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Abstract

We describe the National Research Council
of Canada (NRC) neural machine translation
systems for the German–Upper Sorbian super-
vised track of the 2020 shared task on Unsu-
pervised MT and Very Low Resource Super-
vised MT. Our models are ensembles of Trans-
former models, built using combinations of
BPE-dropout, lexical modifications, and back-
translation.

1 Introduction

We describe the National Research Council of
Canada (NRC) neural machine translation systems
for the shared task on Unsupervised MT and Very
Low Resource Supervised MT. We participated
in the supervised track of the low resource task,
building Upper Sorbian–German neural machine
translation (NMT) systems in both translation direc-
tions. Upper Sorbian is a minority language spoken
in Germany. We built baseline systems (standard
Transformer (Vaswani et al., 2017) with a byte-pair
encoding vocabulary (BPE; Sennrich et al., 2016b))
trained on all available parallel data (60,000 lines),
which resulted in unusually high BLEU scores for
a language pair with such limited data.

In order to improve upon this baseline, we used
transfer learning with modifications to the training
lexicon. We did this in two ways: by experiment-
ing with the application of BPE-dropout (Provilkov
et al., 2020) to the transfer learning setting (Sec-
tion 2.3), and by modifying Czech data used for
training parent systems with word and character
replacements in order to make it more “Upper
Sorbian-like” (Section 2.4).

Our final systems were ensembles of systems
built using transfer learning and these two ap-
proaches to lexicon modification, along with it-
erative backtranslation.

2 Approaches

2.1 General System Notes

In both translation directions, our final systems con-
sist of ensembles of multiple systems, built using
transfer learning (Section 2.2), BPE-Dropout (Sec-
tion 2.3), alternative preprocessing of Czech data
(Section 2.4), and backtranslation (Section 2.5).
We describe these approaches and related work in
the following sections, providing implementation
details for reproducibility in Sections 3, 4 and 5.

2.2 Transfer Learning

Zoph et al. (2016) proposed a transfer learning
approach for neural machine translation, using lan-
guage pairs with larger amounts of data to pre-train
a parent system, followed by finetuning a child sys-
tem on the language pair of interest. Nguyen and
Chiang (2017) expand on that, showing improved
performance using BPE and shared vocabularies
between the parent and child. We follow this ap-
proach: we build disjoint source and target BPE
models and vocabularies, with one vocabulary for
German (DE) and one for the combination of Czech
(CS) and Upper Sorbian (HSB); see Section 4.

We chose to use Czech–German data as the par-
ent language pair due to the task suggestions, rela-
tive abundance of data, and the close relationship
between Czech and Upper Sorbian (cf. Lin et al.,
2019; Kocmi and Bojar, 2018). While Czech and
Upper Sorbian cognates are often not identical at
the character level (Table 1), there is a high level of
character-level overlap; trying to take advantage of
that overlap without assuming complete character-
level identity is a motivation for the explorations
in subsequent sections (Section 2.3, Section 2.4).
Another relatively high-resource language related
to Upper Sorbian is Polish, but while the Czech
and Upper Sorbian orthographies are fairly simi-
lar, mostly using the same characters for the same
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sounds (with a few notable exceptions), Polish or-
thography is more distinct. This, combined with
the lack of a direct Polish–German parallel dataset
in the constrained condition, led us to choose Czech
as our transfer language for these experiments.

Czech Upper Sorbian
analyzovat analyzować

donesl donjesł
externı́ch eksternych

hospodářská hospodarsce
kreativnı́ kreatiwne

okres wokrjes
potom potym
projekt projekt

sémantická semantisku
velkým wulkim

Table 1: A sample of probable Czech–Upper Sorbian
cognates and shared loanwords, mined from the Czech–
German and German–Upper Sorbian parallel corpora
and filtered by Levenshtein distance.

Other work on transfer learning for low-resource
machine translation includes multilingual seed
models (Neubig and Hu, 2018), dynamically
adding to the vocabulary when adding languages
(Lakew et al., 2018), and using a hierarchical archi-
tecture to use multiple language pairs (Luo et al.,
2019).

2.3 BPE-Dropout
We apply the recently-proposed approach of per-
forming BPE-dropout (Provilkov et al., 2020),
which takes an existing BPE model and randomly
drops some merges at each merge step when ap-
plying the model to text. The goal of this, beside
leading to more robust subword representations
in general, is to produce subword representations
that are more likely to overlap between the pre-
training (Czech–German) and finetuning (Upper
Sorbian–German) stages. We hypothesized that, in
the same way that BPE-Dropout leads to robust-
ness against accidental spelling errors and variant
spellings (Provilkov et al., 2020), it could likewise
lead to robustness to the kind of spelling variations
we see between two related languages.

