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Abstract

An important aspect of machine translation is
its evaluation, which can be achieved through
the use of a variety of metrics. To compare
these metrics, the workshop on statistical ma-
chine translation annually evaluates metrics
based on their correlation with human judge-
ment. Over the years, methods for measuring
correlation with humans have changed, but lit-
tle research has been performed on what the
optimal methods for acquiring human scores
are and how human correlation can be mea-
sured. In this work, the methods for evaluating
metrics at both system- and segment-level are
analyzed in detail and their shortcomings are
pointed out.

1 Introduction

In the past, machine translation (MT) metrics have
been extensively studied and evaluated, at both
system- and segment-level (Bojar et al., 2016, 2017;
Ma et al., 2018, 2019). When performing system-
level evaluation, the average score of a MT sys-
tem is taken into account. Segment-level evalu-
ation uses each sentence (segment) separately to
compute correlation. The results of these metric
evaluations are critical to the way MT metrics are
perceived. In particular the correlation with human
judgment is of great importance.

For this reason, an understanding for the work-
ings of the evaluation method is required. Propos-
als to identify relevant system-level human scores
have been discussed (Koehn, 2012; Sakaguchi et al.,
2014), but no comprehensive analysis on this topic
has been conducted. In particular, detailed studies
on the segment-level evaluation are neglected, al-
though it is an integral part of the metric evaluation.

Since the goal of a metric is to evaluate a trans-
lation as close as possible to a human’s rating, it
is important to clearly define the methods of deter-
mining human score and the methods of correla-

tion measurement. This work aims to present an
overview of the methods used in the evaluation, an-
alyze their strengths and weaknesses, and propose
solutions to some of the pitfalls of the methods.

2 Human Scores

To measure the correlation between the score of a
metric and the score of a human, a method of deter-
mining human scores is required. Thus, a person
has to judge the quality of a translated sentence.
This is not a simple task, as different people may
have different opinions about the exact quality of
the translation. Another aspect to consider is that
in order to calculate correlation, the score must
be quantifiable in some way. Thus, the methods
used to detect human judgment must use a suf-
ficient number of human judges for them to be
reproducible.

In the Workshop on Statistical Machine Trans-
lation (WMT), three different methods are used to
determine the human score: direct assessment (DA)
(Graham et al., 2017), relative ranking (RR) (Stano-
jevic et al., 2015) and, in recent years, relative
ranking out of direct assessment (DARR) (Bojar
et al., 2017).

2.1 Direct Assessment

The DA measures the quality of a translation on
a scale from 0 to 100, based on the adequacy and
fluency of the sentence. To obtain the score, the
human judges are provided with a reference trans-
lation and the output of a single MT system, which
makes the evaluation process monolingual. To en-
sure reproducibility, a large number of judges are
needed – at least 15 (Ma et al., 2019). Addition-
ally, scores are standardized (Graham et al., 2017)
to eliminate individual distortions, such as judges
who only provide high or low scores. Furthermore,
a form of quality control is applied to filter out
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judges who exhibit a high variance in comparison
to their peers.

Overall, DA is one of the best ways to obtain
human judgement. It provides a numerical score
that can be easily used in common statistical meth-
ods, such as Spearman’s ρ (Spearman, 1987) or
Pearson’s r (Pearson and Galton, 1895), at both the
segment- and the system-level. However, to obtain
statistically significant correlation measurements
and ensure reproducibility, a high number of hu-
man scores are required. For the segment-level it is
therefore infeasible to obtain DA scores. This leads
to the need to use a completely different method
for determining human judgements at the segment-
level. Another possibility is to establish a relative
ranking of the few obtained DA scores (DARR).

2.2 Relative Ranking

The RR produces, as the name implies, a ranking
between multiple translations. In WMT, the judges
are presented with five system outputs with the cor-
responding source and reference sentence, making
the evaluation process bilingual. Each judge ranks
the five sentences from the best to worst, taking
equality (tie) into account. To simplify the evalua-
tion, identical sentences from different systems are
collapsed into one.

