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Abstract

This paper describes the submissions of the
NiuTrans Team to the WMT 2020 Quality
Estimation Shared Task (Specia et al., 2020).
We participated in all tasks and all language
pairs. We explored the combination of transfer
learning, multi-task learning and model ensem-
ble. Results on multiple tasks show that deep
transformer machine translation models and
multilingual pretraining methods significantly
improve translation quality estimation perfor-
mance. Our system achieved remarkable re-
sults in multiple level tasks, e.g., our submis-
sions obtained the best results on all tracks in
the sentence-level Direct Assessment task1.

1 Introduction

Quality estimation (QE) evaluates the quality of
machine translation output without human refer-
ence translations (Blatz et al., 2004). It has a wide
range of applications in post-editing and quality
control for machine translation.

We participated in all tasks and language pairs
at the WMT 2020 QE shared task2, including
sentence-level Direct Assessment tasks, word
and sentence-level post-editing effort tasks, and
document-level QE tasks. We investigated trans-
fer learning and ensemble methods using recently
proposed multilingual pre-trained models (Devlin
et al., 2019; Conneau et al., 2020) as well as deep
transformer models (Wang et al., 2019a). Our main
contributions are as follows:

• We apply multi-phase pretraining (Gururan-
gan et al., 2020) methods under both high- and
low-resource settings to QE tasks.

1Our number of submissions exceeded the daily or total
limit.

2http://www.statmt.org/wmt20/
quality-estimation-task.html

• We incorporate deep transformer NMT mod-
els into QE models.

• We propose a simple strategy to convert
document-level tasks into word- and sentence-
level tasks.

• We explore effective ensemble methods for
both word- and sentence-level predictions.

Results on different level tasks show that our
methods are very competitive. Our submissions
achieved the best Pearson correlation on all lan-
guage pairs of the sentence-level Direct Assess-
ment task and the best results on English-Chinese
post-editing effort tasks.

We present methods for the sentence-level Di-
rect Assessment task in §2. Then in §3 and §4,
we describe our approaches to post-editing tasks
and document-level tasks, respectively. System en-
semble methods are discussed in §5. We show the
detail of our submissions and the results in §6. We
conclude and discuss future work in §7.

2 Sentence-level Direct Assessment Task

The sentence-level Direct Assessment task is a new
task where sentences are annotated with Direct
Assessment (DA) scores by professional transla-
tors rather than post-editing labels. DA scores for
each sentence are rated from 0 to 100, and partici-
pants are required to score sentences according to
z-standardized DA scores. The DA task consists of
seven tracks for different language pairs and one
multilingual track. Submissions were evaluated in
terms of Pearson’s correlation metric for the DA
prediction against human DA (z-standardized mean
DA score, i.e., z-mean).

2.1 Datasets and Resources
This task contains 7K sentences for training and 1K
sentences for development on each language pair,

http://www.statmt.org/wmt20/quality-estimation-task.html
http://www.statmt.org/wmt20/quality-estimation-task.html
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including sentence scores and word probabilities
from the NMT models. The organizer also pro-
vided parallel data used to train the NMT models
except for Russian-English, ranging from high re-
source (En-De, En-Zh), medium resource (Ro-En),
to low-resource (Et-En, Ne-En, Si-En).

In addition to the official data, we also used some
multilingual pre-trained models for fine-tuning, in-
cluding multilingual BERT3 (mBERT) and XLM-
RoBERTa4 (XLM-R).

2.2 Unsupervised Quality Estimation

Our baseline system was built upon unsupervised
quality estimation methods proposed by Fomicheva
et al. (2020), which use out-of-box NMT models
as sources of information for directly estimating
translation quality. We utilized the output sen-
tence probabilities from NMT models as indica-
tors for QE tasks. Given the input sequence x,
suppose the decoder generates an output sequence
y = y1, . . . , yT of length T, the probability of gen-
erating y is factorized as:

p(y|x, θ) =
T∏
t=1

p (yt|y<t,x, θ) (1)

where θ represents model parameters. The out-
put probability distribution p (yt | y<t,x, θ) is pro-
duced by the decoder over the softmax function.

