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Abstract

This paper presents our submission to the
WMT2020 Shared Task on Quality Estimation
(QE)1. We participate in Task 1 and Task
2 focusing on sentence-level prediction. We
explore (a) a black-box approach to QE based
on pre-trained representations; and (b) glass-
box approaches that leverage various indica-
tors that can be extracted from the neural MT
systems. In addition to training a feature-based
regression model using glass-box quality indi-
cators, we also test whether they can be used
to predict MT quality directly with no super-
vision. We assess our systems in a multi-
lingual setting and show that both types of
approaches generalise well across languages.
Our black-box QE models tied for the winning
submission in four out of seven language pairs
in Task 1, thus demonstrating very strong
performance. The glass-box approaches also
performed competitively, representing a light-
weight alternative to the neural-based models.

1 Introduction

Quality Estimation (QE) (Blatz et al., 2004; Specia
et al., 2009) is an important part of Machine Trans-
lation (MT) pipeline. It allows us to evaluate how
good a translation is without comparison to refer-
ence sentences. As part of the WMT20 Shared Task
on Quality Estimation, two sentence-level tasks
were proposed. In Task 1, participants are asked
to predict human judgements of MT quality gen-
erated following a methodology similar to Direct
Assessment (DA) (Graham et al., 2017). The goal
of Task 2 is to estimate the post-editing effort
required in order to correct the MT outputs and
measured using the HTER metric (Snover et al.,
2006).

1http://www.statmt.org/wmt20/
quality-estimation-task.html

∗
Equal contribution.

This year’s task is different from the previous
years in two important aspects: (i) the data includes
seven language pairs, which are very different both
typologically and in terms of translation quality;
and (ii) the participants were provided with neural
MT (NMT) models that were used for translation.
We take advantage of this set up to compare black-
box and glass-box approaches to QE. Furthermore,
we test both approaches in a multilingual setting.

The rest of this paper is organised as follows.
Section 2 describes the glass-box (2.1) and black-
box (2.2) QE methods that we explore in our sub-
missions. Section 3 describes the dataset used for
the WMT2020 Shared Task on Quality Estima-
tion. Section 4 provides our experimental settings,
whereas Section 5 presents the results. Conclusions
are given in Section 6.

2 Approach

Below we first describe our glass-box submissions
based on the quality indicators that can be obtained
as a by-product of decoding with an NMT system.
Second, we present our neural-based QE submis-
sions, which explore transfer learning with pre-
trained representations. In both cases, we describe
how QE is addressed as a multilingual task.

2.1 Glass-box

Glass-box approaches to QE are based on informa-
tion from the NMT system used to translate the
sentences, rather than looking at source and target
sentences as in black-box QE, or using external
resources. We rely on our previous work on glass-
box QE that explores NMT output distribution to
capture predictive uncertainty as a proxy to MT
quality. Specifically, we use three groups of unsu-
pervised quality indicators from Fomicheva et al.
(2020).

http://www.statmt.org/wmt20/quality-estimation-task.html
http://www.statmt.org/wmt20/quality-estimation-task.html
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Probability Features These features are based
on the output probability distribution from a deter-
ministic NMT system:

• Average word-level log-probability for the
translated sentence (TP);

• Variance of word-level log-probabilities
(Sent-Var); and

• Entropy of the softmax output distribution
(Softmax-Ent).

Dropout Features This group of features also
rely on output probability distribution but use un-
certainty quantification based on the Monte Carlo
dropout method to get more accurate QE results.
This method consists of performing several forward
passes through the network with parameters per-
turbed by dropout, collecting posterior probabilities
and using the resulting distribution to estimate pre-
dictive uncertainty (Gal and Ghahramani, 2016).

• Expectation (D-TP) and variance (D-Var)
over the NMT log-probability generated with
Monte Carlo dropout;

• A ratio of D-TP and D-Var as described in
Fomicheva et al. (2020) (D-Combo); and

• Lexical similarity between MT hypotheses
generated with Monte Carlo dropout (D-Lex-
Sim).

