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Abstract
This paper describes the NICT Kyoto sub-
mission for the WMT’20 Quality Estimation
(QE) shared task. We participated in Task
2: Word and Sentence-level Post-editing Effort,
which involved Wikipedia data and two trans-
lation directions, namely English-to-German
and English-to-Chinese. Our approach is
based on multi-task fine-tuned cross-lingual
language models (XLM), initially pre-trained
and further domain-adapted through interme-
diate training using the translation language
model (TLM) approach complemented with a
novel self-supervised learning task which aim
is to model errors inherent to machine transla-
tion outputs. Results obtained on both word
and sentence-level QE show that the proposed
intermediate training method is complemen-
tary to language model domain adaptation and
outperforms the fine-tuning only approach.

1 Introduction

This paper presents the NICT Kyoto submission
for the ninth edition of the quality estimation (QE)
shared task organized at the fifth conference for
machine translation (WMT’20). The goal of QE
is to estimate the quality of machine translation
(MT) output without using a translation reference.
The system developed for the task and described
in this paper is based on pre-trained cross-lingual
language models (XLM) (Conneau and Lample,
2019), domain and task-adapted through intermedi-
ate training (Phang et al., 2018) and fine-tuned in a
multi-task fashion for the sentence and word-level
QE objectives.

It was shown during the QE shared task at
WMT’19 (Fonseca et al., 2019) that pre-trained
language models (LM) fine-tuned for QE reach
state-of-the-art results at the levels of sentence
and word following the predictor–estimator archi-
tecture (Kim et al., 2017) or using a fully end-
to-end approach (Kepler et al., 2019; Kim et al.,

2019; Zhou et al., 2019). However, fine-tuning pre-
trained LMs is highly unstable when the dataset
used for fine-tuning is small (Devlin et al., 2019;
Zhang et al., 2020), which is usually the case for
QE, as annotated datasets are scarce and expensive
to produce, and WMT QE datasets are no excep-
tions (the shared task datasets are presented in Ta-
ble 3). This fine-tuning instability might be due
to neural network (NN) optimization difficulties or
lack of generalization. (Mosbach et al., 2020)

To reduce fine-tuning instability of pre-trained
LMs, Phang et al. (2018) introduced intermediate
training, using large scale labeled data relevant to
the target task in order to provide the pre-trained
model with a transition step towards the final task.
This approach is nonetheless limited by its reliance
on annotated data for supervised learning. In our
work, we propose a novel self-supervised interme-
diate training approach to adapt a pre-trained model
to QE which does not rely on labelled data. We
modify the popular masked LM objective to model
simultaneously deletions and insertions in transla-
tions, two error types commonly observed in MT
outputs.

Our approach is complementary to LM domain
adaptation and we propose to conduct both tasks,
i.e. domain and final task adaptation, jointly during
intermediate training and prior to fine-tuning. More
details about the intermediate training approach, in-
cluding masked LM modifications and the datasets
used, are presented in Section 2, followed by the
QE task fine-tuning and evaluation in Section 3.
Finally, a conclusion and future work are given in
Section 4.

2 Intermediate Training

We describe in this Section the intermediate train-
ing process applied to the pre-trained LM used in
our QE submission. This method could be applied
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Figure 1: Intermediate self-supervised learning task based on the translation language model training objective of
XLM with the addition of NULL tokens associated with randomly inserted MASK tokens.

to any pre-trained LM, but also when training a
masked LM from scratch.

2.1 Approach Description

The fine-tuning of pre-trained LM has been applied
to and has improved the performances of many
natural language processing tasks such as gram-
matical sentence classification, paraphrases detec-
tion or textual entailment to name a few popular
tasks. (Wang et al., 2018)

Some of the prevailing fine-tuned pretrained
models studied in the literature are BERT (De-
vlin et al., 2019) and XLM (Conneau and Lam-
ple, 2019), among others. At the core of these
approaches are similar LM techniques, using the
sequentiality of languages to learn probabilities
over sequences (X) of words (xi, i ∈ [0;n]) as
in p(X) =

∏n
i=1 p(xn|x1, ..., xn) (causal LM) or

randomly masking some input tokens and learn-
ing to retrieve them based on both left and right
contexts (masked LM). The masked LM approach
introduced in BERT was extended in XLM to learn
relations between translated sentences based on
bilingual parallel corpora, integrating a new train-
ing objective called translation LM (TLM).