For example, consider the putative Czech–Upper
Sorbian cognates and shared loanwords presented
in Table 1. Sometimes a fixed BPE segmenta-
tion happens to separate shared characters into
shared subwords (e.g. CS analy@@ z@@ ovat
vs. HSB analy@@ z@@ ować), such that the

presence of the former during pre-training can ini-
tialize at least some of the subwords that the model
will later see in Upper Sorbian. However, other
times the character-level differences lead to seg-
mentations where no subwords are shared (e.g.
CS hospodář@@ ská vs. HSB hospodar@@
sce or potom vs. HSB po@@ tym). Consider-
ing a wider variety of segmentations would, we
hypothesized, mean that Upper Sorbian subwords
would have more chance of being initialized during
Czech pre-training (see Appendix C).

Rather than modifying the NMT system itself to
reapply BPE-dropout during training, we treated
BPE-dropout as a preprocessing step. Additionally,
we experimented with BPE-dropout in the context
of transfer learning, examining the effects of us-
ing source-side, both-sides, or no dropout in both
parent and child systems.

2.4 Pseudo-Sorbian
For the Upper Sorbian–German direction, we also
experimented with two techniques for modifying
the Czech–German parallel data so that the Czech
side is more like Upper Sorbian. In particular, we
concentrated on modification methods that require
neither large amounts of data, nor in-depth knowl-
edge of the historical relationships between the
languages, since both of these are often lacking for
the lower-resourced language.

We considered two variations of this idea:

• word-level modification, in which some fre-
quent Czech words (e.g. prepositions) are
replaced by likely Upper Sorbian equivalents,
and

• character-level modification, where we at-
tempt to convert Czech words at the character
level to forms that may more closely resemble
Upper Sorbian words.

Note that in neither case do we know what
particular conversions are correct; we ourselves
do not know enough about historical Western
Slavic to predict the actual Upper Sorbian cog-
nates of Czech words. Rather, we took inspiration
from stochastic segmentation methods like BPE-
Dropout (Provilkov et al., 2020) and SentencePiece
(Kudo and Richardson, 2018): when we have an
idea of the possible solutions to the segmentation
problem but do not know which one is the correct
one, we can sample randomly from the possible
segmentations as a sort of regularization, with the
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goal of discouraging the model from relying too
heavily on a single segmentation scheme and giv-
ing it some exposure to a variety of possible seg-
mentations. Whereas BPE-dropout and Sentence-
Piece focus on possible segmentations of the word,
our pseudo-Sorbian experiments focus on possi-
ble word- and character-level replacements. The
goal was to discourage the parent Czech–German
model from relying too heavily on regularities in
Czech (e.g. the presence of particular frequent
words, the presence of particular Czech character
n-grams) and perhaps also gain some prior expo-
sure to Upper Sorbian words and characters that
will occur in the genuine Upper Sorbian data; we
can also think of this as a form of low-resource
data augmentation (Fadaee et al., 2017; Wang et al.,
2018). See Appendix C for an analysis of increased
subword overlap between pseudo-Sorbian and test
data, as compared to BPE-dropout and the baseline
approach.

2.4.1 Word-level pseudo-Sorbian
To generate the word-level pseudo-Sorbian, we ran
fast align (Dyer et al., 2013) on the Czech–
German and German–Upper Sorbian parallel cor-
pora, and took the product of the resulting word cor-
respondences, to generate candidate Czech-Upper
Sorbian word correspondences. As this process pro-
duces many unlikely correspondences, particularly
for words that occur only a few times in the cor-
pora, we filtered this list so that any Czech–German
word correspondence that occurred fewer than 500
times in the aligned corpus was ineligible, and like-
wise any German–Upper Sorbian correspondence
that occurred fewer than 50 times. We then used
these correspondences to randomly replace 10% of
eligible Czech words in the Czech-German corpus
with one of their putative equivalents in Upper Sor-
bian. The result is a language that is mostly still
Czech, but in which some high-frequency words
(especially prepositions) are Upper Sorbian.