Attention Features We compute the entropy of
encoder-decoder attention weights for each target
token and then average token-level entropies to ob-
tain a sentence-level measure. Given that the NMT
systems used to generate the translations are based
on the Transformer architecture where attention is
computed at multiple layers and attention heads,
there are [Layers × Heads] of averaged entropies
for each sentence. Fomicheva et al. (2020) sum-
marise them by taking the average or minimum
value to obtain an unsupervised attention-based
metric. By contrast, here we use the averaged en-
tropies of attention weights coming from each head
and layer combination as features in our regression
model.

Algorithms We use the above groups of features
as input for Random Forest (Ho, 1995) and XG-
Boost (Chen and Guestrin, 2016) regression algo-
rithms. We also submitted the two best performing
indicators from Fomicheva et al. (2020) with no
supervision: D-TP and D-Lex-Sim.

Figure 1: Black-box QE model built on top of contex-
tualised representations (CR).

Multilinguality We hypothesise that system-
internal indicators described above are by and large
independent on the language pair, given that no
linguistic information is directly used. Therefore,
to build a multilingual QE system, i.e. a single
model that can be used to predict quality for mul-
tiple language pairs, we simply concatenate the
available data for all languages and use it for train-
ing our regression models. Note that we do not add
any language identification markers and the system
does not require them for making predictions. This
can be useful for multilingual translation systems
where the user does not need to identify the in-
put languages, and especially for zero-shot settings
where a given language pair may not have been
seen at training time.

2.2 Black-box

We explore a baseline neural QE model and a mul-
titask learning QE model, both of which are built
on top of pre-trained contextualised representations
(CR) such as BERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020).

Baseline QE model (BASE) Given a source sen-
tence sX in language X and a target sentence sY

in language Y , we model the QE function f by
stacking a 2-layer multilayer perceptron (MLP) on
the vector representation of the [CLS] token from
a contextualised representations model (CR):

f(sX , sY ) =W2 ·ReLU(

W1 · Ecls(s
X , sY ) + b1

) + b2

(1)

where W2 ∈ R1×4h, b2 ∈ R, W1 ∈ R4h×h and
b1 ∈ R4h. Ecls is a function that extracts the vec-
tor representation of the [CLS] token after encod-
ing the concatenation of sX and sY with CR and
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ReLU is the Rectified Linear Unit activation func-
tion. Note that h is the output dimension of Ecls.
We explore two training strategies: The bilingual
(BL) strategy trains a QE model for every language
pair while the multilingual (ML) strategy trains a
single multilingual QE model for all language pairs,
where the training data is simply pooled together
without any language identifier. We note that this
multilingual model here corresponds to a pooled,
single-task learning approach.

Figure 2: Multi-task learning QE model (MTL) with a
shared BERT or XLM-R encoder.

Multi-task Learning QE Model (MTL) We ex-
plore multi-task learning to determine whether hav-
ing parameter sharing across languages is benefi-
cial, and to what degree having language-specific
predictors can boost performance. We experiment
with a multi-task approach where we concurrently
optimise multiple QE BASE models that share pa-
rameters across languages. We jointly train two
types of models: 1) language-specific (LS), which
share parameters through a shared encoder but
have different prediction layers; and 2) a language-
agnostic (LA) model which also shares parameters
for the prediction layer. We refer to these two mod-
els as MTL-LA and MTL-LS.

As seen in Figure 2, the MTL-LS submodels
and MTL-LA submodel share a common BERT or
XLM-R encoder, while each submodel has its own
dedicated language-specific MLP. At training time,
we iterate through the MTL-LS submodels in a
round-robin fashion and alternate between training
the MTL-LA submodel and training the chosen
MTL-LS submodel. At test time, we can evaluate
a test set with either the MTL-LA submodel or the

MTL-LS submodel trained on the same language
pair as the test set.