The TLM is particularily suited for QE, as it
allows the model to learn bilingual context infor-
mation when predicting masked tokens. However,
fine-tuning pre-trained models was shown to be
unstable with small datasets (Devlin et al., 2019),
the reasons of this instability being studied recent
work (Zhang et al., 2020; Mosbach et al., 2020). A
proposed approach to reduce instability is to use a
second stage pre-training step, between the initial
LM training and the final task-oriented fine-tuning.
It is based on a large amount of labeled data for
a task related to the target objective. In addition
to providing a smooth transition between initial
pre-training and fine-tuning by coercing the model
towards the final training objective, the intermedi-

ate step allows for domain adaptation when there is
a domain mismatch between the datasets used for
each training step. (Phang et al., 2018)

As a variant to the intermediate training ap-
proach, which originally makes use of labeled data,
we propose a self-supervised intermediate step, al-
leviating the need for annotated data. We aim at
combining both the domain adaptation advantage
of continued training by using a dataset relevant
to the final task, and target objective adaptation by
modifying the masked LM approach used in the
TLM model. More precisely, in addition to pre-
dicting the vocabulary masked in the input parallel
sequences, we introduce fake masks for which a
null token has to be predicted. This method forces
the model to distinguish between missing words,
which often occure in translated sentences when
source words are not translated, and wrongly in-
troduced words, similar to mistranslations when
source words are wrongly translated. The proposed
intermediate self-supervised learning task is illus-
trated in Figure 1.

2.2 Datasets and Tools

The domain and task adapted LMs used for our
QE submissions are based on the pre-trained XLM
model made available as a checkpoint in the Hug-
gingFace Transformers library (Wolf et al., 2019),
including 15 languages and trained using masked
TLM.1. This model uses a sub-word vocabulary of
95k tokens shared between all languages, 1, 024 di-
mensions embeddings, learned language and posi-
tion embeddings, 12 transformer blocks including
16 heads self-attention layers and 4, 096 dimen-
sions feed-forward layers with Gaussian Error Lin-
ear Units (GELU) activation functions. The model
has a total of approx. 249M parameters. The train-

1Model called xlm-mlm-tlm-xnli15-1024 and avail-
able at https://github.com/huggingface/
transformers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Source MT
Sentence Token Type Token Type

EN–DE
Train 7.8M 129.6M 2.2M 124.5M 4.0M
Valid. 8.0k 112.7k 34.9k 115.0k 37.2k

EN–ZH
Train 3.3M 61.0M 0.3M 102.0M 8.0k
Valid. 8.0k 113.0k 34.8k 0.3M 3.8k

Table 1: Number of sentences, source tokens, source
types, MT tokens and MT types in the training and val-
idation sets used for LM intermediate training. Tokens
and types denote words for English and German, and
characters for Chinese, including numbers and punctu-
ation marks.

ing objective is similar to the original TLM, except
for an additional token in the vocabulary corre-
sponding to the null token. We ran intermediate
training for English–German and English–Chinese
language pairs separately. The code used to con-
duct intermediate training was developed in-house
on top of the HuggingFace Transformers library
and written in PyTorch (Adam et al., 2017).

The datasets used for intermediate training are
detailed in Table 1. We relied on the parallel
data provided by the QE shared task organizers
for English–German and English– Chinese, after
selecting the most relevant sentence pairs based on
their coverage of the source and MT output vocabu-
lary extracted from the QE training, validation and
test data. Using the test source and corresponding
MT output is a limitation of the models presented
in this paper, as a commercial QE system based
on this method would require re-training when QE
scores have to be produced for unseen data. How-
ever, our data filtering approach is still reliable
without using the test set, as it is shown in Rubino
and Sumita (2020). To remove noisy parallel sen-
tences from the data used for intermediate training,
we only kept sentence pairs containing a minimum
of 3 tokens in the source and target sentences and
with at least 40% of their tokens longer than 4 char-
acters being in the QE vocabulary. In addition for
the English–German LMs, we used the WikiMatrix
corpus (Schwenk et al., 2019) made available by
the WMT organizers for the news translation task.2

2http://data.statmt.org/wmt20/
translation-task/WikiMatrix/

2.3 Training Procedure
Hyper-parameters specific to masked LMs, such as
the amount of masked tokens per sequence, or more
general to NNs, such as the optimizer learning-
rate, have to be set prior to training. While the
latter ones were suggested in previous work (De-
vlin et al., 2019; Conneau and Lample, 2019), we
define and propose some values for the former ones
in this paper. We trained a total of 8 masked LMs
with variations in hyper-parameters, keeping check-
points for each model based on the loss obtained
on the validation set and at the end of every epoch.
General and masked LM specific hyper-parameters
are described in the following subsections and a
summary of the trained masked LMs is presented
in Table 2.