The resulting relative ranking of five tuples is
not as straightforward to use for correlation calcu-
lation, since most correlation coefficients rely on
absolute ranking information. One approach to ob-
taining a correlation is to use a variant of Kendall’s
τ (Kendall, 1938; Machácek and Bojar, 2014). This
entails converting the scores produced by metrics
into relative rankings. Naturally, this has the dis-
advantage that the fine granularity of the scores is
lost. However, this method can be used for both
segment- and system-level correlation calculations.

Another option used in WMT16 (Bojar et al.,
2016) is to convert relative rankings to absolute
rankings through TrueSkill (Herbrich et al., 2006;
Sakaguchi et al., 2014). This method uses the rela-
tive rankings to estimate an absolute score for each
system, which is then used to calculate the correla-
tion (by Pearson’s r or Spearman’s ρ). The score
of each system is represented by a Gaussian distri-
bution, with the mean of the predicted score of the
system and the variance of the confidence in that
prediction. Due to the nature of the method, it can
only be used for the system-level correlation calcu-
lation. This, in turn, makes it difficult to interpret

the results since normally two different correlation
calculation methods must be used for the different
evaluation levels.

2.3 DARR

Due to the difficulty of obtaining enough DA scores
for a statistically significant segment-level corre-
lation calculation, Bojar et al. (2017) introduced
the concept of obtaining a relative ranking from the
DA used at the system-level and termed DARR. For
this purpose, all possible sentence pairs, for which
a DA score is available, are generated between all
participating systems. These sentence pairs are
then filtered to remove ties. The criterion used by
Ma et al. (2019) is to remove sentence pairs, whose
difference on the DA scale is less than 25. This
should lead to the removal of all ties and produce an
RR that scores the systems only as better or worse.
However, this is not the case. Table 1 shows the
RR of sentences with a sentence identifier (SID)
on different language pairs (LP). The system that
has achieved a better translation according to the
DA score for these sentences is under the column
better. In this case, the sentences generated by
both systems are completely identical, as can be
seen in Table 2, although they have been classified
as different according to the DARR method. Such
identical sentences occur across multiple language
pairs in the WMT19 data set.

Another important aspect is that tie filtering is
not applied to the metrics scores and therefore ties
are possible for metrics. This makes the correlation
calculation, especially for identical sentences, a dif-
ficult task. It is therefore of interest to determine
how many identical sentences are present after fil-
tering. For this reason, a brief analysis is carried
out on the basis of the WMT19 data using six lan-
guage pairs, which is shown in Table 3. There
are no identical sentences for the language pairs
Gujarati→English (gu-en) and Kazakh→English
(kk-en). However, for all other language pairs,
especially Chinese→English (zh-en), there are
identical sentences. Note that these identical sen-
tences are present after the tie filtering. Table 3 also
shows the amount of ties produced by two metrics:
YiSi-1 (Lo, 2019) and EED (Stanchev et al., 2019).
It is clear that a significant amount of the ties for
the two metrics come from identical sentences.

In addition, a considerable amount of data is
eliminated. Figure 1 depicts the effect of varying
the equivalence threshold, i.e. cases, in which the
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LP data SID better worse
de-en newstest2019 1200 uedin.6749 UCAM.6461
zh-en newstest2019 604 Baidu-system.6940.zh-en MSRA.MASS.6996.zh-en
en-zh newstest2019 1351 NEU.6830 UEDIN.6158

Table 1: RR human scores for segment-level with their corresponding sentences from WMT191.

LP SID system-generated hypotheses (identical for both systems)
de-en 1200 Music cabaret: Gender understanding with heart - Wolbeck - Westphalian News
zh-en 604 China Resources Beer closed at HK $28.85 on Friday, down nearly 4.5% in the past month.
en-zh 1351 他还希望赋予议会更大的权力来建造新的住房。

Table 2: Corresponding sentences from Table 1 for the two systems.