BiRNN We compared the above approaches to
the BiRNN model from deepQuest (Ive et al.,
2018). The BiRNN model uses an encoder-decoder
architecture: it encodes both source and translation
sentences independently using two bi-directional
Recurrent Neural Networks (RNNs). The two re-
sulting sentence representations are concatenated
afterwards as the weighted sum of their word vec-
tors, generated by an attention mechanism. For pre-
dictions at sentence-level, the weighted representa-
tion of the two input sentences is passed through a
dense layer with sigmoid activation to generate the
quality estimates. This is a light-weight variant of
the black-box approaches above that does not rely
on heavy pre-trained representations.

3 Data

This year two sentence-level QE tasks are avail-
able. For Task 1 the participants are expected
to predict DA-style human judgements (Graham
et al., 2015), whereas the goal of Task 2 is
to estimate the post-editing effort (HTER). The
data for Task 1 includes six language pairs:
Sinhala-English (Si-En), Nepalese-English (Ne-
En), Estonian-English (Et-En), Romanian-English
(Ro-En), English-German (En-De) and English-
Chinese (En-Zh), where source sentences were ex-
tracted from Wikipedia articles. For Task 2, only
English-Chinese and English-German are available.
We also experimented with an additional dataset
collected by IQT Labs in collaboration with the
University of Sheffield. This is an Russian-English
(Ru-En) dataset that contains a combination of Rus-
sian Reddit forums (75%) (using the Reddit API)
and Russian WikiQuotes (25%). All MT outputs
were generated by Transformer-based NMT sys-
tems (Vaswani et al., 2017). All datasets contain at
least three DA judgements per MT segment by pro-
fessional translators (0-100), with absolute quality
scores standardised according to each annotator’s
mean and standard deviation. HTER labels were
obtained by having professional translators fixing
any errors in the translations, followed by using the
TER2 tool.

For each language pair the organisers provided
training set (7000 sentences), development set
(1000 sentences) and a blind test set (1000 sen-

2http://www.cs.umd.edu/˜snover/tercom/

http://www.cs.umd.edu/~snover/tercom/
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tences).

4 Settings

Glass-box To train proposed models, we used
RandomForest from sklearn library4 and XG-
Boost from xgboost5 package. All input features
are extracted from the NMT systems provided by
the shared task’s organisers. The number of fea-
tures for Probability and Dropout groups
does not depend on the parameters of the NMT
systems and is equal to 3 and 4, respectively. The
number of Attention features depends on the
NMT system and is equal to the number of layers
× the number of attention heads. We computed
the sentence-level attention entropies in two ways:
with and without the EOS token. For this reason,
the total number of Attention features equals
[Layers × Heads × 2]. This number is 96 for En-
De/Zh and Et/Ro-En, and 192 for Si/Ne-En.

For our final experiments we combined the train-
ing (7000 sentences) and development (1000 sen-
tences) sets, set a grid for the hyperparameters of
our regression models and performed 5-fold cross-
validation to choose the best hyperparameters.

Black-box We optimised our neural models with
Adam (Kingma and Ba, 2015) and used the same
learning rate (1e−6) for all experiments. We trained
each model on an Nvidia V100 GPU for 20 epochs
with batch size of 8. Our final submission is an
ensemble that combines the outputs from differ-
ent variants of BASE and MTL QE models trained
with different objective functions (mean squared er-
ror loss and huber loss) and contextualised encoder
(BERT and XLM-R). We also included variants that
use token-level log-probabilities from the NMT
models as additional features. Each variant was
trained 5 times with different random seeds. We
used random forest (Breiman, 2001) to learn the en-
semble. We set n estimators to 500 and used
the default values in sklearn for other hyper-
parameters.

3Results for the glass-box systems presented are slightly
different from the official task results. The reason is that here
we only show the results for the regression model trained with
XGBoost, whereas both XGBoost and Random Forest models
were submitted to the task.

4https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
RandomForestRegressor.html

5https://xgboost.readthedocs.io/en/
latest/python/index.html

5 Results

In this section, we present and analyse the results
for our submissions to Task 1. We provide a
general comparison of the glass-box and black-box
systems and also look at some specific aspects of
their performance.