Note that we followed a token sampling similar
to the one in XLM (Conneau and Lample, 2019),
i.e., a first hyper-parameter is dedicated to the per-
centage of tokens to randomly select from a text
sequence (noted sample in Table 2), a second hyper-
parameter (noted mask) is allocated to the percent-
age of initially selected tokens which are replaced
by a special mask token, a third hyper-parameter
(noted rand.) is assigned to the percentage of ini-
tially selected tokens which are not replaced by
mask but by tokens randomly sampled from the
vocabulary. Finally, we introduce a fourth hyper-
parameter, dedicated to the percentage of additional
mask tokens introduced in a text sequence and cor-
responding to the null token.

2.3.1 General Hyper-parameters
All our masked LMs trained for the QE task used
the AdamW optimizer (Loshchilov and Hutter,
2017) with the following parameters: β1 = 0.9,
β2 = 0.98, ε = 1e−8 and weight decay set at 1e−8.
The learning rate followed a linear schedule with a
warm-up period during the first 4k steps to reach a
maximum value of 5e−5 or 1e−4 depending on the
model (as detailed in Table 2), then decayed until
the model reached 100k steps. Depending on the
model, the batch size was set to 32 or 64 with gra-
dient accumulation set to 16 batches, respectively
simulating batch sizes of 512 and 1, 024 pairs of
source and target sequences.

2.3.2 Masked LM Hyper-parameters
We experimented with various percentages of to-
kens in pairs of text sequences to randomly sam-
ple initially, from 10% to 20%. From this selec-
tion rate, we made variations in how many were

http://data.statmt.org/wmt20/translation-task/WikiMatrix/
http://data.statmt.org/wmt20/translation-task/WikiMatrix/
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id sample mask rand. fake src tgt bsz lr

1 15 80 50 0 32 1e−4

2 15 25 95 0 32 1e−4

3 10 50 100 10 X X 64 5e−5

4 15 10 90 20 X X 32 1e−4

5 15 80 50 25 X X 64 5e−5

6 15 50 100 25 X 64 5e−5

7 15 50 100 25 X X 64 5e−5

8 20 50 100 20 X X 64 5e−5

Table 2: Masked LMs with different hyper-parameters
chosen for the intermediate training step. The model
identifier is denoted in the column id, sample indicates
the percentage of tokens randomly sampled from the
sentence pairs, mask denotes the percentage of sam-
pled tokens replaced by the mask token, rand. corre-
sponds to the percentage of tokens replaced by a ran-
domly sampled token from the vocabulary, fake is the
percentage of masked token corresponding to the null
token, src and trg indicate if fake masks are introduced
in the source or target sentences respectively, bsz is the
batch size and lr is the learning rate.

replaced by the token mask: from 10% to 80%.
From the remaining tokens initially sampled and
not masked, from 50% to 100% of them were re-
placed by another token sampled randomly from
the vocabulary. Finally, the remaining tokens ini-
tially sampled but not masked nor replaced were
left unchanged. The percentage of fake masks (cor-
responding to the null token) was varied from 0%
to 25%, additionally to the percentage of tokens
randomly sampled intially during the first step. We
also investigated the introduction of fake masks in
the source or target sequences only, and in both
source and target sequences.

3 QE Fine-tuning

The objective of fine-tuning masked LMs for QE
is to predict sentence-level human translation edit
rate (HTER) and word-level good and bad classes.3

Note that in our models, for the target sequence
word-level QE, we considered gaps between target
words (missing translations) as part of the target
sequence and did not use a loss nor a training ob-
jective specific to gaps.

3.1 Dataset

We used the training, validation and test sets re-
leased by the shared task organizers without any

3More details about the WMT’20 QE Task 2:
Word and Sentence-level Post-editing Effort are
available at http://www.statmt.org/wmt20/
quality-estimation-task.html

Source MT
Sentence Token Type Token Type

EN–DE
Train 7.0k 115.0k 25.4k 112.3k 28.1k
Valid. 1.0k 16.5k 6.4k 16.2k 6.7k
Test 1.0k 16.4k 6.4k 16.1k 6.5k

EN–ZH
Train 7.0k 115.6k 25.1k 214.6k 3.1k
Valid. 1.0k 16.3k 6.3k 30.5k 2.2k
Test 1.0k 16.8k 6.4k 30.1k 2.3k

Table 3: Number of sentences, source tokens, source
types, MT tokens and MT types in the training, valida-
tion and test sets for the WMT’20 QE Task 2: Word and
Sentence-level Post-editing Effort. Tokens and types
denote words for English and German, and characters
for Chinese, including numbers and punctuation marks.

additional annotated data. Details about the official
QE dataset are presented in Table 3.

