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Abstract
The ability of machine translation (MT) mod-
els to correctly place markup is crucial to gen-
erating high-quality translations of formatted
input. This paper compares two commonly
used methods of representing markup tags and
tests the ability of MT models to learn tag
placement via training data augmentation. We
study the interactions of tag representation,
data augmentation size, tag complexity, and
language pair to show the drawbacks and ben-
efits of each method. We construct and release
new test sets containing tagged data for three
language pairs of varying difficulty.

1 Introduction

The quality of machine translation (MT) has dras-
tically improved in recent years, making MT tech-
nology more widely used than ever before in ap-
plications ranging from financial services (Nun-
ziatini, 2019) to fashion, social media, and other
user-generated content (Kosmaczewska and Train,
2019; Birch et al., 2019; Michel and Neubig, 2018),
among other tasks.

A large amount of content requiring translation
is not isolated plain text. Rather, it originates in the
context of structured documents, using document
format specifications such as HTML, Microsoft
Word, PDF, etc.

Currently, the translation industry addresses the
translation of structured documents by dividing
the task between a translation management system
(TMS) and an underlying MT system (e.g. Fed-
erico et al. (2014)). Figure 1 shows a schematic
of the process. The TMS parses, manipulates, and
validates the higher-level document structure. It is
responsible for finding the translatable portions of
the input document, performing sentence segmen-
tation on the content, sending it to an underlying
MT system for translation, and placing the result
back into the document structure. For example, the

TMS may pass over material contained in HTML
<script>...</script> tags, while sending
to MT the contents of <p>...</p> tags and the
string values of <img alt="..."/> attributes.

Properly transferring formatting tags within the
translatable content (bold, italic, hyperlink, super-
script, etc.) remains the responsibility of the MT
process rather than the TMS. The correct preserva-
tion and transfer of inline markup from source to
target thus forms a crucial component of the overall
quality of the MT system. An accurate placement
within the segment of inline markup provides a
more readable and usable document in its raw MT
form, in addition to saving human time and effort
if post-editing is used.

Despite the key role of the MT system in pro-
cessing structured documents — both in terms of
TMS expectations and in lowering translation costs
— the setup of translation in the context of struc-
ture is rarely addressed in the standard MT eval-
uation benchmarks. They typically focus on the
pure-content, string-based tasks (Joanis et al., 2013;
Müller, 2017).

In this paper, we study the question of how in-
line markup should be represented in and processed
by the MT system in order to result in the highest
placement accuracy. Given the deep semantic rep-
resentations and generalization abilities provided
by modern neural MT systems, we design a series
of experiments to test their capabilities specifically
on the problem of markup transfer within the trans-
lation process. The paper makes the following
contributions:

(1) We propose a technique to augment any paral-
lel corpus with inline tags, addressing the scarcity
of high-quality parallel data containing markup
tags (Section 3). We show that the method results
in highly accurate tag placement and can improve
the accuracy of tag placement of MT models when
used to augment the training data.
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TMS

<html>
 <body>
  <script>
   document.getElementById("demo").inner =
   "Hello JavaScript!";
  </script>
  <p>This is my <i>improved</i>
  demo page!</p>
  <img alt="Under Construction" src="constr.png"/>
 </body>
</html>

<html>
 <body>
  <script>
   document.getElementById("demo").inner =
   "Hello JavaScript!";
  </script>
  <p>Ceci est ma page de démonstration
  <i>améliorée</i> !</p>
  <img alt="En construction" src="constr.png"/>
 </body>
</html>

Ceci est ma page de démonstration 
<g id="1">améliorée</g> !

En construction

MTThis is my <g id="1">
improved</g> demo page!

Under Construction

Figure 1: Translation of a structured document. A translation management system (TMS) is responsible for
higher-level document structure, while the machine translation (MT) system transfers inline markup.

(2) We provide a comprehensive evaluation of
several tag-handling methods (Section 4). We
test the ability of neural networks to jointly learn
to translate content and transfer tags from auto-
matically generated tagged data. Within this ap-
proach, we experiment with two ways of represent-
ing tags and compare these with a baseline detag-
and-project method, on language pairs of varying
data sizes and difficulty (English–French, English–
German, and English–Hungarian).

(3) Finally, testing of tag placement accuracy
poses difficulties in terms of both data-set avail-
ability and quality metrics. For this reason, we as-
semble new test sets of natively tagged structured
documents for the three targeted language pairs.
We enhance these test sets by adding synthetically
generated tagged data according to human-quality
glossary entries (Section 5), and we release these
test sets in order to facilitate further research on
the topic. Evaluation is carried out according to
standard automatic metrics, automatic detection of
obvious tagging errors, and human assessments of
tag placement accuracy (Section 6).

2 Related Work

Various works have addressed the inline markup
problem in the context of statistical MT systems.
Joanis et al. (2013) extensively summarize many
such methods. Their “two-stream” approach is
quite similar to our detag-and-project baseline, re-
lying on phrase and word alignments and care-
fully designed tag transfer rules to re-insert inline
markup into the translated content. Though the

accuracy of this approach is tested in a small hu-
man evaluation, it is explicitly not compared to any
other method of tag representation.

Müller (2017) addresses the same question, com-
paring five different varieties of detag-and-project
and mask-based approaches. The work concludes
that the detag-and-project approach of Joanis et al.
(2013) performs the best in complicated tagging
scenarios, while masking can be a strong approach
in simplistic cases.