2.4.2 Character-level pseudo-Sorbian
To generate the character-level pseudo-Sorbian, we
began with the same list of putative Czech-Upper
Sorbian word correspondences, calculated the Lev-
enshtein distances (normalized by length) between
them, and filtered out pairs that exceeded 0.5 dis-
tance. This gave a list of words that were likely
cognates, from which we hand-selected a develop-
ment set of about 200; a sample of these is seen in
Table 1. Using this set to identify character-level

correspondences (e.g. CS v to HSB w, CS d to
HSB dź before front vowels, etc.), we wrote a pro-
gram to randomly replace the appropriate Czech
character sequences with possible correspondences
in Upper Sorbian. Again, as Czech-Upper Sorbian
correspondences are not entirely predictable (CS
e might happen to correspond, in a particular cog-
nate, to HSB e or ej or i or a or o, etc.), we
cannot expect that any given result is correct Upper
Sorbian. Rather, we can think of this process as
attempting to train a system that can respond to in-
puts from a variety of possible (but not necessarily
actual) Western Slavic languages, rather than just a
system that can respond to precisely-spelled Czech
and only Czech.

2.4.3 Combined pseudo-Sorbian

In initial testing, we determined that a combina-
tion of word-level and character-level modification
performed best; we ran each process on the Czech–
German corpus separately, then concatenated the
resulting corpora and trained a parent model on it.
Due to time constraints we did not run the full set
of ablation experiments. Subsequent finetuning on
genuine Upper Sorbian–German data proceeded as
normal, without any modification.

For all pseudo-Sorbian systems, we used the
BPE vocabulary trained on the original Czech and
Upper Sorbian data, rather than the modified data,
so that systems trained on pseudo-Sorbian data
could still be ensembled with systems trained only
on the original data (Section 2.6).

2.5 Backtranslation

We used backtranslation (Sennrich et al., 2016a) to
incorporate monolingual German and Upper Sor-
bian data into training. We backtranslated all Up-
per Sorbian monolingual data (after filtering as
described in Section 3). We backtranslated the Ger-
man monolingual news-commentary data and 1.2M
randomly sampled lines of 2019 German news.

We experiment with iterative backtranslation:
backtranslating data using systems without back-
translation, and then using the new systems built
using the backtranslated text to perform a second
iteration of backtranslation (Hoang et al., 2018;
Niu et al., 2018; Zhang et al., 2018). Like Caswell
et al. (2019), we use source-side tags at the start of
backtranslated sentences to indicate to the models
which sentences are the product of backtranslation.
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2.6 Ensembling

Our final systems are ensembles of several sys-
tems. Because all systems used the same vocabu-
lary sets and same model sizes, we could decode
using Sockeye’s (Hieber et al., 2018) default en-
sembling mechanism.

3 Data

We used all provided parallel German–Upper Sor-
bian data and all monolingual Upper Sorbian data
(after filtering), along with German–Czech parallel
data from Open Subtitles (Lison and Tiedemann,
2016),1 DGT (Tiedemann, 2012; Steinberger et al.,
2012), JW300 (Agić and Vulić, 2019), Europarl
v10 (Koehn, 2005), News-Commentary v15, and
WMT-News2 for building the BPE vocabularies.
The monolingual Upper Sorbian Web and Witaj
datasets3 were filtered to remove lines containing
characters that had not been observed in the Upper
Sorbian parallel data or in the Czech data; this re-
moved sentences that contained text in other scripts
and other languages. The Czech–German data was
used for training parent models, while monolingual
German and Upper Sorbian were used (along with
parallel German–Upper Sorbian data) for training
child models. A table of data sizes and how they
were used is shown in Appendix A.

4 Preprocessing

We build BPE vocabularies of size 2k, 5k, 10k, 15k,
and 20k using subword-nmt4 (Sennrich et al.,
2016b). After building the vocabulary, we add a
set of 25 generic tags, plus a special backtransla-
tion tag “<BT>”, which we use in future experi-
ments for indicating when training data has been
backtranslated (Caswell et al., 2019). We also add
all Moses and Sockeye special tags (ampersand,
<unk> etc.) to a glossary file used for applying
BPE, which prevents them from being segmented.

Because there is so much more Czech data than
Upper Sorbian data, we duplicate the in-domain
parallel hsb-de data and the monolingual HSB data
25 times when training BPE in order to make sure
that HSB data is adequately represented (and not

1http://www.opensubtitles.com
2http://www.statmt.org/wmt20/

translation-task.html
3http://www.statmt.org/wmt20/unsup_

and_very_low_res/
4https://github.com/rsennrich/

subword-nmt

Child Dropout
None Source Both

Parent Dropout
None 54.6 54.5 54.3
Source 55.0 55.5 54.2
Both 54.9 55.5 55.0

Table 2: Comparison of BPE-dropout use in both par-
ent and child systems for 10k vocabulary DE-HSB
translation (measured on devel test set), without back-
translation. All parent systems were trained on the
German-Czech data, while child systems trained on the
parallel DE-HSB data. None involves no BPE-dropout,
source applies BPE-dropout to the source side only, and
both applies it to both the source and the target.

overwhelmed by Czech data) in training the en-
coding. After training BPE, we extract (and fix
for the remainder of our experiments) a single DE
vocabulary and a single HSB-CS vocabulary, cov-
ering all the relevant data used to train BPE for that
language pair.

