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Abstract
We present the joint contribution of IST and
Unbabel to the WMT 2020 Shared Task on
Quality Estimation. Our team participated on
all tracks (Direct Assessment, Post-Editing Ef-
fort, Document-Level), encompassing a total
of 14 submissions. Our submitted systems
were developed by extending the OpenKiwi
framework to a transformer-based predictor-
estimator architecture, and to cope with glass-
box, uncertainty-based features coming from
neural machine translation systems.

1 Introduction

Quality estimation (QE) is the task of evaluating a
translation system’s quality without access to refer-
ence translations (Blatz et al., 2004; Specia et al.,
2018). This paper describes the joint contribution
for Instituto Superior Técnico (IST) and Unbabel
to the WMT20 Quality Estimation shared task,
where systems were submitted to all three tasks:
1) sentence-level direct assessment; 2) word and
sentence-level post-editing effort; and 3) document-
level annotation and scoring.

Unbabel’s participation in previous editions of
the shared task (2016, 2017, 2019) used ensemble
of strong individual systems, with varying architec-
tures and hyper-parameters. While this strategy led
to very strong results, large system ensembles are
not a very practical solution, complicating model
deployment and requiring expensive computation
and memory usage. This year, in contrast, our fo-
cus was on simplicity: only single model systems
were submitted and, in a few cases, an additional
simple ensemble of the same model. Transfer learn-
ing on top of pretrained multilingual models was
also used for avoiding manual pretraining for each
language pair.

Last year’s winning submission (Kepler et al.,
2019a) combined strong individual systems built

on top of the OpenKiwi framework (Kepler et al.,
2019b) and pretrained Transformer models. We
consolidated those changes with support for newly
released pretrained models and packages and pub-
lished a new version 2.0 of the OpenKiwi frame-
work.1 We trained and submitted single model
systems in OpenKiwi for all tasks, beating all base-
lines by a large margin. Additionaly, we also used
OpenKiwi with small adaptations to handle specific
sources of information in Tasks 1 and 3.

Task 1, in particular, was introduced this year
with Direct Assessment scores as targets. Further,
it introduced the novelty of providing the trained
NMT models that were used for producing the
translations. Previously, only black-box QE was
considered in the WMT Shared Task, as it is one
of the main uses cases. With the availability of the
NMT models, new glass-box approaches can be
explored. Our best submitted systems drew inspi-
ration from (Fomicheva et al., 2020) to leverage
this information, improving in performance and
robustness over a black-box approach.

Our main contributions are:

• We release the second version of OpenKiwi
along with our submission, with a variety of
new features, including the ability to use pre-
trained Transformer-based Language Models;

• We show that transfer learning techniques still
perform well, by fine-tuning XLM-Roberta in
a Predictor-Estimator architecture;

• We incorporate features extracted from the
provided NMT models into our existing archi-
tectures and show that glass-box QE improves
upon black-box approaches.

1The new version will be publicly available at https:
//github.com/unbabel/openkiwi.

https://github.com/unbabel/openkiwi
https://github.com/unbabel/openkiwi
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2 Quality Estimation Tasks

This year’s shared task edition comprised three
tasks: 1) a newly introduced one for sentence-level
direct assessment; 2) one for word and sentence-
level post-editing effort; and 3) one for document-
level. Refer to the Findings paper (Specia et al.,
2020) for full descriptions.

Of noteworthy mention is that the NMT models
for Tasks 1 and 2 where provided along with the
data, which opened up the possibility of using glass-
box approaches.

3 Implemented Systems

To avoid the complexity of ensemble of several sys-
tems, all our submitted systems consisted of a sin-
gle model type. In addition to standard OpenKiwi
2.0 systems submitted to Tasks 1 and 2 (§3.1), we
implemented two types of extensions on top of
OpenKiwi, one for exploring glass-box approaches
for Tasks 1 and 2 (§3.2), and one for handling
document-level QE for Task 3 (§3.3).