Moving to neural MT, Hashimoto et al. (2019)
experiment with “raw” tags that are left unmodi-
fied in the input. The authors test a constrained
beam search that restricts the decoder to outputting
all and only the tags actually present in the source
while maintaining XML well-formedness. They
also introduce a pointer mechanism (See et al.,
2017) to promote copy-through of tags and other
non-translatable content. These restrictions are
shown to improve output, but no other tag repre-
sentation aside from raw tags is tested.

We thus position our work as spanning and uni-
fying elements of these previous studies, directly
comparing the major tag representation methods
with a minimum of other modeling changes in a
state-of-the-art neural MT setting. Additionally
we introduce a data augmentation technique that
removes the dependence on pre-existing tagged
training data assumed by the approaches proposed
by e.g. Hashimoto et al. (2019).

In this context, we also note complementary
work on the implicit learning of structure by
sequence-to-sequence models. Target-side struc-
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ture expressed as content, without special annota-
tions, has been used in string-to-tree syntax-based
MT by Nădejde et al. (2017) and Aharoni and Gold-
berg (2017); the latter group notes that well-formed
parse trees are generated 99.5% of the time. The
masking method of passing abstracted information
between input and output has been applied in MT to
non-translatables such as numbers, URLs, named
entities, etc. (Crego et al., 2016; Post et al., 2019).
It has been shown to improve automatic metric
scores, with the masks correctly appearing in the
MT output a very high percentage of the time (Mu-
rakami et al., 2019; Bérard et al., 2019). Source fac-
tors, or additional input streams provided in lock-
step with the content to translate (Sennrich and
Haddow, 2016), are one mechanism for signaling
structural information in the input while leaving it
accessible to the model. It has been used to aug-
ment an MT system with terminology constraints
(Dinu et al., 2019), and the same mechanism could
be in principle applied to tags as well.

Training data augmentation is a popular way to
increase model learning and robustness for specific
phenomena. Of particular interest is the finding by
Karpukhin et al. (2019) showing that a “balanced
diet” of training data synthetically augmented with
spelling errors improved model performance on nat-
ural errors, without harming performance on clean
text. Our notion regarding synthetically injected
and naturally occurring tags is similar.

3 Data Augmentation via Tag Injection

The vast majority of data available for MT research
appears as plain text only.1 While tagged training
corpora, when available, will inevitably be limited
in size, domains covered, and language availability,
we propose as an alternative a general technique
for injecting markup tags of controlled complexity
into any parallel corpus with high accuracy.

Although not always adhering to the strict syn-
tax of a well-defined markup language, most inline
tags follow the XML standard and create a hierar-
chical structure within a segment by introducing
either paired tags (opening and closing) or self-
closing unary tags. This structure is expected to be
preserved by the translation, with paired tags sur-
rounding corresponding text fragments. In Figure
1, the italicized fragment improved transfers to ital-

1A recent exception is the 17-language XML-tagged par-
allel corpus described by Hashimoto et al. (2019), released
publicly in July 2020 concurrently with our work.

icized améliorée. We propose a method to identify
such corresponding fragments in the source and
target sides of parallel data and to automatically
inject tags based on them.

3.1 Tag Injection

We identify corresponding fragments using the hy-
pothesis that, if the out-of-context translation of a
sentence fragment is found in the target sentence,
then those text fragments are aligned. More for-
mally, assume source segment s and target seg-
ment t are each decomposed in three substrings
(s, t) = (a b c, x y z), where b and y are not empty.
We hypothesize that if an MT model translates b
into y in isolation, then b and y are correspond-
ing fragments and we can inject the following tag
structure:

a <t>b</t> c
x <t>y</t> z

In our implementation, the search over candidate
n-grams b proceeds in random order, subject to a
parameter controlling the maximum span. Our pre-
liminary experiments showed that natively tagged
text is not always well-formed. For this reason
we introduce a “pair damage fraction” parameter,
which sets the probability that one half of the in-
jected tag pair will be skipped. This produces the
patterns a <t>b c or a b</t> c, with analogous
results on the target side. We also incorporate a
fixed probability that the tag will be injected as
self-closing rather than a pair, i.e. as a <t/>b c or
a b<t/> c. Finally, we allow for the injection of
multiple tags into the same parallel segment via a
parameter that specifies the maximum number of
tag pairs to insert per segment.

This method can be adapted to any markup
schema choice. For the experiments described in
this paper, we choose XLIFF, a translation industry
standard that uses a reduced vocabulary of tag and
attribute names as an abstraction over an original
document’s markup language. We inject four tags
in accordance with the XLIFF 1.2 specification:2

<g>...</g> for a paired tag, <x/> for a self-
closing tag, <bx/> for a tag that opens without
closing, and <ex/> for a tag that closes without
opening. In all cases we include a numerical id at-
tribute, with the value starting at 1 for the leftmost
tag injected in each source segment and increment-
ing by one for each successive tag in left-to-right

2http://docs.oasis-open.org/xliff/v1.
2/cs02/xliff-core.html#Specs_Elem_Inline

http://docs.oasis-open.org/xliff/v1.2/cs02/xliff-core.html#Specs_Elem_Inline
http://docs.oasis-open.org/xliff/v1.2/cs02/xliff-core.html#Specs_Elem_Inline
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Language Tags Cor Inc Imp Unc
EN–DE 532 484 22 8 18

501 17 7 7
501 17 4 10

EN–FR 560 504 29 7 20
504 31 5 20
508 38 3 11

EN–HU 540 438 47 49 6
497 32 6 5
463 20 47 10

Table 1: Human evaluation of tag injection accuracy,
with the count of tags judged as Correct, Incorrect,
Impossible, or Unclear by each of three annotators.

source order.
Tag injection may fail in specific instances for

several reasons, such as inability to find a (b, y)
pair, or matched phrases overlapping with each
other and blocking intended injections. We do not
explicitly remove or attempt to repair any of these
cases, using them instead as additional sources of
variety and noise in the final tag-injected corpus.