5.1 Overall Results

Table 1 shows the results of our submissions to
Task 1. Besides Pearson correlation for each
language pair, column Avg shows the average cor-
relation across language pairs for each presented
model, which corresponds to “multilingual” sub-
task from the organisers.6 Note that although it
was not required for the multilingual task to have
a single QE system serving multiple languages,
we build such systems for our multilingual experi-
ments. The last column in Table 1 shows the num-
ber of parameters for each model. In the case of
glass-box systems this corresponds to the number
of features.7

The first group of systems in Table 1 corresponds
to the glass-box approach including the unsuper-
vised metrics and feature-based regression mod-
els (see Section 2.1).8 Feature-based systems in-
clude models trained on a single language pair
(Mono-LP), models based on multiple language
pairs (Multi-LP) and an ensemble based on mod-
els trained with different amounts of data (see dis-
cussion below). The next group of systems corre-
sponds to the black-box approach presented in Sec-
tion 2.2. Besides the models based on pre-trained
representations, we include BiRNN, a light-weight
neural-based QE model.

The last two rows in Table 1 show the results
of the baseline models prepared by the organisers
and the Top #1 model. The baseline system is a
neural predictor-estimator model trained with the
default parameters described in OpenKiwi (Kepler
et al., 2019). The predictor model was trained on
the parallel data used to train the NMT models.

6The multilingual sub-task did not include Ru-En and it
was not considered for the Avg column.

7As explained in Section 4, the number of features for
the glass-box regression models changes depending on the
language, as the corresponding NMT systems have different
number of layers and attention heads. Thus, we have 199
features for Si/Ne-En, and 103 features for the rest of the
language pairs.

8These experiments do not include Russian-English, as
the corresponding NMT system is an ensemble and it is not
evident how the glass-box features proposed by Fomicheva
et al. (2020) should be extracted in this case.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html
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Et-En Ro-En Si-En Ne-En En-De En-Zh Ru-En Avg # Params

Glass-box

Unsupervised
D-TP 0.64 0.69 0.46 0.56 0.26 0.32 – 0.49 –
D-Lex-Sim 0.61 0.67 0.51 0.60 0.17 0.31 – 0.48 –

Regression
Mono-LP 0.68 0.79 0.56 0.66 0.46 0.43 – 0.60 103/199
Multi-LP 0.68 0.79 – – 0.45 0.41 – 0.58 103/199
Ensemble 0.68 0.80 0.56 0.66 0.48 0.43 – 0.60 103/199

Black-box

BiRNN 0.33 0.50 0.39 0.35 0.10 0.18 – 0.31 13.3M
BERT

BASE-BL 0.67 0.83 0.50 0.68 0.39 0.44 0.65 0.59 180M
BASE-ML 0.70 0.85 0.53 0.69 0.42 0.45 0.65 0.61 180M
MTL-LA 0.69 0.85 0.51 0.68 0.47 0.44 0.66 0.61 197M
MTL-LS 0.69 0.84 0.51 0.69 0.47 0.45 0.65 0.61 197M

XLM-R
BASE-BL 0.78 0.89 0.64 0.78 0.44 0.48 0.76 0.67 564M
BASE-ML 0.80 0.89 0.67 0.78 0.50 0.49 0.78 0.69 564M
MTL-LA 0.80 0.89 0.68 0.80 0.50 0.48 0.78 0.69 594M
MTL-LS 0.81 0.89 0.66 0.80 0.51 0.49 0.77 0.69 594M
Ensemble (BL) 0.82 0.91 0.68 0.81 0.54 0.53 0.80 –
Ensemble (ML) 0.83 0.91 0.68 0.81 0.56 0.53 – 0.72 –
Baseline 0.48 0.69 0.37 0.39 0.15 0.19 – 0.38
Top #1 0.82 0.91 0.69 0.82 0.55 0.54 0.81 0.72

Table 1: Results for Task 1: Pearson correlation coefficients between human DA scores and predicted values
for WMT2020 test sets.3 Avg is the average Pearson correlation across language pairs. Baseline and Top #1
results are taken from http://www.statmt.org/wmt20/quality-estimation-task_results.html. Re-
sults that are not significantly different from the Top #1 submission are marked in bold. We submitted results from
ensemble (ML) to the multilingual subtask and results from ensemble (BL) to the per-language subtasks.