We ran BPE-dropout with a rate of 0.1 over the
training data 5 times using the same BPE merge
operations, vocabularies and glossaries as before,
concatenating these variants to form an extended
training set.

5 Software and Systems

We used Sockeye’s (Hieber et al., 2018) imple-
mentation of Transformer (Vaswani et al., 2017)
with 6 layers, 8 attention heads, network size of
512 units, and feedforward size of 2048 units. We
have changed the default gradient clipping type to
absolute, used the whole validation set during vali-
dation, an initial learning rate of 0.0001, batches of
∼8192 tokens/words, maximum sentence length of
200 tokens, optimizing for BLEU. Parent systems
used checkpoint intervals of 2500 and 4000. Child
system checkpoint intervals varied from 65 to 4000
to balance frequent checkpointing with efficiency.
Decoding was performed with beam size 5.

6 Results and Discussion

6.1 BPE-Dropout in Transfer Learning

Provilkov et al. (2020) examine BPE-dropout when
building translation systems for individual lan-
guage pairs. Here we apply it in a transfer learn-
ing setting, raising the question of whether BPE-
dropout should be applied to the parent system, the
child system, or both, as well as the question of
using source-side BPE-dropout or both source- and
target-side BPE-dropout.

http://www.opensubtitles.com
http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt20/unsup_and_very_low_res/
http://www.statmt.org/wmt20/unsup_and_very_low_res/
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
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Our results for this are somewhat mixed, owing
in part to the relatively small BLEU gains produced
by BPE-dropout (as compared to backtranslation).
In Table 2 we show BLEU scores for German–
Upper Sorbian translation with a 10k vocabulary
and no backtranslation. The most promising sys-
tems in that experiment are those with source-side
BPE-dropout in the child system, with either both
side or source-side dropout in the parent. In the
20k vocabulary DE-HSB setting with second itera-
tion backtranslation, we saw a similar effect, with
source BPE-dropout for both parent and child hav-
ing a BLEU score of 58.4 on devel test, +1.1 above
the second-best system (no BPE-dropout in parent
or child). Results in the other translation direc-
tion were more ambiguous, leaving room for future
analysis of BPE-dropout in the transfer learning
setting.

As a result of these experiments, many of the sys-
tems we used in our final ensembles were trained
with source-side BPE-dropout, though when it ap-
peared promising we also ensembled with systems
without BPE-dropout.

6.2 Iterative Backtranslation

We performed two rounds of backtranslation of Up-
per Sorbian monolingual data and German mono-
lingual data described in Section 2.5. The first
round (BT1) used our strongest system without
backtranslation, while the second round (BT2) used
our strongest system including backtranslated data
from the first round. We ran experiments sweeping
BPE vocabulary sizes and backtranslated corpora;
for German news we experimented 300k and 600k
subsets as well as the full 1.2M line random subs-
election. In all experiments the 60k sentence-pair
parallel HSB-DE corpus was replicated a number
of times to approximately match the included back-
translated data in number of lines.

The second round of backtranslation of the Up-
per Sorbian monolingual data improved the BLEU
score by 0.7 BLEU points for the best configura-
tion, with the vocabulary size of the best configu-
ration increasing to 20k from 15k. However, the
second round of backtranslation of the German
monolingual data did not improve the subsequent
HSB-DE systems, instead showing a drop of 0.1
BLEU points; our final system (Section 6.5) uses
a mix of systems trained using BT1 and BT2. For
full details of the systems used for backtranslation,
see Appendix B.

System DE-HSB HSB-DE
Baseline 44.2 44.1
Base. + BPE-Dr. 44.4 44.7
Base. + BT2 54.9 54.7
Base. + BT2 + BPE-Dr. 56.1 55.0
Child 54.7 53.4
Child + BPE-Dr. 55.5 54.1
Child + BT2 57.7 56.5
Child + BT2 + BPE-Dr. 58.4 56.8
Final Submitted Systems 59.4 58.9

Table 3: Ablation experiments showing performance of
baseline systems, BPE-dropout, backtranslation, trans-
fer learning, and their combination. All systems shown
here do not use pseudo-Sorbian. DE-HSB systems here
have a 20k vocabulary, while HSB-DE have a 10k vo-
cabulary. BLEU score is reported on devel test set.
The final line shows the submitted primary systems and
their performance on devel test.