3.2 Injection Evaluation

We test our hypothesis that the proposed proce-
dure leads to accurate data by performing a hu-
man evaluation on the accuracy of tag placement.
This experiment is carried out on a random selec-
tion of 200 sentence pairs from our training data
in each of three language pairs used in our sub-
sequent experiments: English–German (EN–DE),
English–French (EN–FR), and English–Hungarian
(EN–HU). (See Section 5.1 for details on the train-
ing data itself.)

We ask bilingual speakers in the relevant lan-
guages to judge whether each individual tag is cor-
rectly placed in the output, incorrectly placed (and
a proper location for it can be identified), impos-
sible to place (because no correct location exists
given the target content), or too unclear to evaluate
(e.g. because a placement decision depends on the
semantics of the tag). Each set of sentences is inde-
pendently evaluated by three different people who
are not aware of how the tagged data was created.

The results of the evaluation (Table 1) show that
the tag injection is accurate: using all the judge-
ments combined, tags are correctly placed in 93.1%
of cases in EN–DE, 90.2% in EN–FR, and 86.3%
in EN–HU. The rates of actually wrongly placed
tags are 3.5%, 5.8%, and 6.1%, respectively, with
the remaining tags being judged as impossible to
place or as unclear.

Pairwise inter-annotator agreement varies:

judges clearly disagree (correct vs. incorrect) no
more than 2.3% of the time in EN–DE and EN–
FR, though up to 5.9% in EN–HU. Because of the
large class imbalance, we also examine Fleiss’s
κ metric with all three annotators. The overall κ
scores are 0.69 for EN–DE and 0.72 for EN–FR,
but only 0.39 for EN–HU. In Hungarian, a larger
number of tags are judged as correctly placed by
one annotator but impossible to place by another,
underscoring the difficulty of markup transfer be-
tween morphologically and grammatically distant
languages.

4 Tag Representations

4.1 Baseline: Detag/Project
Our baseline setup does not model inline tags in
any way. Instead, all markup is removed from the
run-time input and reinserted into the MT output by
a post-processing step. Reinsertion is carried out
via tag projection: it uses the position of a tag in the
input, a subword-level alignment model between
source and target, and a set of projection heuristics
to determine the analogous position of the tag in
the MT output.

The necessary alignment model is built from the
MT system’s own training data. We use BPE (Sen-
nrich et al., 2016) for subword creation and FastAl-
ign (Dyer et al., 2013) for training the alignment
model. At run time, we force-align the detagged
BPE-level MT input to the BPE-level MT output,
then convert the source-side subword indexes back
to their token-level equivalents.3 This provides
a mapping between input tokens and output BPE
pieces. A tag or tag pair is transferred from input
to output according to this map and several hard-
coded rules. Let si and ti represent the ith source
token or target BPE piece, respectively, in a seg-
ment of length I and J , and let A(si) = {j} be the
set of target indexes j of alignments induced for si.
Then the most important projection rules are:

• A tag pair <x>...</x> spanning sa...sb en-
compasses alignments ` =

⋃b
i=aA(si) and is

projected to span tmin(`)...tmax(`).

• A self-closing tag <x/> appearing before sa
follows alignments ` = A(sa) and is pro-
jected to appear before tmin(`).

3An alternative is building and applying the alignment
model on tokens instead of BPE pieces. As a practical concern,
we prefer the BPE level for ease in handling non-whitespace
languages and for its substantially smaller model size.
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Original <bx id="1"/>As regards <g id="2">exports</g> of <g id="3">radioactive
waste</g> from the Community to third countries, six Member States issued
a total of 13 authorisations, representing 35 shipments.

Masked XLF BX,1 As regards XLF OPENG,1 exports XLF CLOSEG,1 of XLF OPENG,2
radioactive waste XLF CLOSEG,2 from the Community to third countries ,
six Member States issued a total of 13 authoris@@ ations , representing 35
shipments .

Raw <bx id="1"/> As regards <g id="2"> exports </g> of <g id="@@ 3"> radioactive
waste </g> from the Community to third countries , six Member States issued
a total of 13 authoris@@ ations , representing 35 shipments .

Figure 2: Example of inline markup tag representation when it is included in the MT input, either by masking or
in raw form.

• A tag pair with zero span or a self-closing
tag appearing before s0 is projected to appear
before t0. The same appearing after sI is pro-
jected to appear after tJ .

Additional heuristics specify behavior for cases
when the relevant alignment set is empty, when
the nesting of the input tags is malformed, when
an unpaired tag <x> or </x> appears without its
other half, etc.

4.2 Masked and Raw Representations
We compare the above approach to two alternatives
where some representation of inline markup is pro-
vided to the MT system. Tags are either masked to
generic placeholder tokens or else left raw in the
input. Figure 2 gives an example of each.

Aside from reducing vocabulary, masking pro-
tects the original content from subword splits and
mutilations during the MT process. In our imple-
mentation, if a mask is present in the source but
fails to appear in the MT output, we forcibly add
it back at the end of the output; spuriously gener-
ated masks are likewise removed. We use a differ-
ent placeholder name for each of the five XLIFF
tag names present in our data; this treats <g> and
</g> independently. We also include a sequence
number in the mask token, so that the original con-
tent can be matched with the correct placeholder
in the target side. Similar to the XLIFF id pa-
rameter, these sequence numbers start with 1 in
each sentence pair and increase left to right in the
source sentence. Unlike in XLIFF, our placeholder
sequence numbers are incremented individually for
each of the five placeholder names.