3.1 Base OpenKiwi System
Given the success in doing transfer learning with
pretrained Language Models in last year’s shared
task edition, we published support for them as part
of the open source QE framework OpenKiwi in a
new 2.0 version. BERT, XLM, and XLM-Roberta
are currently supported via the Transformers2

Python package (Wolf et al., 2019), which means
different models can be easily used. For this year’s
shared task, we based all systems on this version of
OpenKiwi and used pretrained XLM-Roberta mod-
els (Conneau et al., 2020), either base or large
versions. We chose XLM-Roberta (called XLM-R
from here on) instead of XLM, used in last year’s
best individual model, due to its reported state-of-
the-art performance on downstream cross-lingual
tasks and based on preliminary experiments.

The architecture follows the overall pattern intro-
duced originally in the Predictor-Estimator model
(Kim et al., 2017), comprising a “Feature Extrac-
tor” module with a “Quality Estimator” module on
top. Figure 1 depicts this general architecture.

The Feature Extractor module consists of a pre-
trained XLM-R model and feature extraction meth-
ods on top, such that features for the target sen-
tence, the target tokens, and the source tokens are
returned separately. Source and target sentences

2https://github.com/huggingface/
transformers
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Figure 1: General architecture of the implemented
OpenKiwi-based systems.

are passed as inputs in the format <s> target
</s> <s> source </s>. Output features for
tokens in the target sentence are averaged and then
concatenated with the classifier token embedding
(first <s> in the input), and returned as sentence
features.3

For the Quality Estimator module we used linear
layers instead of a bi-LSTM (as used by Kim et al.
(2017)), since initial experiments showed similar
performance. Additional linear layers were stacked
on top for each output type: target words, target
gaps, source words, and sentence regression.

For the plain OpenKiwi submissions we used
the XLM-R base model and a Quality Estima-
tor block with two linear layers. Hyper-parameter
search was performed for each language pair and
task4 and submitted as a single model system to
Tasks 1 and 2, and used as basis for the submission
to Task 3. These systems will be referred to as
OPENKIWI-BASE through the rest of the paper.

3Even though XLM-R was not trained on the Next Sen-
tence Prediction objective (therefore not using the classifica-
tion token in its original pretraining), preliminary experiments
showed that concatenating inputs, average pooling, and using
the classification token resulted in better performance com-
pared to feeding source and target separately and extracting
sentence features with other strategies (only pooled target,
only the classifier token, classifier token + pooled source, and
others).

4Hyper-parameters that were searched are: learning rate,
dropout, number of warmup steps, and number of freeze steps.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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3.2 Glass-Box QE

3.2.1 Glass-Box Features
Recent work on MT confidence estimation
(Fomicheva et al., 2020) showed that useful infor-
mation coming from an MT system, obtained as a
by-product of translation, can be competitive with
supervised black-box QE models in terms of corre-
lation to human judgements of translation quality,
in settings where the labeled data is scarce. The
approach described in Fomicheva et al. (2020) re-
quires access to the MT system that produced the
translations (unlike the black-box regime). This
year’s new Task 1, and the fact it shares datasets
with Task 2, allowed us to explore this approach
on both tasks. In our work, we investigated how
to combine the richness of this extra information
coming from the provided Neural MT (NMT) sys-
tem with the strength of state-of-the-art approaches
to supervised QE.

To this end, we extract features (referred to as
glass-box features henceforth) using the output
probability distribution obtained from (i) a standard
deterministic NMT and (ii) using uncertainty quan-
tification. For (ii) we use Monte Carlo Dropout
(Gal and Ghahramani, 2015) as a way of circum-
venting the miscalibration problem of Deep Neural
Networks (Guo et al., 2017) and obtaining mea-
sures indicative of the model’s uncertainty.