Generating multiple translation for backtransla-
tion (i.e. multiple source sentences for each authen-
tic target sentence) is known to improve transla-
tion quality (Imamura et al., 2018; Imamura and
Sumita, 2018); all of the systems we have described
here used a single backtranslation per target sen-
tence. After the submission of our final systems,
we experimented with backtranslation using n-best
translations of the monolingual text. In both di-
rections, we found that building student systems
using the 10-best backtranslation list generated
with sampling from the softmax’s top-10 vocab-
ulary (rather than taking the max), but without
BPE-dropout, produced improvements of around
0.2-0.8 BLEU.5 The resulting systems had com-
parable BLEU scores to the systems trained with
single variant backtranslation and BPE-dropout;
we leave as future work an examination of the re-
sult of combining multiple backtranslations with
BPE-dropout.

6.3 Ablation

Here we first discuss the impact of our non-pseudo-
Sorbian approaches: BPE-dropout, backtransla-
tion, and transfer learning, showing how each con-
tributed to the final systems used for ensembling.

Table 3 shows ablation experiments for DE-HSB
(20k vocabulary) and HSB-DE (10k vocabulary).6

In the first four lines, we consider training a sys-
tem without transfer learning, starting from a base-

5Authentic bitext was upsampled to keep the ratio identical
to our prior experiments.

6Smaller vocabulary sizes perform better on the baseline
experiments, but the trends remain the same, so we show
results for our final vocabulary sizes.
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line built using only the parallel Upper Sorbian–
German data. Despite the small data size, and per-
haps due to the close match between training and
test data, this baseline has high BLEU scores on the
devel test set: 44.2 (DE-HSB) and 44.1 (HSB-DE).
Adding BPE-dropout to this setting (with 5 runs
of the algorithm) results in a modest improvement
(+0.2 BLEU for DE-HSB and +0.6 BLEU for DE-
HSB). If we instead add backtranslated data (trans-
lated in our second iteration of backtranslation), we
see a much larger jump of +10.7 and +10.6 BLEU
respectively over the baselines; note that this also
represents a huge increase in available data for
training. Combining the two approaches adds an
additional +1.2 and 0.3 BLEU, respectively.

In fact, these systems outperform both a parent-
child baseline and a parent-child system with BPE-
dropout, highlighting the importance of incorpo-
rating additional target-side monolingual data in
the low-resource setting. Once we combine back-
translation we see a moderate improvement over
the child systems with BPE-dropout (+2.6 and
+2.4 BLEU, respectively). Again, combining BPE-
dropout and backtranslation still produces more
improvement, as does eventual ensembling.

Due to time constraints, we did not run a full
ablation study of word, character and combined
pseudo-Sorbian. Our initial results (run with an
earlier version of character pseudo-Sorbian, and
a differently extracted BPE vocabulary) found for
the HSB-DE direction that word pseudo-Sorbian
slightly outperformed (on the order of 0.5 BLEU)
character pseudo-Sorbian for 10k vocabulary, but
was comparable for 2k and 5k vocabulary sizes;
these results are given in Appendix C. The combi-
nation of the two had slightly higher scores across
those three vocabulary sizes (ranging from +0.1
to +0.6 BLEU) than either of the two individual
approaches, so we used the combination for the
remaining experiments.

6.4 Final German–Upper Sorbian System

System BLEU
1. Child + BT2 57.7
2. Child + Src. BPE-Dr. + BT2 58.4
3. Pseudo-Sorbian + Child + BT2 57.8
4. Pseudo. + Child + Src. BPE-Dr. + BT2 58.2
Ensemble 59.4

Table 4: Primary German–Upper Sorbian ensemble
submission BLEU score on devel test, with scores of
each of its individual component systems. The system
numbers correspond to the list in Section 6.4.

Our final German–Upper Sorbian system is an
ensemble of four systems, with vocabulary size
of 20k merges. All child models ensembled were
trained on second iteration backtranslated mono-
lingual HSB data (all available, filtered) and 12
replications of the de–hsb parallel text, with back-
translation tags.