We considered the sequence-level translation
probability normalized by length:

TP =
1

T

T∑
t=1

log p (yt|y<t,x, θ) (2)

And the probability generated from perturbed
parameters with dropout, we performed N times
inference and used the averaged output:

D-TP =
1

N

N∑
n=1

TPθ̂n (3)

2.3 Multi-phase Pretraining

Fine-tuning pre-trained language models have be-
come the foundation of today’s NLP (Devlin et al.,
2019; Conneau et al., 2020). Recent advances in
pre-trained multilingual language models lead to
state-of-the-art results on QE tasks (Kim et al.,

3https://huggingface.co/
bert-base-multilingual-cased

4https://github.com/facebookresearch/
XLM

2019; Kepler et al., 2019a). Similar to Gururan-
gan et al. (2020), we continued training multilin-
gual pre-trained models in both domain- and task-
adaptive manners.
Domain-adaptive pretraining uses a straightfor-
ward approach–we continue pretraining mBERT
and XLM-R on the parallel corpora provided by the
organizers, which is used to train the MT systems.
Unlike the training data labeled with DA scores,
the parallel data for different language pairs vary.
The corpus of pre-trained language models also
has the problem of data imbalance. In practice, we
increased the training frequency of low-resource
data.
Task-adaptive pretraining refers to pretraining
on the unlabeled training set for a given task. Com-
pared to domain-adaptive pretraining, it uses a far
smaller corpus, but the data is much more task-
relevant. We used the same models as the domain-
adaptive pretraining.

2.4 Fine-tuning

Similar to previous work (Kepler et al., 2019a;
Yankovskaya et al., 2019), we used models trained
with the above methods as feature extractors for
the sentence-level scoring tasks. We treated the
scoring task as a regression task. Following stan-
dard practice, we added a separator token between
source and target sentences and passed the pooled
representation from the encoder to a task-specific
feed-forward layer for classification. We used the
z-standardized mean DA score as the ground truth
and minimized the mean squared error during train-
ing.

3 Word and Sentence-Level Post-editing
Effort Task

This task consists of the word- and sentence-level
tracks to evaluate post-editing effort. The word-
level tasks predicts OK or BAD tags in both source
and target sequences. It evaluates the Matthews cor-
relation coefficient5 (MCC) for tags. The sentence-
level task predicts HTER scores, which is the ratio
between the number of edits needed and the ref-
erence translation length. It evaluates Pearson’s
correlation for the HTER prediction. There are
two language pairs in both the word- and sentence-
level tasks, including English-German (En-De) and
English-Chinese (En-Zh).

5https://en.wikipedia.org/wiki/
Matthews_correlation_coefficient

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
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3.1 Datasets and Resources

The labeled data consists of 7K sentences for train-
ing and 1K sentences for development for each
language pair. We used the additional parallel
data provided by the organizers to train predic-
tors, containing about 20M En-Zh sentence pairs
and 23M En-De sentence pairs after pre-processing
with the NiuTrans SMT toolkit (Xiao et al., 2012).
Pretrained language models include mBERT and
XLM-R, were also used for Task 2.

3.2 Predictor-Estimator Models

The predictor-estimator architecture and its vari-
ants (Kim et al., 2017; Kepler et al., 2019b) had
established state-of-the-art on WMT QE tasks. The
system consists of a word prediction module (pre-
dictor) trained from additional large-scale parallel
corpora and a quality estimation module (estimator)
trained from quality-annotated data.

For the sentence-level tasks and target-side word-
level tasks, we employed the official bi-RNN
predictor-estimator trained with OpenKiwi (Ke-
pler et al., 2019b) as the baseline. Similar to Wang
et al. (2019b), we used NMT models trained with
back-translation as predictors.

The original predictor and estimator use RNNs
to encode the source and predict tags or scores.
We also implemented two transformer-based pre-
dictors which replace the RNN with transformer
(Vaswani et al., 2017) or deep transformer archi-
tectures (Wang et al., 2019a; Li et al., 2019). We
compared different tokenizing strategies such as
word segmentation and byte pair encoding (BPE)
(Sennrich et al., 2016) for all language pairs.

3.3 Multi-task learning

The word- and sentence-level tasks are highly re-
lated to their annotations are commonly based on
the HTER measure. We used a linear summation
of sentence-level and target word-level objective
losses as follows:

L = Lmt.word + Lmt.gap + LHTER (4)

where the components denote the loss of target-
word, target-gap, and predictions for HTER score.