Below we summarize our observations:

General performance First, we observe that all
our submitted systems outperform the baseline. In
particular, the ensemble of models based on pre-
trained contextualised representations achieves a
very strong performance for some language pairs.
It is either the top system or perform on par with the
Top #1 submission, with no significant difference
for Et-En, Ro-En, Si-En and En-De.9

Black-box models We also note that our XLM-
R based models achieve a higher correlation with
human judgements than the models built on top of
BERT pre-trained representations, which can be
related to the fact that XLM-R is a more power-
ful model with a much higher number of parame-
ters. BiRNN, a light-weight neural-based QE sys-
tem that does not use language model pre-training,
shows lower correlation values, probably due to a
relatively small amount of data available for train-
ing.

Glass-box models We note that glass-box sys-
tems perform competitively compared to some of
the neural-based approaches. Interestingly, even

9Here and in what follows we use the Hotelling-Williams
test (Williams, 1959) to compute significance of the difference
between dependent correlations with p-value < 0.05.

the unsupervised submissions that rely only on
the information extracted from the NMT models
outperform the BiRNN and Predictor-Estimator
neural-based QE systems, thus highlighting the
benefit of this approach in a setting where a light-
weight model is required (thus disallowing the use
of BERT-style models fine-tuned on the QE task)
and the amount of available training data is small.
Regression-based models always improve on the
individual unsupervised features for all language
pairs (see Section 5.4 for discussion) and achieve
comparable results to the BERT-based black-box
systems.

5.2 Does model ensembling improve
performance?

Ensembling multiple models is known to boost per-
formance. We test whether this method improves
the results for our systems. To produce ensemble
for the glass-box approach, we computed an av-
erage of the predictions from the models trained
with different amounts of data (see Section 5.5). As
shown in Table 1, there is no difference between
ensemble and individual models. For the black-box
approach ensemble is produced by combining vari-
ous types of models as described in Section 4. The
ensemble of neural models provides a significant

http://www.statmt.org/wmt20/quality-estimation-task_results.html
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boost in performance at the cost of a very large
number of parameters.

5.3 Multilingual models
For some MT production scenarios it is more con-
venient to have one multilingual QE model instead
of having one model per language pair. We test
how well the QE systems discussed in this paper
perform in a multilingual setting. For the glass-box
approach, we concatenated all training and devel-
opment sets for En-De/Zh and Et/Ro-En together
and trained a single model using this data. We ex-
clude Si/Ne-En as we have a different number of
features for these language pairs (see Section 4).
Multilingual systems for the black-box approach
are described in Section 2.2.

As can be seen from Table 1, both the glass-box
and the black-box multilingual systems obtained
results comparable to the models trained for indi-
vidual language pairs. Thus, for the purposes of
QE task both glass-box features and multilingual
pre-trained representations generalise well across
languages.

5.4 How does each group of features affect
performance?

To investigate how each group of features affects
performance of the glass-box models, we trained
the models separately with different groups of
features and their combinations, and computed
Pearson correlation coefficients between predicted
scores and DA. For our experiments we have three
groups of features Dropout, Probability and
Attention, all combinations of two of them and
the combination of all three groups. We also show
the correlation for some of the individual features:
(i) translation probability (TP) as one of the sim-
plest things we can extract from an NMT system;
and (ii) two best performing unsupervised QE in-
dicators from Fomicheva et al. (2020): dropout
translation probability (D-TP) and dropout lexical
similarity (D-Lex-Sim) (see Section 2.1).

As can be seen from Table 2, the best results
among the individual groups of features are ob-
tained for either Dropout features (Et/Ro/Si/Ne-
En and En-Zh) or Attention features (En-
De/Zh). The combination of all three groups of
features and the combination of Dropout and
Attention showed the best results for all lan-
guage pairs.