1. Child without BPE-dropout, de–cs parent
without BPE-dropout.

2. Child with source side BPE-dropout, de–cs
parent with source side BPE-dropout

3. Child without BPE-dropout, pseudo-hsb–de
parent without BPE-dropout.

4. Child with source side BPE-dropout, pseudo-
hsb–de parent with source side BPE-dropout

The system scores on devel test are shown in
Table 4. The best scoring individual systems
were transfer learning systems with source-side
BPE-dropout, with the one using pseudo-Sorbian
falling slightly behind the non-pseudo-Sorbian by
0.2 BLEU points. Without BPE-dropout, the best
pseudo-Sorbian system shown here outperforms
its corresponding non-pseudo-Sorbian system by
approximately 0.1 BLEU. On the test set, this sys-
tem had scores of (as computed by the Matrix sub-
mission) 57.3 BLEU-cased, TER (Snover et al.,
2006) of 0.3, BEER 2.0 (Stanojević and Sima’an,
2014) of 0.754, and CharacTER (Wang et al., 2016)
of 0.255. This was 3.4 BLEU-cased behind the
best-scoring system (SJTU-NICT), but within 0.6
BLEU of the second- and third-highest scoring
systems (University of Helsinki); it was also tied
with the third-highest scoring system (University
of Helsinki) in terms of CharactTER.

6.5 Final Upper Sorbian–German System

System BLEU
1. Child + BPE-Dr. + BT1 57.2
2. Child + BT2 57.1
3. Pseudo. + Child + BT1 57.2
4. Pseudo. + Child + BPE-dr. + BT1 57.1
5. Pseudo. + Child + BT2 57.1
Ensemble 58.9

Table 5: Primary Upper Sorbian–German ensemble
submission BLEU score on devel test, with scores of
each of its individual component systems. The num-
bers correspond to the list in Section 6.5.

The final Upper Sorbian–German system is an
ensemble of systems with a BPE vocabulary of 10k
merges.
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1. Child with source side BPE-dropout, 20 times
hsb–de data, 1.2M lines of first iteration back-
translated news data; cs–de parent with source
side BPE-dropout

2. Child without BPE-dropout, 25 times hsb–de
data, news commentary (NC) and 1.2M lines
of news second iteration backtranslated;7 cs-
de parent without BPE-dropout

3. Child without BPE-dropout, 25 times hsb–de
data, NC and 1.2M lines of news first iteration
backtranslated; pseudo-hsb–de parent without
BPE-dropout

4. Child with source side BPE-dropout, 25 times
hsb–de data, NC and 1.2M lines of news first
iteration backtranslated; pseudo-hsb–de par-
ent with source side BPE-dropout

5. Child without BPE-dropout, 20 times hsb–de
data and 1.2M lines of second iteration back-
translated news data; pseudo-hsb–de parent
without BPE-dropout

Table 5 shows that the five systems combined
were very comparable in BLEU scores (57.1 and
57.2), but their ensembled BLEU score showed an
improvement of ≥1.7 BLEU over each individual
score. The final ensemble had a BLEU-cased score
of 58.9 on the test data (calculated by the Matrix
submission systems), a TER of 0.29, a BEER 2.0
of 0.579, and a CharacTER score of 0.268. This
represented a -0.7 BLEU-cased difference off of
the best system (University of Helsinki), but only a
-0.001 CharactTER difference.

6.6 Discussion
We experimented with a variety of ensembles, and
found that our strongest ensembles were those
that included both the pseudo-Sorbian systems and
those built without pseudo-Sorbian. In initial exper-
iments with Upper Sorbian-German systems, with
vocabulary size 5k, we found that adding pseudo-
Sorbian systems to ensembles produced improve-
ments even if the pseudo-Sorbian system did not
have quite as high of a BLEU score as the sys-
tems built without it. For example, combining the
top three systems without pseudo-Sorbian (BLEU
scores of 57.3, 57.2, and 57.0, respectively) or the
top two of those systems resulted in ensemble sys-
tem BLEU scores of 57.9. Replacing the third-
best system with a pseudo-Sorbian system with a

7This version of the second iteration backtranslation differs
slightly from that used in the remainder of the experiments,
in that UNKs (tokens representing unknown words) were not
filtered out.

BLEU score of 56.6 resulted in an improved ensem-
ble BLEU score of 58.5. Diverse ensembles (e.g.,
different architectures or runs) are known to out-
perform less diverse ensembles (e.g., ensembles of
checkpoints) for neural machine translation (Fara-
jian et al., 2016; Denkowski and Neubig, 2017;
Liu et al., 2018). While diversity of models for
ensembling is usually discussed in terms of model
architecture or seeding of multiple runs, we could
argue that the use of lexically modified training
data could constitute another form of model diver-
sity, contributing to a stronger ensembled model.