Our other alternative approach leaves the XLIFF
tags raw in the input, trusting the MT system to
learn their correct formatting as well as placement.

Both the masking and the raw approach rely on
tags appearing often enough in the training data —

not only for the MT system to learn their transfer
and placement, but also to be recognized as tokens
as part of the system’s subword vocabulary. Since
the masks are single tokens, adding self-translating
examples as additional parallel data and exempt-
ing the mask tokens from BPE application is suffi-
cient. For the raw approach, we include the same
number of self-translation examples to boost the
frequency count of XLIFF tag tokens above the
minimum BPE frequency cutoff. As Figure 2 il-
lustrates, however, this does not necessarily ensure
that all possible tag tokens appear often enough
in the training data to be recombined by BPE into
full tokens: lower-numbered tags still occur more
frequently than higher-numbered examples.

5 Experimental Setup

5.1 Training Data

Our training data is sourced from the Conference
on Machine Translation (WMT) series of shared
tasks. Since our focus is on inline tag handling
rather than corpus filtering or new state-of-the-art
translation quality, in some cases we have ignored
especially large or noisy data sets.

For EN–DE, we begin with the training data
released by the WMT 2020 news task, ignoring the
Common Crawl and Paracrawl corpora and heavily
filtering WikiMatrix. Our EN–FR training data
comes from the 2014 news translation task; we use
only Europarl, News Commentary, and UN Docs.
For EN–HU, we use the single available training
corpus from the 2009 translation task.4 Our final
training data comprises 5.7 million lines for EN–
DE, 14.5 million lines for EN–FR, and 1.5 million

4Data available from http://www.statmt.org/
wmt20/translation-task.html (EN–DE), http:
//www.statmt.org/wmt14/translation-task.
html (EN–FR), and http://www.statmt.org/
wmt09/translation-task.html (EN–HU).

http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt09/translation-task.html
http://www.statmt.org/wmt09/translation-task.html
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lines for EN–HU. See Appendix A for the exact
enumeration of component corpora, line counts,
and a description of our filtering process.

On top of this baseline data, we experiment with
various amounts of tag-injected data augmentation.
We sample 1%, 2%, 5%, 10%, or 15% of the base-
line training data and inject XLIFF tags into it as
described in Section 3. We attempt to inject up to
two pairs of tags per segment, with a max span of
six tokens, pair damage fraction of 0.10, and self-
closing fraction of 0.27. Candidate n-grams for tag
injection are identified by looking for equivalent
translations with the publicly available version of
Amazon Translate as of April 2020. Lines that com-
pletely fail tag injection are discarded, not counted
as part of the goal percentage, and replaced with
successful lines. Each successive augmentation
percentage is a strict superset of the ones before
it: e.g. all the data present in the 2% corpus is also
present in the 5%, 10%, and 15% settings.

5.2 Tagged Dev and Test Sets

Although we believe the tag injection technique
achieves sufficiently high accuracy to be used in
training data, we prefer our development and test
sets to represent — as much as possible — nat-
urally occurring tags in the source and human-
quality placements for them in the target. This
section describes the test sets created. They are
also publicly available at https://github.com/
amazon-research/mt-markup-tags.

EUR-Lex EUR-Lex5 is the European Union’s
online repository of legal documents, which are
provided synchronously in several structured for-
mats and in the union’s 24 official languages.
We select a cohesive block of documents in
Microsoft Word format, from CELEX numbers
52019DC0601 through 52019DC0680, to serve as
the base of our dev and test sets. Each document
is available as monolingual downloads in English,
German, French, or Hungarian; several process-
ing steps are needed to create a sentence-aligned
tagged parallel corpus.

For a set of four monolingual documents, we first
extract each one from Word to XLIFF format us-
ing the open-source Okapi Tikal document filter.6

Aside from performing automatic paragraph and

5https://eur-lex.europa.eu/homepage.
html

6https://okapiframework.org/wiki/index.
php/Tikal

sentence segmentation according to pre-defined
rules, the Okapi filter also converts the inline Mi-
crosoft markup to XLIFF 1.2 tags. We then check
the extracted XLIFF documents for parallelism at
several levels. Any document set that does not
contain the same number of paragraphs across all
four languages is entirely rejected. Any paragraph
that does not have the same number of sentences
across languages is skipped; any sentence that does
not have the same set of XLIFF tags across all
languages is likewise skipped. The surviving sen-
tences form a four-way parallel corpus with inline
markup tags. Each successfully extracted docu-
ment is then assigned to either the dev or the test
set. Sets assembled in this way are finally dedupli-
cated to unique sentence pairs. The EUR-Lex dev
set contains 1888 lines; the test set 1450.

We find, surprisingly, that a significant number
of otherwise parallel segments do not contain the
same inline tags across all languages. One side
effect of enforcing this restriction is that the tags
that are indeed parallel are biased towards trivial
cases, such as an opening tag at the beginning of the
sentence and a closing tag at the end. Only 11% of
the sentences extracted above contain line-medial
tags, and only 4% contain more than two tags per
line. We mitigate this problem via the construction
of two additional sets.