3.2 Training Procedure

Our models presented in this paper were inspired
by the approach of (Kim et al., 2019), however, we
use XLM instead of BERT. We added two parallel
outputs on top of XLM composed of parametrised
linear layers. The first output layer corresponds to
the word-level QE task, takes as input the word-
level final hidden states given by XLM, and outputs
word-level probabilities for the two classes (OK
and BAD) using a softmax function. The second
output layer corresponds to the sentence-level QE
task, takes as input the final hidden state of the
first token in a sentence pair (noted <s> in Fig-
ure 1) given by XLM, and outputs a sequence-level
probability using a sigmoid function. To compute
the multi-task loss function, we first computed two
loss functions separately, namely cross-entropy and
mean squared error for the word-level and sentence-
level QE respectively, based on the network predic-
tions and the training gold labels. The two losses
were then summed without weights to compose the
final loss.

We chose the masked LMs to fine-tune based on
the validation (presented in Table 1) loss and at the
end of epoch 5 for English–German and epoch 10
for English–Chinese (the latter models were faster
to train due to the smaller LM intermediate training
data size). Thus, 2 checkpoints were kept for each
of the 8 models presented in Table 2. In order to
find good hyper-parameters to fine-tune the masked
LMs for QE and because the QE datasets are rel-
atively small, we conducted a grid-search among

http://www.statmt.org/wmt20/quality-estimation-task.html
http://www.statmt.org/wmt20/quality-estimation-task.html
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EN–DE EN–ZH
id r ↑ MAE↓ RMSE↓ r ↑ MAE↓ RMSE↓

0 0.221 0.159 0.198 0.461 0.155 0.193
0? 0.564 0.167 0.214 0.604 0.151 0.193
1 0.566 0.173 0.224 0.664 0.135 0.167
2 0.571 0.138 0.177 0.658 0.128 0.162
3 0.593 0.161 0.208 0.668 0.145 0.178
4 0.578 0.173 0.224 0.638 0.135 0.170
5 0.598 0.151 0.197 0.663 0.130 0.164
6 0.605 0.167 0.218 0.669 0.125 0.158
7 0.594 0.146 0.190 0.665 0.126 0.158
8 0.601 0.138 0.176 0.657 0.144 0.178

Table 4: Sentence-level predicted post-editing effort on
the official WMT’20 QE validation set. The id column
refers to the Model ID as presented in Table 2. The id
0 denotes the out-of-the-box XLM checkpoint without
domain or task adaptation through intermediate train-
ing and without QE fine-tuning. The id 0? denotes the
QE fine-tuned XLM checkpoint without domain or task
adaptation through intermediate training.

the following hyper-parameters: masked LM and
output layer learning rates, dropout rate, using or
not class weights for the softmax function, and fi-
nally the decay rate applied to the discriminative
fine-tuning approach (Howard and Ruder, 2018).
During hyper-parameter search and training of the
final models, the batch size was set to 64 sequence
pairs and the learning rate was warmed-up linearly
for 200 steps. The remaining hyper-parameters
were set to values identical to the ones presented in
Section 2.3.

3.3 Evaluation
We present in this Section the results obtained dur-
ing our experiments, first on the official valida-
tion set and then on the official test set, based on
the masked LMs presented in Table 2. For the
sentence-level post-editing effort prediction, the
official primary metric was the Pearson correlation
coefficient (r) and two supplementary metrics were
used: mean absolute error (MAE) and root mean
squared error (RMSE). For the word-level binary
classes prediction, the official primary metric was
the Matthews correlation coefficient (MCC) and
supplementary F-measures for the OK class and
for the BAD class were used. The word-level evalu-
ation was conducted on source and target sequences
separately. The results obtained on the sentence-
level task are presented in Table 4 and the results
obtained on the word-leve task are presented in Ta-
ble 5. For the latter, we present a single F-score
for both OK and BAD classes by multiplying in-
dividual F-scores (similarily to the F1 mult score

used during the WMT’19 QE task (Fonseca et al.,
2019)).

