

Table 1: Hyperparameters used in our experiment

SentencePiece for preprocessing of data gives a
better result. Since both the languages come under
the category of morphologically rich and similar
languages, directly applying SentencePiece on
their corpus is advantageous. SentencePiece breaks
the sentences into morphemes and phonemes. It
extracts loanwords and cognate pairs. Breaking
of sentences into subwords helps the neural
translation network to learn better translations,
and to generalize this knowledge to translate
and produce unseen words, partly due to jointly
developing the subword vocabulary.

4 Data

We trained the model on total 49434 number of
Hindi - Marathi parallel corpus which belongs to
three domains: News, PM India and Indic WordNet.
Validation is done on total 1411 sentences. For
testing, a total of 1941 sentences were used.

5 Experiment setup

We used fairseq 2 sequence to sequence encoder-
decoder framework to train and evaluate the system.
For hyper-parameter settings, we used the settings
reported by (Guzmán et al., 2019) as these setting
work well on low resource languages. Table 1 gives
the hyper-parameter settings.

6 Results

Task organizers evaluate the systems using three
evaluation metric: BLEU (Papineni et al., 2002),
RIBES (Isozaki et al., 2010) and Translation Error

2https://github.com/pytorch/fairseq

system BLEU RIBES TER
Marathi→ Hindi 20.72 64.46 71.04
Hindi→Marathi 12.5 58.66 76.86

Table 2: Scores of our system evaluated by task orga-
nizers

Rate (TER) (Snover et al., 2006). We report the
evaluation scores in table 2.

7 Conclusion

In this paper, we perform experiments for trans-
lation between two similar languages: Hindi
and Marathi. We submitted two systems:
Marathi→Hindi and Hindi→Marathi, which were
evaluated using BLEU, RIBES and TER. We found
that SentencePiece works well for similar lan-
guages because it helps the Transformer in cap-
turing the relations between two languages by pro-
viding morphemes, phonemes, cognate pairs, loan-
words, etc. There were a total 23 systems submitted
for Marathi→ Hindi and 21 systems submitted for
Hindi→Marathi in the shared task. Out of these,
our system ranked 6th and 9th for Marathi→ Hindi
and Hindi→Marathi, respectively, considering the
BLEU scores.
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