EUR-Lex mono We return to the unfiltered
monolingual English documents assigned to the
EUR-Lex test set. Without parallelism restrictions,
this collection forms a much more diverse test set:
after deduplication, 26% of lines contain medial
tags and 13% hold more than two tags. While we
are unable to use this for MT evaluation metrics
that require a reference, we employ this 2525-line
test set for other types of automatic and human
evaluation.

Glossary We use additional EUR-Lex doc-
uments (CELEX numbers 52019DC0520 to
52019DC0599) to construct dev and test sets with
synthetically introduced tags. In contrast to tag
injection, however, the markup is inserted using
human-curated translation glossaries. We extract
and filter each set of monolingual Word documents
as before, with the additional step of removing all
the inline tags to obtain plain text. Given four-way
parallel segments, we then search within each line
for a synchronous occurrence of entries from our
glossaries for EN–DE, EN–FR, and EN–HU. If

https://github.com/amazon-research/mt-markup-tags
https://github.com/amazon-research/mt-markup-tags
https://eur-lex.europa.eu/homepage.html
https://eur-lex.europa.eu/homepage.html
https://okapiframework.org/wiki/index.php/Tikal
https://okapiframework.org/wiki/index.php/Tikal
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found, the terms are surrounded by a pair of iden-
tical XLIFF <g>...</g> tags in each language.
The synchronous glossary restriction reduces heav-
ily the amount of successfully extracted and tagged
sentences. On the other hand, it provides in prac-
tice 100% examples with line-medial tags, as well
as an improved 22% of lines containing more than
two tags. The final sizes are 286 lines for dev and
289 for test.

The complete dev set for our MT systems is a
concatenation of three different sources. First is
the official WMT dev set that corresponds to the
training data: newstest2018 for EN–DE, newstest-
2013 for EN–FR, and newsdev2009 for EN–HU.
To this we add the EUR-Lex and glossary dev sets
described above. Tags are removed from these sets
when they are used in the baseline system, which
is not trained on any tagged data. Test sets are kept
separated by data source. In addition to tagged and
detagged versions of the EUR-Lex and glossary
test sets described above, we include the EUR-Lex
mono test set and the WMT official test sets: news-
test2019 for EN–DE, newstest2014 for EN–FR,
and newstest2009 for EN–HU. See Appendix A for
the complete itemization of dev and test sets.

5.3 MT Systems

All our experiments are carried out using the Sock-
eye neural MT toolkit (Hieber et al., 2017). We
use the Transformer architecture (Vaswani et al.,
2017), with a hidden layer size of 512, an encoder
of 20 layers, and a decoder of 2 layers: Hieber et al.
(2020) report improved WMT results for such a
configuration. For training, we set the batch size
to 8192 tokens and the checkpoint interval to 2000
batches. Optimization is carried out with Sockeye’s
implementation of the Adam algorithm (Kingma
and Ba, 2014). The learning rate, from an initial
value of 0.0002, is multiplied by a factor of 0.9
every time eight training checkpoints pass without
any improvement in dev-set perplexity. Training
is stopped when there is no improvement after 32
checkpoints. Following convergence, the parame-
ters from the eight best checkpoints are averaged.

We present a total of 33 experimental configura-
tions: the detag-and-project baseline, plus the cross
product of {1, 2, 5, 10, 15}% tag-injected data aug-
mentation with {masked, raw} tag representation,
for each of our three language pairs.

6 Results

6.1 Evaluation Metrics

Depending on the test set, we use a variety of eval-
uation metrics to judge performance.

We compute case-sensitive BLEU scores ac-
cording to the SacreBLEU implementation (Post,
2018).7 We distinguish untagged BLEU scores
computed on test sets with no source-side tags (or
for which the source-side tags have been removed)
from tagged BLEU scores, where the tags are tok-
enized and treated as content by the built-in Sacre-
BLEU tokenizer. Evaluation occurs only after any
masked placeholders have been converted back to
literal output. For each system, we also compute
statistical significance relative to the baseline using
stratified approximate randomization (Yeh, 2000).

Tagged test sets are also evaluated according
to specifically designed “flagrant failure” metrics,
whose goal is to detect obviously erroneous tag
placement in MT output. Automatic evaluation of
tag placement becomes difficult as the MT output
diverges from a tagged reference translation’s word
choice, sentence structure, etc. Still, certain errors
can be reliably detected regardless of language or
context. We define flagrant-failure metrics to count
occurrences of dropped, added, or mutilated tags,
along with tags that become improperly nested rel-
ative to the source. In XLIFF, we distinguish a
change of index — from e.g. <g id="2"> to <g
id="4"> — as its own type of failure, rather than
as independent drop and add mistakes.

Finally, we conduct a full human evaluation of
tag placement accuracy, similar to the one intro-
duced in Section 3.2. Due to the large amount of
data involved, in this case we collect judgements
from only a single annotator. Each tag is evaluated
independently for whether its placement in the tar-
get is correct, incorrect, impossible given the MT
output, missing, duplicated, or unclear.

6.2 Evaluation of Untagged Input

Our first concern is to ensure that augmenting the
training data with tag-injected content does not
harm translation of untagged inputs. We validate
this claim on untagged versions of our WMT, EUR-
Lex, and glossary test sets, comparing the BLEU
scores of the tag-augmented systems with the score
of the baseline, which was trained without tags.

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+-
version.1.4.3
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Lang System Set ∆BLEU p
EN–FR Raw 10% WMT –0.4 0.02
EN–HU Mask 15% WMT –0.3 0.03
EN–HU Mask 5% WMT –0.3 0.04
EN–HU Raw 10% WMT –0.3 0.05

Table 2: Experimental conditions with the most signif-
icant untagged BLEU differences relative to the base-
line. Tag representation has no consistent effect on
translation quality of untagged content.