Results obtained at the sentence-level (Table 4)
show that both domain adaptation and fake-
masking are useful as an intermediate training task
prior to QE fine-tuning. The best results according
to Pearson’s r are reached by the model #6 for
the two language pairs. This model has an equal
amount of masked and randomly replaced tokens,
and fake masks are inserted in target sequences
only. The same model reaches the best results for
the EN–ZH language pair for all the metrics while
there is no best performing model on all metrics
for the EN–DE pair. When comparing the models
obtained with configurations #1 and #5, which
differ mainly on the introduction of fake masks for
the latter, best performances are reached by model
#5 as indicated by the three metrics, showing that
fake masking is helpful in predicting sentence-level
post-editing effort. However, the batch size and the
learning rate also differ for these two configura-
tions. A more consistant ablation study allowing
for a fair comparison between configurations with
and without fake masking is presented in Rubino
and Sumita (2020).

Experiments on the word-level results (Table 5)
show that introducing fake-masks is useful for the
EN–DE language pair on both source and target
text sequences, as the best performances according
to both metrics are reached by models #5, #7 and
#8. The introduction of fake masks in model #5,
compared to model #1 which does not have fake
masks, show that this method is helpful for this
language pair at predicting word-level quality esti-
mation. However, this is not the case on the source
side for EN–ZH, where model #1 reaches the best
results in terms of MCC and F1. This model does
not involve fake-masking but only domain adapta-
tion. On the target side, however, the best results
according to both metrics are reached by models in-
volving fake-masking, namly models #3, #6 and
#7 with 0.566 MCC and 0.604 F1.

Our final submission to the shared task was com-
posed of an ensemble of all the checkpoints for all
the models, i.e. 32 models per language pair and
QE task (8 pre-trained models, fine-tuning check-
points based on validation loss, primary metric
score and best epoch). We present in Table 6 and
Table 7 the official results obtained by our final
submission ensembles on the test set as reported
by the shared task organizers on the sentence-level
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EN–DE EN–ZH
Source Target Source Target

id MCC↑ F1 MCC↑ F1 MCC↑ F1 MCC↑ F1

0 0.207 0.314 0.351 0.387 0.192 0.344 0.511 0.536
0? 0.326 0.407 0.432 0.461 0.324 0.436 0.564 0.600
1 0.306 0.398 0.438 0.480 0.347 0.452 0.560 0.598
2 0.312 0.397 0.434 0.476 0.338 0.448 0.558 0.598
3 0.329 0.417 0.438 0.478 0.322 0.435 0.566 0.604
4 0.309 0.395 0.440 0.482 0.313 0.402 0.564 0.600
5 0.347 0.413 0.451 0.487 0.322 0.437 0.563 0.602
6 0.330 0.415 0.442 0.482 0.338 0.444 0.566 0.603
7 0.331 0.403 0.451 0.490 0.328 0.441 0.565 0.604
8 0.342 0.425 0.449 0.489 0.310 0.424 0.553 0.592

Table 5: Word-level predicted binary classes on the official WMT’20 QE validation set. The id column refers to
the Model ID as presented in Table 2. The id 0 denotes the out-of-the-box XLM checkpoint without domain or
task adaptation through intermediate training and without QE fine-tuning. The id 0? denotes the QE fine-tuned
XLM checkpoint without domain or task adaptation through intermediate training.

rank Pearson’s r ↑ MAE ↓ RMSE ↓

EN–DE
5 0.615 0.151 0.197

EN–ZH
3 0.643 0.129 0.161

Table 6: Official sentence-level WMT’20 QE Task 2
results on the test set as reported by the shared task
organizer. The column rank indicates the ranking of
our submission among other participants according to
the primary metric (Pearson’s r).

rank MCC↑ F1BAD ↑ F1OK ↑

Source EN–DE
3 0.353 0.537 0.806

Target EN–DE
3 0.485 0.568 0.916

Source EN–ZH
1 0.336 0.668 0.669

Target EN–ZH
2 0.582 0.704 0.878

Table 7: Official word-level WMT’20 QE Task 2 re-
sults on the test set as reported by the shared task or-
ganizer. The column rank indicates the ranking of our
submission among other participants according to the
primary metric (MCC).

and word-level tasks respectively.

4 Conclusion

We have presented in this paper the NICT Kyoto
submission for the WMT’20 QE shared task on
predicting post-editing effort at the sentence and
word-level. Our submissions consisted of ensem-
bles of several fine-tuned masked LMs, pre-trained
using the translation LM objective, domain and task
adapted in a self-supervised fashion using domain-
relevant data and a modified masking approach
during intermediate training.

This novel intermediate training objective allows
for a smooth transition from a pre-trained masked
LM towards the final QE task without requiring
annotated data. We have shown empirically that
both domain and task adaptation reach good results
compared to out-of-the-box pre-trained models and
compared to fine-tuning only. Our final submis-
sions were ranked among the top systems both at
the sentence and word-level for two language pairs.
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