For baseline systems trained only on the paral-
lel data, smaller vocabulary sizes performed best,
as expected (given only 60,000 lines of text, large
vocabulary sizes may contain many tokens that
are only observed a small number of times). As
we added transfer learning, backtranslation, and
eventually ensembling, the best systems were those
with slightly larger vocabulary sizes. In the Up-
per Sorbian–German translation direction, some
of our best performing systems that did not use
pseudo-Sorbian were found with a 5k vocabulary
size, while 10k was generally better for the pseudo-
Sorbian systems. We tried ensembles with both
5k and 10k that included pseudo-Sorbian and non-
pseudo-Sorbian systems, and found the best results
with 10k.

7 Conclusions

In this work, we demonstrated that transfer learn-
ing, BPE-dropout, and backtranslation all pro-
vide improvements for this low-resource setting.
Our experiments on lexical modifications, build-
ing pseudo-Sorbian text for training parent mod-
els, performed approximately on-par with standard
transfer learning approaches, and could be trivially
combined with BPE-dropout. While the lexical
modification approach did not outperform the stan-
dard transfer learning setup, we found that it still
improved ensembles, possibly due to the increase
in system diversity.
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A Data

Table 6 shows the data sizes, including the size
after filtering for the monolingual Upper Sorbian
data, as well as how each dataset was used for BPE
training and vocabulary extraction, parent training,
and/or child training.

B Backtranslation Details

The configurations used to backtranslate the first
round were:

• For monolingual Upper Sorbian, the HSB–DE
child system with 5k vocabulary size and both
source and target side BPE-dropout for both
the HSB–DE system and its CS–DE parent
(53.4 BLEU on devel test)

• For monolingual German, the DE–HSB child
with 10k vocabulary size and both source and
target side BPE-dropout for both the DE–HSB
system and its DE–CS parent (55.0 BLEU on
devel test).

The following configurations were used to back-
translate the second round:

• For monolingual Upper Sorbian, the HSB–
DE child system with 5k vocabulary size and
source side BPE-dropout for both the HSB–
DE system and its CS–DE parent; 25 times
hsb–de data, DE news commentary and 1.2M
lines of DE news backtranslated (57.25 BLEU
on devel test)

• For monolingual German, the DE–HSB sys-
tem with 15k vocabulary size and source side
BPE-dropout for both the DE–HSB system
and its DE–CS parent; 12 times hsb–de data,
HSB Sorbian Institute, Witaj, and Web data
backtranslated (57.7 BLEU on devel test).

After the second round of backtranslation, the
top configurations were:

• For HSB–DE, the 5k vocabulary size child
with source side BPE-dropout for both the
HSB–DE system and its CS–DE parent; 20
times hsb–de data, 1.2M lines of (second
round) backtranslated DE news (57.15 BLEU
on devel test)

• For monolingual German, the 20k vocabulary
size child with source side BPE-dropout for

both the DE–HSB system and its DE–CS par-
ent; 12 times hsb–de data, backtranslated (sec-
ond round) HSB Sorbian Institute, Witaj, and
Web data (58.4 BLEU on devel test).

We note that the second round of backtranslat-
ing the German monolingual news data into Upper
Sorbian did not improve the BLEU score for the
subsequent HSB–DE systems, with the best con-
figuration dropping by 0.1 BLEU points. However,
the second round of backtranslation of the Upper
Sorbian monolingual data did improve the BLEU
score by 0.7 BLEU points for the best configura-
tion, with the vocabulary size of the best configura-
tion increasing to 20k from 15k.

C Pseudo-Sorbian Comparisons and
Analysis

Table 7 presents the results of our pseudo-Sorbian
comparison discussed in Sections 2.4 and 6.3; as
mentioned; we find that both word- and character-
level modifications are similar at small vocabulary
sizes, but that word-level modification outperforms
at a higher vocabulary size. However, at all vocab-
ulary sizes a combination of the two improves over
either approach on its own.

It should be noted again that these preliminary
results are not directly comparable to other results
in this paper (having trained on a smaller corpus,
lacking the JW300 documents) and are also not
technically constrained (as the word list used to cre-
ate the character-level replacement was from bilin-
gual dictionaries, not the constrained corpora). In
our submitted systems, we created a new character-
level system using only the constrained corpora.