As hoped, we observe no clear pattern of degra-
dation by tag representation, augmentation percent-
age, or language pair. Out of the 90 experimental
cases, only four reach statistical difference with the
corresponding baseline at p < 0.05. These scat-
tered instances are shown in Table 2. See Appendix
B for the full results.

6.3 Automatic Evaluation of Tag Placement

We have two proxy metrics at our disposal for
automatically evaluating tag placement accuracy:
tagged BLEU scores and flagrant-failure counts.

The previous section indicated that training-data
augmentation did not have a strong effect on trans-
lation quality of content. We now turn to tagged
BLEU scores to see if they provide any signal as
to the translation quality of markup. As shown in
Table 3, we observe a small positive improvement
for the masking approach: statistical difference in
17 of 30 cases, and +0.79 BLEU on average when
compared to the detag-and-project baseline. This
effect is strongest for French and for 15% aug-
mentation. At 15% masked augmentation, four
of six results achieve statistical significance, and
the average improvement is 1.00 BLEU. The best
results for raw XLIFF systems appear scattered:
the highest BLEU gains at 10% augmentation, the
most consistent at 2%, and statistical significance
achieved at least once everywhere except at 5%
augmentation and in EN–DE.

We cross-check these conclusions by examin-
ing the flagrant failure rates. This analysis shows
an extreme variability by test set. No configura-
tion reaches more than a 3.0% failure rate on the
EUR-Lex test set or 5.2% on the glossary test set.
However, the increased diversity of tag indexes and
tag patterns in the EUR-Lex mono test set provides
for a much higher rate: up to 24.7% in the worst
case. The full count of flagrant failures on the mono
test set is displayed in Table 4.

By hard-coded design, the detag-and-project ap-
proach is not capable of changing, dropping, mu-

<g id="2">
Raw 1% 183,475 74,055
Raw 15% 2,606,016 1,098,275

<g id="@@ 3">
Raw 1% 183,475 3,150 1,300
Raw 15% 2,606,016 2,550 1,300

Figure 3: Training-data token frequencies for the BPE
pieces involved in EN–FR translation of two tags. In-
dexes above 2 are seldom seen.

tilating, or adding tags — they are placed with-
out modification as a post-process after translation.
We find that this technique also does not commit
any flagrant errors of tag nesting on our test sets.
Similar hard-coded limits affect the masking ap-
proach; the one instance of a dropped tag that we
recorded is due to a tokenization error. Masking
does, however, commit a certain number of nest-
ing mistakes.8 The raw-tag approach is susceptible
to all kinds of flagrant failures. We note that, sur-
prisingly, the number of errors tends to increase
as more tagged examples are added to the training
data in German and French, while Hungarian (with
much smaller training data) does not show a clear
pattern in any direction.

Increased errors in German are primarily due to
more tags being generated with incorrect id pa-
rameters. Recall that our settings for tag injection
(Section 5.1) introduce no more than two tag pairs
into any sentence pair, resulting in a maximum id
value of 2. The only examples of indexes beyond 2
in the training data come from the addition of tag
self-translations (Section 4), which we include for
indexes up to 20. These higher indexes never oc-
cur in the context of any content, and their relative
prominence in the training data decreases as more
tag-injected data is added, so the MT system may
become less and less sure how to “translate” them
in practice. The failures for German confirm this
pattern. At 1% augmentation, all 30 tags with their
IDs incorrectly changed have values beyond 2, but
the MT system produces a different value beyond
2 in five cases. At 15% augmentation, the system
does not propose a value beyond 2 in any of the
206 failure cases.

Arguably, the increased training focus on low-

8This count would include tags natively dropped by the MT
system but re-added to the end of the output by rule. Masked
systems produce on average 3% more line-final tags than raw
systems, but essentially the same number as the baseline.
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Detag/ Masked Raw
Language Set Project 1% 2% 5% 10% 15% 1% 2% 5% 10% 15%
EN–DE EUR-Lex 70.0 0.1 0.2 0.4 0.1 0.3 –0.2 0.2 0.2 –0.1 0.2

Glossary 60.2 1.1 0.6 1.2 0.8 0.8 1.0 0.6 1.0 0.8 0.8
EN–FR EUR-Lex 65.9 1.0 0.1 0.9 0.1 1.2 0.5 0.5 0.3 0.9 –0.5

Glossary 61.7 0.9 0.9 0.9 1.0 1.7 1.1 0.6 0.7 0.7 0.2
EN–HU EUR-Lex 61.4 0.2 0.3 0.2 0.4 0.6 –0.5 0.0 –0.1 –0.2 –0.1

Glossary 53.5 1.2 1.6 1.4 1.8 1.5 –0.3 0.3 0.6 1.8 1.3

Table 3: BLEU scores on tagged test sets, shown as differences from the baseline (detag-and-project) system’s per-
formance on the same test set. Results in grey are statistically significant at p < 0.05. The masked representation
tends to produce the best results.