Table 2 also shows the benefit of using supervi-
sion: combining features with XGBoost generally
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Figure 3: Pearson correlation coefficient between pre-
dicted values (glass-box models) of WMT2020 test sets
and DA.

leads to a better correlation than directly using the
best-performing individual QE indicators without
any training (‘Unsup’ rows).

5.5 How many sentences do we need to train
a QE system?

Here we investigate how the amount of available
training data affects the performance of our sys-
tems. For this purpose, we randomly selected 10%,
20% ... 100% of the data and trained our models.
We repeated data splitting and training of the mod-
els ten times; thus, we got 10 sets of predictions
for each amount of data, we computed Pearson
correlation coefficient between DA and predicted
scores and took an average of these 10 correlation
coefficients over each amount of data. As shown
in Figure 3, the performance across the different
amounts of training data with the glass-box models
is stable for all language pairs except for En-De.
Improvements over the best performing individual
feature for each language pair can be obtained even
with fairly small amounts of data.

Figure 4 shows the performance across different
amounts of data for the BASE-BL black-box mod-
els. In this case, we observe larger improvements
when more data is available for training. However,
quite surprisingly, relatively high performance is
achieved even with 5% and 10% of the data.

5.6 Task 2: HTER prediction

Besides experiments with DA labels, we used the
same approach to train models with HTER data for
En-De and En-Zh language pairs. Table 3 shows
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Et-En Ro-En Si-En Ne-En En-De En-Zh

Ty
pe

of
fe

at
ur

es

Attention 0.519 0.722 0.455 0.583 0.382 0.353
Dropout 0.669 0.751 0.548 0.638 0.206 0.352
Probability 0.525 0.670 0.508 0.568 0.189 0.329
Dropout+Probability 0.670 0.754 0.556 0.632 0.194 0.381
Attention+Probability 0.611 0.700 0.550 0.629 0.454 0.406
Attention+Dropout 0.679 0.791 0.554 0.659 0.452 0.429
All 0.678 0.793 0.556 0.657 0.464 0.427
Unsup:D-TP 0.642 0.693 0.460 0.558 0.259 0.321
Unsup:D-Lex-Sim 0.612 0.669 0.513 0.600 0.172 0.313
Unsup:TP 0.486 0.647 0.399 0.482 0.208 0.257

Table 2: Pearson correlation coefficients between human DA scores and predicted values for WMT2020 test sets.
The unsupervised results are taken from (Fomicheva et al., 2020). Results marked in bold are not significantly
outperformed by any other method.
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Figure 4: Pearson correlation coefficient between
predicted values (black-box BASE-BL models) of
WMT2020 dev sets and DA.

En-De En-Zh

Glass-box
Mono-LP 0.601 0.605
Ensemble 0.613 0.613
Baseline 0.392 0.506
Top #1 0.758 0.664

Table 3: Results for Task 2 (sentence-level):
Pearson correlation coefficient between HTER
and predicted values for WMT2020 test set.
The results of Baseline and the best models are
taken from http://www.statmt.org/wmt20/

quality-estimation-task_results.html.

Pearson correlation between the predictions and
HTER scores for glass-box systems.10 Interest-
ingly, the glass-box approach performs more com-
petitively when predicting HTER than when es-
timating DA scores, as the gap between our sub-
mission and the best performing system is smaller.
Thus, this type of judgements might be easier to
predict based on system-internal information from
NMT models.

6 Conclusions

We presented glass-box and black-box models sub-
mitted to the WMT2020 QE shared task. Black-
box models showed the results on a par with the
top submissions. Glass-box methods achieve from
moderate to strong linear correlation with human
judgments and can be used as a light-weight and
cost-effective alternative in a scenario where the
NMT model is available. Besides that, we con-
ducted experiments to test the performance of our
QE systems in a multilingual setting. We showed
that the performance of both approaches is com-
parable when training and predicting on the same
language pair, and when training a single model to
predict on multiple language pairs.
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