LP #sentences #identical YiSi-1 EED

sentences #ties #ties
gu-en 31k 0 2 27
kk-en 27k 0 74 115
zh-en 31k 152 336 361
en-gu 11k 5 8 13
en-kk 18k 23 53 64
en-zh 19k 84 205 455

Table 3: Number of identical sentences vs. ties in the
WMT19 corpus used for human correlation.

difference in DA scores is below the specified value,
are considered as ties. Note that the threshold in-
fluences the amount of data used immensely. By
having virtually no threshold (a threshold of 1) the
average number of sentences is five times higher
than when using a threshold of 50. The threshold
of 25 used by WMT19 almost halves the amount
of data used to acquire the correlation.

Figure 1: The average number of sentences
over different language pairs (to-English and
from-English directions) when excluding ties
based on various equivalence thresholds.

Overall DARR provides a method for calculating
the correlation at the segment-level in a scenario
where there is not enough DA data. However, re-
moving ties as part of the human component makes
the evaluation unfair. This is aggravated by the fact
that after DA-based tie filtering, not all ties are suc-
cessfully removed. One possible solution, which
remains to be tested, is to consider the ties of the
human component carefully. This would at least
equal the domain of metrics and human scores.

3 Measuring the Correlation

Obtaining human scores is only part of the corre-
lation calculation. The other one is to use both
human and metric scores to compute their similar-
ity or correlation. The case, where both human and
metric scores are represented by absolute values, is
straightforward to compute using methods such as
Pearson’s r or Spearman’s ρ. However, DA relies
on a large amount of annotators that cannot always
be guaranteed, especially at the segment-level. In
the case where RR or DARR is used for human
scores, this task is not that easy. For this reason,
the focus here is on the case where a form of RR is
used – typically for the segment-level correlation
calculation.

As previously mentioned, WMT uses a form
of Kendall’s τ to obtain a correlation given the
relative ranking. The coefficient definition in its
most general form is shown in Equation (1)

τ =
|concordant− discordant|
|concordant + discordant|

, (1)

where the concordant pairs denote cases in which
there is agreement between the metric and the hu-

1Scripts and data from:
http://ufallab.ms.mff.cuni.cz/˜bojar/
wmt19-metrics-task-package.tgz

http://ufallab.ms.mff.cuni.cz/~bojar/wmt19-metrics-task-package.tgz
http://ufallab.ms.mff.cuni.cz/~bojar/wmt19-metrics-task-package.tgz
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man score, and the discordant pairs cases in which
there is disagreement.

To formally define agreement and disagreement,
a matrix can be used as described by Machácek
and Bojar (2014). The various matrix formulations
that have been used in WMT over the years are
shown in Table 4. For metric scores to be inter-
pretable in these matrices, a relative ranking must
be constructed from the absolute scores for each
participating metric. This is achieved by perform-
ing a pairwise comparison of the participating sys-
tems at the segment-level, taking into account ties.
All three matrices treat matches and mismatches
identically:

• discordant pairs are always cases where there
are disagreements between the human and
metric scores: {<,>} or {>,<},

• concordant pairs are always cases where the
scores match: {<,<} or {>,>}.

The only difference between the three methods is
the treatment of ties.

Table 4a ignores the existence of ties. However,
this is not desirable since ties are possible for met-
rics. Therefore, metrics are not evaluated on the
same amount of sentences. This can be particularly
detrimental to metrics that produce a large number
of ties. For example, a metric with 99 ties and
1 concordant pair would achieve perfect correla-
tion, while a metric without ties and 70 concordant
and 30 discordant pairs would give a correlation of
0.4. The discrepancy in the results due to the data
difference is evident.

On the other hand, incorporating ties while not
considering human score ties can also lead to un-
desirable results. In Table 4c, which is used in
WMT19, metric ties are considered as a discor-
dant pair {<,=} and {>,=}. Since ties are not
defined (or included) in human scores, every tie
produced by a metric results in a discordant pair.
This in turn reduces its correlation. Thus, a “per-
fect” metric would never produce a tie between two
sentences. This assumption does not reflect reality.
In addition, the matrix is not symmetric since there
are more possible discordant pairs than concordant
ones. This means that a reasonable interpretation
of the negative correlation is not possible. There-
fore, metrics that have a negative correlation, such
as TER (Snover et al., 2006), CHARACTER (Wang
et al., 2016) and EED (Stanchev et al., 2019), must
be mapped from an error (or edit) rate (E) to an

accuracy score to ensure a relatively fair evaluation.
This is not trivial, as there is no standard way to
convert these metrics into the accuracy rate: neither
1− E nor −E is optimal.