Masked Raw
Language Failure DP 1% 2% 5% 10% 15% 1% 2% 5% 10% 15%
EN–DE Changed ID 0 0 0 0 0 0 30 66 177 226 206

Dropped 0 0 0 0 0 0 92 105 128 162 131
Mutilated 0 0 0 0 0 0 17 3 85 91 129
Badly Nested 0 12 14 14 15 10 26 25 33 28 31
Added 0 0 0 0 0 0 22 11 14 10 6
Total 0 12 14 14 15 10 187 210 437 517 503

EN–FR Changed ID 0 0 0 0 0 0 5 112 325 349 95
Dropped 0 0 0 0 0 0 34 81 82 115 423
Mutilated 0 0 0 0 0 0 1 59 232 249 257
Badly Nested 0 9 16 9 20 16 10 16 16 28 162
Added 0 0 0 0 0 0 10 21 17 18 36
Total 0 9 16 9 20 16 60 289 672 759 973

EN–HU Changed ID 0 0 0 0 0 0 337 357 319 358 306
Dropped 0 0 1 1 0 1 265 243 257 221 272
Mutilated 0 0 0 0 0 0 24 19 57 4 45
Badly Nested 0 26 10 8 16 17 39 28 35 37 33
Added 0 0 0 0 0 0 37 44 43 28 18
Total 0 26 11 9 16 18 702 691 711 648 674

Table 4: Flagrant failure counts on the EUR-Lex mono tagged test set. (“DP” = detag and project.) Tag translation
failures increase rapidly as the training data is augmented with more raw tags.

index tags should be equally true of the mask-based
systems. A key difference is illustrated by the
rise in mutilated tags for French. Masked tags
are always expressed as single tokens; if the self-
translated examples are enough to induce a copy-
through behavior for them, the behavior can be
correctly applied in any content segment regardless
of context. However, raw tags are expressed as at
least two and sometimes more tokens (cf. Figure 2),
which turn out to have wildly different frequencies
in the training data as augmentation increases.

Figure 3 illustrates the BPE pieces involved in
translating the raw tags <g id="2"> and <g
id="3"> from English to French, along with the
observed frequencies of those tokens in the train-
ing data. For a low-index tag, the tokens are quite
common and, moreover, have relatively balanced
counts: the opening token is seen roughly 2.4 times
as often as the closing token no matter the data aug-
mentation percentage. The situation is markedly

different for a higher-index tag. In this case, in-
creasing amounts of tag injection heavily shift vo-
cabulary mass toward the opening token: it already
appears 58 times more frequently than the tail at 1%
augmentation, a ratio that grows to 1022 at 15%.

This extreme imbalance may be responsible for
the 15% model’s tag mutilation behavior. On our
mono test set, this model never produces the first to-
ken of a tag without the tail, nor does it mutilate any
tags for indexes up to 2. All the mutilation failures
are caused by producing the tail alone for higher
indexes, e.g. id="3"> — exactly corresponding
to the string of low-frequency tokens where a copy-
through behavior can be easily learned.

6.4 Human Evaluation of Tag Placement

We conduct a human evaluation of tag placement
accuracy in order to get a more complete picture
of errors than afforded by tagged BLEU scores and
flagrant-failure counts. Since it is impractical to
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(a) Lines with indexes 1 and 2 only
Lang System Good Bad Residual
EN–DE detag/project 97.3% 2.7% 0.0%

masked (15%) 98.6% 1.4% 0.0%
raw (1%) 98.4% 1.6% 0.0%

EN–FR detag/project 92.9% 4.0% 3.1%
masked (15%) 97.0% 0.5% 2.5%
raw (1%) 96.1% 1.4% 2.5%

EN–HU detag/project 93.8% 4.9% 1.3%
masked (15%) 96.9% 2.5% 0.9%
raw (10%) 96.1% 3.0% 0.9%

(b) Lines with indexes 3 and above
Lang System Good Bad Residual
EN–DE detag/project 87.3% 12.7% 0.0%

masked (15%) 84.2% 15.8% 0.0%
raw (1%) 83.6% 16.0% 0.4%

EN–FR detag/project 77.7% 9.8% 12.5%
masked (15%) 78.7% 9.0% 12.3%
raw (1%) 80.8% 6.2% 12.9%

EN–HU detag/project 77.9% 19.3% 2.7%
masked (15%) 70.9% 19.5% 9.6%
raw (10%) 33.0% 63.8% 3.2%

Table 5: Summarized human evaluation of tag place-
ment accuracy.

collect judgements on full test sets for all 33 ex-
periments, we restrict this study to subsets of both.
In terms of systems, we evaluate the detag-and-
project baseline, the 15% masked augmentation,
and either the 1% raw (EN–DE, EN–FR) or 10%
raw (EN–HU) augmentation. For data, we use the
entire glossary test set (289 lines), all the lines in
the EUR-Lex monolingual test set containing tag
indexes 3 and above (283 lines), and an equal num-
ber of randomly sampled lines from the same test
set containing indexes 1 and 2 only.

In summarizing the results, we collapse the eight
annotation types into three categories. “Good” tags
are those placed correctly in the output, including
if they were correctly deleted or duplicated. “Bad”
tags are incorrectly placed, incorrectly dropped or
duplicated, hallucinated, or mutilated in the output.
“Residual” tags are those judged as impossible or
unclear to place. Given the marked difference in
flagrant failures observed for tag indexes 1 and 2
versus 3 and beyond, we report human judgements
separately by whether the input included indexes
beyond 2 or not. These summarized results appear
in Table 5.

Placement for low-index tags present in the aug-
mented training data is learned quite well: in all lan-
guage pairs, the masked and raw-tag systems out-
perform the detag-and-project baseline. Humans
also find the annotation of inputs with few tags

to be a straightforward task, as very few tags are
marked as awkward to place.

Results are less clear-cut on high-index tags that
appear in training only as self-translated examples.
Word-alignment-based projection works best in
EN–DE and EN–HU. Translating raw tags does
well in EN–DE and EN–FR but is unusable in EN–
HU. The masking approach performs consistently
in second place. Especially in French, the human
task of judging placement accuracy has become no-
tably harder, an effect that could also significantly
affect the good/bad results of any method.