We also trained models using source sentence
and origin/post-edited MT output to predict the
source-side word level tags:

LSRC = Lsrc−mt + Lsrc−pe (5)

4 Document-Level QE Task

This task aims to predict document-level quality
scores as well as fine-grained annotations. Each
document is annotated for translation errors with
word span, severity, and error type6. Additionally,
there are document-level scores (MQM scores) gen-
erated from the error annotations using the method
proposed by Torrón and Koehn (2016). The anno-
tation task evaluates F1 scores on the gold anno-
tations. The scoring task evaluates the Pearson’s
correlation between the gold and predicted MQM
scores.

4.1 Datasets and Resources

We also used 35M WMT14 En-Fr parallel data to
train our predictors for the annotation task except
for the official 1,448 En-Fr documents. For the
scoring task, we used pre-trained language models,
including mBERT and XLM-R.

4.2 Document-level Annotating Task

Following Kepler et al. (2019a), we treated the
document-level annotation problem as a word-level
task, with each sentence processed separately. We
tokenized the training set and tagged each token
with an OK/BAD tag. Specifically, each token was
labeled as BAD if it contains any character in er-
ror spans. Besides token tags, we labeled a gap as
BAD if a span begins and ends exactly in its bor-
ders. Otherwise, it was labeled as OK. During the
test time, we mapped BAD tags to annotations in a
single scheme: (a) continuous labels were merged
into an error annotation; (b) individual labels were
directly converted to error annotations. We ignored
the severity information and always treated the er-
ror as the most frequent ’major’.

We adopt the predictor-estimator architecture for
this task. We implemented our predictors with deep
transformers with relative position representation.
The settings for model training are described in
(Hu et al., 2020). We also compared two tokeniza-
tion schemes, including word-level tokenization
and BPE. Similar to Task 2, we jointly trained our
models with target-side word-level and word gap
tasks.

4.3 Document-level Scoring Task

We treated the document-level scoring task as a
sentence-level task with a simple mapping scheme.

6http://www.qt21.eu/mqm-definition/
definition-2015-12-30.html

http://www.qt21.eu/mqm-definition/definition-2015-12-30.html
http://www.qt21.eu/mqm-definition/definition-2015-12-30.html
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We also ignored all critical and minor errors, and
thus the MQM score for each document is calcu-
lated by:

MQM = 100× (1− W × Countmajor
Countword

) (6)

where Countmajor and Countword are the count
of major errors and total words, respectively. W
denotes the weight of major errors, which is fixed
at 5 in our experiments.

Then we score each sentence according to the
number of errors it contains:

Scoresent = 100−W × Countmajor (7)

We applied the same fine-tuning strategies, as
mentioned in Sec 2, to this task. During the test
time, the count of errors was retrieved from the
predicted score of all sentences. A document score
is 0 if it has too many errors.

5 System Ensemble

In addition to training models for each task, we also
explored effective ensemble methods to combine
outputs for different level tasks.

5.1 Word-level ensemble
We used two approaches to ensemble word-level
predictions for Task 2 and Task 3.
Voting-Based Ensemble. Voting is the easiest
method to combine predictions from multiple mod-
els. We chose the label with the most votes for each
token as the output.
Averaging-Based Ensemble. Similar to Kepler
et al. (2019a), we used Powell’s conjugate direc-
tion method to optimize the task metric (MCC or
F1 score) and learn the weights of different systems
on the development set.

5.2 Sentence-level ensemble
We averaged the predicted scores from multiple
models associated with different weights. The
weights were also learned on the development set
using Powell’s method. We removed outliers from
the candidate pool to make the prediction more
stable.

6 Experiments and Results

6.1 Task 1
Below we describe our systems for Task 1.
Unsupervised baseline. As described in §2, our

Pair TP Score D-TP Score
En-De 0.249 0.273 (+10%)
En-Zh 0.330 0.348 (+5%)
Ro-En 0.648 0.693 (+7%)
Et-En 0.497 0.562 (+13%)
Ne-En 0.431 0.490 (+14%)
Si-En 0.423 0.469 (+11%)
Ru-En 0.518 0.535 (+3%)

Table 1: Pearson (r) correlation between unsupervised
methods and human DA judgements on the validation
data for sentence-level DA tasks. We mark improve-
ments of D-TP by percentage.