A middle ground between the penalization and
the ignoring of ties is the matrix in Table 4b. The
ties are not penalized directly, but affect the overall
correlation since they are part of the denominator:

τ =
|concordant− discordant|

|concordant + discordant + ties|
(2)

Since there is no hard penalization for metrics
that produce more ties, such metrics are at a dis-
advantage. For example, a metric with 20 ties and
80 concordant pairs would achieve a correlation
of 80/(80 + 20) = 0.8, although all non-tie pairs
achieve perfect correlation. On the other hand, a
metric that overproduces ties, for example, with 80
ties and 20 concordant pairs, would have a correla-
tion of 20/(20 + 80) = 0.2. It can also be argued
that measuring the correlation on metrics with a
too high percentage of ties is not significant, since
there are too few sentence pairs that are concordant
or discordant.

One possible solution to the problem is shown
in Table 5. The cases where there is clear agree-
ment or disagreement between humans and metrics
remain unchanged. In cases of tie disagreements,
a soft penalization is added. This soft penalization
is realized the same manner as in Table 4b using
Equation (2). In the case where both the metric and
human scores tie the two systems, a concordant pair
(1) for accuracy-based metrics and a discordant pair
(-1) for error rate-based metrics are given. This al-
lows the process to be symmetrical and avoids the
problem of having to map error rate to accuracy
or vice versa. In addition, ties can now positively
affect the correlation and all metrics are evaluated
on the same amount of data. Naturally, this alter-
ation of the evaluation method requires that ties
be included in the RR. When using DARR, this
can be achieved by considering all pairs, where the
DA score difference is less than 25, and where the
system translations are identical, as ties. A disad-
vantage of this method is that a distinction has to
be made between metrics that aim for a strong neg-
ative correlation and metrics that aim for a strong
positive correlation. Moreover, the exact range,
where a tie is considered, is not necessarily clear.
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Metric
< = >

H
um

an < 1 X -1
= X X X
> -1 X 1

(a) No tie penalization

Metric
< = >

H
um

an < 1 0 -1
= X X X
> -1 0 1

(b) Soft tie penalization

Metric
< = >

H
um

an < 1 -1 -1
= X X X
> -1 -1 1

(c) Hard tie penalization

Table 4: Kendall’s τ evaluation matrices (Machácek and Bojar, 2014; Ma et al., 2019).

Metric
< = >

H
um

an < 1 0 -1
= 0 {1,-1} 0
> -1 0 1

Table 5: Integration of human ties in Kendall’s τ .

4 Discussion

The MT metric evaluation is an area that needs
further investigation. This work gives an overview
of the methods used so far and highlights some of
their shortcomings. The system-level assessment
currently seems to be good, but the evaluation meth-
ods at the segment-level still need to be explored (in
particular, if there is not enough DA data to directly
calculate the correlation at the segment-level):

• It might not be a good idea to rule out tie
cases: in theory, there are identical transla-
tions and translations of the same quality, and
the metrics should be able to give them the
same score; in practice, we have shown that
excluding all tie cases eliminated a large pro-
portion of the scores collected, which will
have a significant impact on the final results.
However, it is difficult to clearly define the
tie cases for human evaluations, as in DA, on
a scale from 0 to 100, different human anno-
tators can give different scores for identical
translations.

• The threshold for tie cases is not well defined.
Further studies on the threshold value can
be carried out. And also whether a thresh-
old should be applied to the automatic metric
scores. This study itself may not be a theoreti-
cally well-defined task, but some insight could
be gained by examining the performance of
various metrics under different thresholds.

• The used correlation coefficient is not sym-

metrical. Then the metrics with negative cor-
relations have to be preprocessed before the
evaluation, which can lead to inconsistencies.
The proposed solution may also have potential
problems as described, but it is worth doing
further studies to define a better correlation
coefficient.

In general, the task of creating a metric evaluation
that is fair and reproducible for all metric types
remains to be solved and deserves more attention
and study.
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