As pseudo-Sorbian lexical modification creates a
new training corpus, this raises questions of how to
appropriately create BPE vocabularies, in particular
when the character-level version is used. In word-
level pseudo-Sorbian, the resulting corpus still only
consists of words found in the original Czech and
Upper Sorbian corpora, although the resulting n-
gram frequencies will differ somewhat because of
some Czech words being replaced by Upper Sor-
bian ones. Character-level pseudo-Sorbian, how-
ever, can create words and character-level n-grams
that do not appear in the original corpus at all.8

8In future work, it would probably be beneficial to guide
the output of the modification with a character-level language
model trained on target-language data, to better avoid the
generation of n-grams that are unlikely or unattested in the
target language.
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Data Lines BPE/Voc. Parent Child
train.hsb-de.{de,hsb} 60,000 Y ×25 N Y
sorbian institute monolingual.hsb 339,822 Y ×25 N Y
web monolingual filtered.hsb 131,047 Y ×25 N Y
witaj monolingual filtered.hsb 220,564 Y ×25 N Y
OpenSubtitles.cs-de.{de,cs} 16,378,674 Y Y N
DGT.cs-de.{de,cs} 4,853,298 Y Y N
JW300.{de,cs} 1,155,056 Y Y N
Europarl.cs-de.{de,cs} 568,572 Y Y N
News-Commentary.cs-de.{de,cs} 185,127 Y Y N
WMT-News.cs-de.{de,cs} 20,567 Y Y N
news.2019.de.shuffled.deduped.de 57,622,797 N N Y
news-commentary-v15.dedup.de 233,111 N N Y

Table 6: Data and how it was used, whether for BPE training and vocabulary extraction, parent model training, or
child model training. Note that the monolingual German news.2019 data was subsampled, and the number of lines
shown represents the full set from which the subsample was drawn.

Pseudo-Sorbian BPE 2k BPE 5k BPE 10k
Word-level 51.8 52.6 52.6
Character-level 51.9 52.6 52.1
Both 52.4 52.7 52.8

Table 7: Comparison of approaches to create Pseudo-
Sorbian corpora for pre-training, by word-level or
character-level replacement of Czech text, at different
vocabulary sizes. All scores represent BLEU scores on
dev-test, in the HSB–DE direction.

The systems in Table 7 use system-specific BPE;
that is, the BPE operations and vocabulary are con-
structed for each specific {pseudo-Sorbian, Upper
Sorbian} training corpus. However, in the final sub-
mitted systems, we used a fixed vocabulary from
the original {Czech, Upper Sorbian} corpus, which
made it possible to ensemble pseudo-Sorbian sys-
tems with our other systems, giving us better results
than either type of system alone. We do not know
what effect (negative or positive) this may have on
the quality of the pseudo-Sorbian-trained systems
(since they would be using a BPE vocabulary for
a different set of “languages”, and thus may be
over-segmented).9 This raises a number of ques-
tions about appropriate choices of BPE models,
which increases the complexity of ablation studies
beyond what we are able to address in the scope of
this paper.

Setting aside the complications of various BPE

9Using our final BPE segmentation does result in a slightly
higher number of segmentations per token than a BPE model
trained directly on the pseudo-Sorbian (combined version)
data.

training schemes, we return to the BPE seg-
mentations used in our final systems to analyze
whether pseudo-Sorbian and BPE-dropout do in-
deed achieve their goals of producing more overlap
between the pseudo-Sorbian or Czech training data
and the Upper Sorbian data. We consider the de-
vel test portion of the Upper Sorbian data. With
a 10k BPE vocabulary, that test set contains 4540
unique subword types. 62.6% of those types (2840)
are observed in the baseline Czech parent model
training data, and 52.9% of the training tokens are
in that set. After applying BPE-dropout to the
Czech parent training data, the percentage of ob-
served types increases slightly, to 63.4% (2878),
with 58.9% of the training tokens in that set. With
the pseudo-Sorbian combined system, however, we
see a much bigger increase in type overlap: 89.0%
of the Upper Sorbian devel test types (4041) were
observed at least once in the pseudo-Sorbian par-
ent data, making up 70.9% of the training tokens.
Increased coverage of Upper Sorbian devel test
subword tokens during parent training means that
embeddings for those subword tokens will be up-
dated during parent model training, hopefully in
a way that improves their warm start in the Upper
Sorbian student training.10

10While we could imagine that in some situations, they
might end up with inappropriate representations, we expect
those to be improved when the tokens are observed in student
model training.