Pair mBERT XLM-R Ensemble
En-De 0.516 0.555 0.562
En-Zh 0.512 0.533 0.551
Ro-En 0.888 0.911 0.917
Et-En 0.809 0.820 0.833
Ne-En 0.816 0.821 0.830
Si-En 0.607 0.670 0.698
Ru-En 0.728 0.796 0.816
Multilingual - - 0.732

Table 2: Pearson (r) correlation between pretraining
methods and human DA judgements on the test data for
sentence-level DA tasks. We only present the results of
XLM-R-large for the second method.

baseline system leverages the output probabilities
from NMT models to assess the sentence score. We
performed 20 inference passes and set the dropout
rate as 0.3 for all language pairs.
Pretraining and fine-tuning. We experimented
with different pre-trained models for multi-phase
pretraining and fine-tuning. Specifically, we used
three model settings, including mBERT-base cased
(∼200M parameters), XLM-R-base (∼300M pa-
rameters), and XLM-R-large (∼600M parameters).
Systems for the first six language pairs in Table
2 were pre-trained on the parallel data while the
system for Ru-En was only trained on the task data.
We combined predictions on the first six language
pairs as the submission to the multilingual task.

As shown in Table 1, unsupervised QE indica-
tors obtained competitive results using sequence-
level probability from NMT models. Disturbing the
model parameters improves the performance of all
language pairs. We did not combine the predictions
from unsupervised methods into our submissions.

Table 2 lists the results of the system ensemble
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System Target Source
RNN-word 0.467 -
Transformer-word 0.511 -
Transformer-subword 0.542 0.292
Deep Transformer-subword 0.545 -
Ensemble 0.610 0.308

Table 3: Results of the English-Chinese post-editing
task. ‘word’ denotes the system uses word-level tok-
enization.

System Target Source
RNN-word 0.395 -
Transformer-word 0.413 -
Transformer-subword 0.451 0.285
Ensemble 0.500 0.347

Table 4: Results of the English-German post-editing
tasks.

with pretraining and fine-tuning. We combined pre-
dictions from 10 pre-trained models with three dif-
ferent settings: mBERT, XLM-R-base, and XLM-
R-large. We only report the results with the highest
Pearson (r) correlation on the test data. We observe
that larger models consistently outperformed small
ones for all language pairs. Besides, ensemble
methods significantly improved the performance
on the test set. It also shows that the quality estima-
tion of high-resource languages performs far worse
than low-resource languages.

6.2 Task 2

For En-Zh, we trained 5-10 single models for
each setting: token-based bi-RNNs (RNN-Token),
token-based transformer (Trans-Token), BPE-
based transformer (Trans-BPE), and BPE-based
deep transformer with 25 encoder layers (Deep
Trans). For En-De, we created three systems us-
ing the same architectures as En-Zh except for
the deep transformer. We applied the multi-task
learning strategies to the target-side word-level and
sentence-level tasks described as §3.

Table 3 shows the results on the English-Chinese
word-level task. Deep transformer and BPE tok-
enization bring the most gains to both the target-
side MCC. Results on the English-German task are
listed in Table 4. It shows that our ensemble meth-
ods are effective in boosting performance across
different tasks.

System F1 Score Pearson
Transformer-word 0.373 -
Transformer-subword 0.400 -
Deep Transformer 0.402 -
mBERT - 0.446
XLM-R - 0.489
Ensemble 0.418 0.494

Table 5: Results of the document-level tasks. The deep
transformer model contains 24 encoder layers and 6 de-
coder layers.

6.3 Task 3

Table 5 shows the results obtained by three dif-
ferent models and the ensemble on the annotation
task. BPE brings about 0.03 points improvements
of F1 scores on both the validation and test sets.
The system ensemble further pushes the score by
about 0.02. Table 5 also lists the results of the
scoring task. We report the results of two pretrain-
ing methods and their ensemble on the test data.
XLM-R outperformed the mBERT model by 0.04
points in the Pearson correlation, while the ensem-
ble brought a slight benefit.

7 Conclusion

This paper describes the submissions of the Niu-
Trans Team to the WMT 2020 QE task. We ex-
plored the combination of transfer learning, multi-
task learning, and model ensemble. Different level
tasks show that deep transformer NMT models
and multilingual pretraining methods significantly
boost QE models’ performance.

Although our system achieved impressive results
in all tasks and language pairs, there are still many
problems. For instance, the translation quality esti-
mation of low-resource languages performs much
better than that of high-resource. It raises the con-
cern of whether our model learns the evaluation
criteria instead of memorizing data, as suggested
in Sun et al. (2020). Besides, strong NMT models
help quality estimation, but can we use QE models
to improve NMT systems’ learning? We plan to
answer these questions in the future and promote
the joint improvement of QE and NMT models.
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