We obtain 7 different features for each sentence
of each language-pair, the first 3 via (i) and the
last 4 via (ii) (full details are in Fomicheva et al.
(2020)):

• TP - sentence average of word translation
probability

• Softmax-Ent - sentence average of soft-
max output distribution entropy

• Sent-Std - sentence standard deviation of
word probabilities

• D-TP - average TP across N (N = 30)
stochastic forward-passes

• D-Var - variance of TP across N stochastic
forward-passes

• D-Combo - combination of D-TP and
D-Var defined by 1− D-TP/D-Var

• D-Lex-Sim - lexical similarity - measured
by METEOR score (Banerjee and Lavie, 2005)
- of MT output generated in different stochas-
tic passes.

Figure 2: Architecture of the “Quality Estimator” mod-
ule modified to include glass-box features.

Table 1 shows the correlation between each one
of these features and human DAs for every lan-
guage pair in Task 1. As expected, features ob-
tained using uncertainty quantification consistently
display higher correlations across all language-
pairs, D-TP being the most effective for high and
medium resource languages, and D-Lex-Sim for
low resource languages.

3.2.2 Glass-box + Black-box Model
Different configurations were attempted in order
to introduce the extracted glass-box features into
the OpenKiwi system. The best empirical perfor-
mance was observed with a simple method: we
reduced the dimension of the pooled sentence fea-
tures output from XLM-R by about five fold (onto
bottleneck size), creating a dimensional bot-
tleneck and forcing a more compact sentence rep-
resentation, and then concatenated the seven ex-
tracted glass-box features to this hidden state, fol-
lowed by an expansion back to a higher dimen-
sional state of hidden size. The result is used
as input feature for regression on the sentence score,
employing p progressively smaller feed-forward
layers (halving in size). A visualization of this
process can be seen in Figure 2.

The glass-box features were individually normal-
ized a priori, according to their mean and variance
in the training dataset, allowing for their integra-
tion in the network’s training in a scale-independent
way.

Systems were trained for all language pairs in
Tasks 1 and 2. XLM-R large was used instead
of base version. We ran experiments with and
without glass-box features. From here on we will
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Feature Language Pair
En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En

(i)
TP 0.0993 0.2808 0.5951 0.3992 0.3653 0.3658 0.3658
Softmax-Ent 0.0858 0.2919 0.5595 0.3546 0.4133 0.4077 0.3790
Sent-Std 0.0691 0.3252 0.5049 0.3985 0.3669 0.3912 0.3510

(ii)

D-TP 0.1078 0.3158 0.6404 0.4936 0.3905 0.3797 0.4441
D-Var 0.0782 0.1943 0.3550 0.2780 0.2336 0.2338 0.2329
D-Combo 0.0487 0.1259 0.2620 0.1335 0.2938 0.2244 0.2013
D-Lex-Sim 0.0994 0.2903 0.6210 0.3940 0.4751 0.4318 0.4092

Table 1: Pearson correlation (r) between the employed glass-box features and human DA’s for every language pair
in Task 1 (validation set) - best results are in bold.

call KIWI-GLASS-BOX the system as described
here, which was the one used for the official sub-
missions, but for comparison we will also refer to
KIWI-LARGE as the same system but without using
the glass-box features.

Hyper-parameter search was performed
over p, bottleneck size, hidden size,
warmup steps (number of warm up steps for
optimizer), freeze steps (number of steps for
which XLM-R’s weights are not updated) and lr
(learning rate). The exact values can be found in
Table 6 in Appendix A.

All submissions of KIWI-GLASS-BOX to Task
1 were created by simple linear ensembles, com-
bining 5 of the models obtained through hyper-
parameter search for each language pair. We used
the validation set predictions of these 5 models to
train a LASSO regression model. However since
we do not possess labels for the test set, these en-
sembles were trained using k-fold cross-validation
(k = 10) on the validation set.

3.3 Document-level QE
For Task 3 we submitted two systems, both of
which are based on the general OpenKiwi archi-
tecture described in Section 3.1. The two systems
differ only in the type of tags they predict, and
the subsequent post-processing that is applied to
these tags to obtain annotations and document-level
MQM (Multidimensional Quality Metrics) scores.
We submitted single systems that predict both tasks
of document-level annotation and scoring.