7 Conclusion

We have performed a comprehensive evaluation of
several tag representation methods and proposed a
data-augmentation technique that allows MT mod-
els to jointly learn content translation and inline tag
placement.

Results show that representing tags as masks, to-
gether with data augmentation, leads to equivalent
or improved performance over a detag-and-project
approach: placement accuracy is higher for tags
frequent in the training data, while it may vary for
tags never observed in context. In practice, it may
be preferable to rely on the MT model’s ability to
learn mask placement — even with some variabil-
ity in accuracy — than to implement, debug, and
maintain the baseline’s more complicated projec-
tion rules and the required alignment model.

Raw tags, on the other hand, fail our general-
ization tests. Though placement accuracy is again
baseline-beating for commonly observed tags, raw
models seem unable to copy rare tags into the out-
put without a significant number of mutilations,
deletions, and duplications: an unacceptable result
for the goal of obtaining well-structured output.

Several changes to our setup may improve the
transfer of raw tags. Injecting XLIFF tags with
a wider variety of id values is needed to expose
the model to them in context instead of merely
in self-translation. Explicitly identifying tag to-
kens via input factors (Dinu et al., 2019), or con-
straining/promoting the output of complete tags
(Hashimoto et al., 2019), would also be helpful for
reducing the rate of malformed output.

Acknowledgements

We thank Yaser Al-Onaizan, Marcello Federico,
Stanislas Lauly, and Prashant Mathur for early dis-
cussions regarding the tag-injection technique.



1170

References
Roee Aharoni and Yoav Goldberg. 2017. Towards

string-to-tree neural machine translation. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 132–140, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Alexandre Bérard, Ioan Calapodescu, and Claude
Roux. 2019. Naver Labs Europe’s systems for the
WMT19 machine translation robustness task. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day
1), pages 526–532, Florence, Italy. Association for
Computational Linguistics.

Alexandra Birch, Barry Haddow, Ivan Tito, Anto-
nio Valerio Miceli Barone, Rachel Bawden, Fe-
lipe Sánchez-Martı́nez, Mikel L. Forcada, Miquel
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this final step, we remove sentence pairs of more
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with more than 100 characters, or where the length
ratio between source and target is too unbalanced.

Language Corpus Lines
EN–DE Europarl 1,828,521

News Commentary 371,225
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News Commentary 183,251
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Language Set Source Lines
EN–DE Dev WMT (nt2018) 2,998

EUR-Lex 1,888
Glossary 286

Test WMT (nt2019) 1,997
EUR-Lex 1,450
EUR-Lex mono 2,525
Glossary 289

EN–FR Dev WMT (nt2013) 3,000
EUR-Lex 1,888
Glossary 286

Test WMT (nt2014) 3,003
EUR-Lex 1,450
EUR-Lex mono 2,525
Glossary 289

EN–HU Dev WMT (nd2009) 2,051
EUR-Lex 1,888
Glossary 286

Test WMT (nt2009) 3,027
EUR-Lex 1,450
EUR-Lex mono 2,525
Glossary 289

Table 7: Line counts of the dev and test sets.

Table 7 shows the sizes of our final dev and test
sets, including WMT “newsdev” (nd) and “news-
test” (nt) releases.

B Additional Results

Table 8 (on the next page) shows complete results
on translating untagged test sets, to ensure that
adding masked or raw tags to our training data
does not adversely affect the translation of plain
content. BLEU scores are computed according to
SacreBLEU (Post, 2018), while statistical signif-
icance uses 1000 trials of stratified approximate
randomization (Yeh, 2000). The small glossary test
set shows the highest BLEU variance, but only once
to statistical significance. Meanwhile, the few sig-
nificant differences are scattered across language
pairs, test sets, tag representations, and augmenta-
tion percentages.
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Masked Raw
Language Set Baseline 1% 2% 5% 10% 15% 1% 2% 5% 10% 15%
EN–DE WMT 38.6 0.1 0.3 0.3 –0.1 0.0 0.1 0.2 0.1 –0.2 –0.3

EUR-Lex 44.4 –0.5 –0.1 0.6 –0.3 –0.4 –0.9 0.5 0.3 0.1 0.1
Glossary 39.9 0.6 –0.2 0.0 1.0 1.0 0.5 –0.5 0.2 0.0 0.5

EN–FR WMT 37.5 –0.2 –0.1 –0.1 –0.1 0.2 0.0 –0.2 –0.1 –0.4 0.0
EUR-Lex 43.0 –0.1 –0.3 0.4 –0.1 0.5 0.5 –0.1 0.0 0.5 –0.3
Glossary 45.7 0.3 –0.2 0.1 0.3 0.9 0.7 0.7 0.3 0.7 –0.2

EN–HU WMT 12.9 0.0 –0.1 –0.3 0.1 –0.3 0.0 0.0 –0.3 –0.3 0.0
EUR-Lex 27.6 –0.4 –0.3 –0.5 –0.2 0.3 –0.2 0.1 –0.6 –0.1 0.0
Glossary 27.4 –0.2 –0.3 –1.0 0.4 –0.7 –0.8 –0.4 –0.6 1.1 –0.1

Table 8: BLEU scores on untagged test sets, shown as differences from the baseline system’s performance on
the same test set. Cells in light grey are statistically significant at p < 0.10; dark grey indicates p < 0.05. Tag
representation has no consistent effect on translation quality of untagged content.