The first system, henceforth referred to as KIWI-
DOC, is OPENKIWI-BASE with additional data pro-
cessing to convert between word- and sentence-
level predictions, and document-level predictions.
The data approach is the exact same as Kepler et al.
(2019a). To obtain training data, annotations are
converted to binary word-level tags (OK and BAD
tags) and sentence-level MQM scores are computed

from the annotations pertaining to the sentence. Af-
ter training, document-level annotation predictions
are obtained by the following heuristic: contiguous
BAD tags in the word-level predictions are grouped
into a single annotation span and are given the
severity label major. Predicted document-level
MQM scores are obtained by averaging predicted
sentence-level MQM weighted by sentence-length
(regression) or by direct computation from
the predicted annotations using the MQM formula
(direct).

The second system, KIWI-DOC-IOB, is a new
contribution in which the task of annotating is ap-
proached as Named-entity recognition by using
severity tags in IOB (Inside-Outside-Beginning)
format.5 This richer tag scheme addresses two
types of information loss that occur in the approach
taken for KIWI-DOC: the severity information is
kept, and adjacent but disjoint annotations are not
collapsed into single annotations during predic-
tion.6 This approach has the advantage that the
predicted tag sequences can be converted to an-
notations directly by converting the token spans
into character spans and using the predicted la-
bel as severity. The architecture of KIWI-DOC-
IOB is identical to that of KIWI-DOC except that it
is trained with a linear chain CRF7 that enforces
correctness of the IOB tag-sequence at prediction
time8.

For both systems we trained a final linear re-
gression model that combines the two types of pre-

5The full label set is hence: B-minor, I-minor,
B-major, I-major, B-critical, I-critical, and
O.

6The two other types of information loss that were noted by
Kepler et al. (2019a) are left unaddressed: tags are still defined
at the token-level, and annotations consisting of multiple spans
are still split into individual annotations.

7Each edge score is a single learned parameter that is
independent of the input.

8During decoding, the edge scores corresponding to the
impossible transitions are set manually to −∞.
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dicted MQM scores (regression and direct)
with features derived from the tag-level predictions.
We use the following additional features (when
available9) computed over the document: the frac-
tion of predicted tags corresponding to an error
tag;10 and the mean, variance, minimum, and max-
imum of the probability of the BAD. For simplicity
we train the linear regression on the same train-
ing data as the systems. For each system, we per-
form search over all combinations of features, and
choose the subset that gives the highest Pearson
score on the validation set for that particular sys-
tem.

4 Experimental Results

4.1 Task 1: Sentence-Level Direct
Assessment

The results achieved over the validation set on all
language pairs for Task 1 are shown in Table 2.
We also include the best correlation achieved by
any glass-box feature (denoted by BEST GB FEA-
TURE), showing that indeed the proposed method
allows for this rich information to complement and
enhance the model’s training, resulting in a perfor-
mance increase when compared to model or GB-
feature independently.

High resource language pair models (En-De, En-
Zh, Ru-En benefit the most from the aid of NMT
internal information, in particular English-German,
where an increase of ≈ 4.5% occurs; this might
indicate the usefulness of incorporating nuanced
information when sentence scores have less vari-
ability.

Scored test set predictions submitted during the
development of this approach served as informative
feedback, revealing the drop from validation to test
performance to be smaller on KIWI-GLASS-BOX

models when compared to KIWI-LARGE models,
suggesting better generalization capabilities.

4.2 Task 2: Word and Sentence-Level
Post-editing Effort

We trained OPENKIWI-BASE and KIWI-GLASS-
BOX on all three subtasks at the same time: source
tags, target tags, and sentence HTER. The best
model was selected by the highest sum of the three
metrics on the validation set. We used a single run

9Because of the non-binary tags and CRF model the prob-
ability based features are not used for the KIWI-DOC-IOB
model (posterior marginals could be used for this).

10This correspond to the BAD tag for KIWI-DOC and all
tags different from O for KIWI-DOC-IOB.

Pair System Pearson
VAL TEST

En-De

(*)KIWI-GLASS-BOX-ENSEMBLE 0.5715 0.5230
KIWI-GLASS-BOX 0.5263 -
KIWI-LARGE 0.4794 -
OPENKIWI-BASE 0.3499 0.2670
BEST GB FEATURE 0.1078 -
Openkiwi 1.0 - 0.1455

En-Zh

(*)KIWI-GLASS-BOX-ENSEMBLE 0.5711 0.4940
KIWI-GLASS-BOX 0.5461 -
KIWI-LARGE 0.5258 -
OPENKIWI-BASE 0.4199 0.3460
BEST GB FEATURE 0.3252 -
OpenKiwi 1.0 - 0.1902

Ro-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.8968 0.8910
KIWI-GLASS-BOX 0.8841 -
KIWI-LARGE 0.8790 -
OPENKIWI-BASE 0.6672 0.7080
BEST GB FEATURE 0.6404 -
OpenKiwi 1.0 - 0.6845

Et-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7697 0.7700
KIWI-GLASS-BOX 0.7611 -
KIWI-LARGE 0.7496 -
OPENKIWI-BASE 0.6728 0.6900
BEST GB FEATURE 0.4936 -
OpenKiwi 1.0 - 0.4770

Ne-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7994 0.7920
KIWI-GLASS-BOX 0.7804 -
KIWI-LARGE 0.7711 -
OPENKIWI-BASE 0.6987 0.6040
BEST GB FEATURE 0.4751 -
OpenKiwi 1.0 - 0.3860

Si-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.6896 0.6390
KIWI-GLASS-BOX 0.6604 -
KIWI-LARGE 0.6521 -
OPENKIWI-BASE 0.5727 0.5650
BEST GB FEATURE 0.4318 -
OpenKiwi 1.0 - 0.3737

Ru-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7391 0.7670
KIWI-GLASS-BOX 0.7137 -
KIWI-LARGE 0.6938 -
OPENKIWI-BASE - -
BEST GB FEATURE 0.4441 -
OpenKiwi 1.0 - 0.5479

Table 2: Task 1 results on the validation and test sets
for all language pairs in terms of Pearson’s r correla-
tion. Systems in bold were officially submitted. (*)
Lines with an asterisk use LASSO regression to tune
ensemble weights on the validation set, therefore their
numbers cannot be directly compared to the other mod-
els.

of each of the two models to simultaneously predict
the three outputs. The results can be seen in Table 3.
Using the glass-box features provided a significant
boost to the Pearson score, showing our strategy
for sentence-level DA estimation performed well
also when estimating sentence-level HTER.

Even though we only have a single model for all
subtasks, our models outperformed the baselines by
a large margin and performed very competitively
in the test leaderboard (to cite Findings paper).

4.3 Task 3: Document-Level QE
The results for the document-level scoring are
shown in Table 4. For both systems we observe
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Pair System Target MCC Source MCC Pearson
Val Test Val Test Val Test

En-De
KIWI-GLASS-BOX 0.460 0.465 0.357 0.349 0.618 0.633
OPENKIWI-BASE 0.445 0.432 0.330 0.324 0.561 0.531
(*)OpenKiwi 1.0 - 0.358 - 0.266 - 0.392

En-Zh
KIWI-GLASS-BOX 0.567 0.567 0.348 0.287 0.691 0.651
OPENKIWI-BASE 0.576 0.575 0.298 0.287 0.615 0.593
(*)OpenKiwi 1.0 - 0.509 - 0.270 - 0.506

Table 3: Task 2 word and sentence-level results on the validation and test sets. Results for OPENKIWI-BASE and
KIWI-GLASS-BOX were obtained from a single model trained by multi-tasking on the 3 different subtasks. (*)
Baseline results on the validation set were not made available by the organizers.

System Validation Test

KIWI-DOC-regression 0.5146 0.4127
KIWI-DOC-direct 0.3131 0.3156
KIWI-DOC-linear 0.5635 0.4014
KIWI-DOC-IOB-regression 0.5731 0.4746
KIWI-DOC-IOB-direct 0.5483 0.3363
KIWI-DOC-IOB-linear 0.6023 0.4493

Table 4: Results of document-level (task 3) submis-
sions for MQM scoring (Pearson). The results of
KIWI-DOC and KIWI-DOC-IOB are for the same single
model. For model selection during training we used
the summed validation set Pearson of direct and
regression to obtain a model that performs well in
both methods.

System Validation Test

KIWI-DOC 0.4934 0.4716
KIWI-DOC-IOB 0.4016 0.4147

Table 5: Results of document-level (task 3) submis-
sions for annotation (F1). For model selection during
training we used validation set MCC for KIWI-DOC
and validation set tagging F1 for KIWI-DOC-IOB.

a large drop in Pearson score from validation set
to test set, in the range of 0.1-0.2,11 which sug-
gests that there is a difference in data distribution
between the two sets. On the validation set, KIWI-
DOC and KIWI-DOC-IOB obtain comparable Pear-
son correlation, albeit for different MQM methods.
While both models perform comparably in the sen-
tence score prediction (regression), the KIWI-
DOC-IOB system clearly outperforms KIWI-DOC

on the MQM scores that are computed directly
from the predicted annotations (direct). The
improvements made by linear regression on the val-
idation set do not consistently translate to the test

11The only exception is KIWI-DOC-IOB-direct, which
performanced equally poorly on both.

set. This suggests that our method of search over
features for the linear regression is overly optimiz-
ing the performance to the validation data. It may
also reflect our choice to train the linear model on
system predictions on training data.

Table 5 shows the results for the annotation task.
The best results are obtained by KIWI-DOC. Sur-
prisingly, the strong scoring results of KIWI-DOC-
IOB with direct (derived from predicted anno-
tations) do not translate to good results on the an-
notation F1. The difference between the models
is caused by the different trade-off between pre-
cision and recall: KIWI-DOC-IOB produces less
annotations that are more precise, but KIWI-DOC

catches much more errors.12 The most likely cause
for this is the more complex tag-set and constrained
decoding of KIWI-DOC-IOB.

5 Conclusions

Our approach to this year’s edition of the QE shared
task was simplicity. Our submissions consisted
of either single models, or simple ensembles of
multiple runs of the same model. Moreover, we
used multi-task models in Task 2, where a system
was trained on all three possible outputs (target
and source word level and sentence level). We
implemented a new version of OpenKiwi and used
it as our baseline. It significantly outperformed the
official shared task baseline across the board, which
was based on the previous version of OpenKiwi.
Finally, we showed that having access to NMT
models enables using glass-box approaches to QE,
which in turn improves performance when used in

12On the validation set KIWI-DOC-IOB predicted 2555 an-
notations, whereas KIWI-DOC predicted 4028 (the gold set
has 5626 annotations). Extending the output message of the
annotation evaluation script allowed us to further validate this
hypothesis on the validation set: for KIWI-DOC-IOB preci-
sion/recall is 0.6287/0.3322; for KIWI-DOC precision/recall is
0.4549/0.6092.
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combination with a black-box QE system.
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A Hyper-parameters

Table 6 shows the hyperparameters used in Task 1.

Language
Pair

Hyper-parameters
hidden size bottleneck size lr warmup steps freeze steps

EN-DE 900 200 1.00E-05 6535 750
EN-ZH 700 300 7.00E-06 3280 4375
RO-EN 900 200 9.00E-06 2625 5687
ET-EN 500 200 7.00E-06 655 3935
NE-EN 900 200 1.20E-05 2625 3060
SI-EN 900 200 7.00E-06 5250 5250
RU-EN 700 200 1.70E-05 3800 6125

Table 6: Hyper-parameters of the best models trained for each language pair in Task 1. 70 trials were performed for
each search, using the OPTUNA framework (Akiba et al., 2019), and hyper-parameter values were sampled with
the TPE (Tree-structured Parzen Estimator) algorithm. The criterion for trial selection was r Pearson correlation
to validation set DA’s.


