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Abstract

WebNLG+ offers two challenges: (i) map-
ping sets of RDF triples to English or Rus-
sian text (generation) and (ii) converting En-
glish or Russian text to sets of RDF triples (se-
mantic parsing). Compared to the eponymous
WebNLG challenge, WebNLG+ provides an
extended dataset that enable the training, eval-
uation, and comparison of microplanners and
semantic parsers. In this paper, we present the
results of the generation and semantic parsing
task for both English and Russian and provide
a brief description of the participating systems.

1 Introduction

The motivation behind the WebNLG challenges
is twofold. On the one hand, we seek to provide
a common benchmark on which to evaluate and
compare “micro-planners”, i.e., Natural Language
Generation (NLG) systems which can handle the
full range of micro-planning tasks including docu-
ment structuring, aggregation, regular expression
generation, lexicalisation and surface realisation
(Reiter and Dale, 2000). On the other hand, we are
interested in building connections with research
from the semantic web community which explores
the relationship between knowledge bases (KBs)
and natural language. There is a clear parallel be-
tween open information extraction (Open IE) and
RDF-based semantic parsing, and between RDF-
to-Text generation and KB verbalisation. Yet the
interaction between NLP and Semantic Web re-
search remains limited. By highlighting the NLP
tasks involved in mapping RDF triples and natural
language, we aim to stimulate cross-fertilisation
between NLP and Semantic Web research.

WebNLG datasets align sets of RDF triples with
text. While the 2017 WebNLG shared task required
participating systems to generate English text from
a set of DBpedia triples (Gardent et al., 2017b), the

2020 WebNLG+ challenge additionally includes
generation into Russian and semantic parsing of En-
glish and Russian texts. Thus the WebNLG+ chal-
lenge encompasses four tasks: RDF-to-English,
RDF-to-Russian, English-to-RDF and Russian-to-
RDF.

Timeline. The training and development data
was released on April 15, 2020, preliminary eval-
uation scripts on April, 30th and final evaluation
scripts on May, 30th. The test data was made avail-
able on September, 13th and the deadline for sub-
mitting system results was September, 27th. Auto-
matic evaluation results were announced on Octo-
ber, 9th and the first version of the human evalua-
tion results on November, 20th. The final version
of the human evaluation results were released on
November, 26th. Results were first released anony-
mously so that participants had the opportunity to
withdraw their systems.

In what follows, we summarise the main fea-
tures of WebNLG+ 2020. Section 2 describes the
datasets used for the challenge. Section 3 presents
the participating systems. Section 4 introduces the
evaluation methodology, Section 5 discusses the
participants results in the automatic evaluation and
Section 6 in the human evaluation. Finally, Sec-
tion 7 depicts the correlations between automatic
evaluation metrics and human ratings as well as
Section 8 concludes with pointers for further devel-
opments.

2 Data

2.1 English WebNLG
The English challenge data uses the version 3.01 of
the WebNLG corpus (Gardent et al., 2017a). This
version has undergone some significant changes

1For versioning see here: https://gitlab.com/
shimorina/webnlg-dataset

https://gitlab.com/shimorina/webnlg-dataset
https://gitlab.com/shimorina/webnlg-dataset


Train Dev Test (D2T) Test (SP)

RDF triple sets 13,211 1,667 1,779 752
Texts 35,426 4,464 5,150 2,155
Properties 372 290 220 201

Table 1: WebNLG 3.0 English data statistics. Proper-
ties: the number of unique DBpedia properties.

compared to the data used in WebNLG’2017. The
training data in 2020 consists of 16 DBpedia cate-
gories:

• the 10 seen categories used in 2017: Airport,
Astronaut, Building, City, ComicsCharacter,
Food, Monument, SportsTeam, University,
and WrittenWork;

• the 5 unseen categories of 2017 that became
part of the seen data in 2020: Athlete, Artist,
CelestialBody, MeanOfTransportation, Politi-
cian;

• one new category that was added to the train-
ing set (Company).

The following data improvements were also carried
out: (i) around 5,600 texts were cleaned from mis-
spellings, and missing triple verbalisations were
added to some texts; (ii) information about tree
shapes and shape types were added to each RDF
tree; (iii) some properties were unified to ensure
consistency across the corpus. Table 1 shows some
dataset statistics. Training and developments sets
were the same for the data-to-text (D2T) and se-
mantic parsing (SP) tasks, unlike the test sets which
are different for the two tracks.

New test sets were also collected for English
because the previous test set has been made public.
Following the tradition of several test data types,
introduced in the previous shared task (Gardent
et al., 2017b), we kept them in this year edition and
introduced one new type unseen entities. The three
types of the test data are:

• seen categories: RDF triples based on the en-
tities and categories seen in the training data
(e.g., Alan Bean in the category Astronaut);

• unseen entities: RDF triples based on the cate-
gories seen in the training data, but not entities
(e.g., Nie Haisheng in the category Astronaut);

• unseen categories: RDF triples based on the
categories not present in the training data.

D2T (RDF) SP (texts)

Seen categories 490 (28%) 606 (28%)
Unseen entities 393 (22%) 457 (21%)
Unseen categories 896 (50%) 1,092 (51%)
Total 1,779 2,155

Table 2: Number of RDF triple sets and texts by test set
type for data-to-text and semantic parsing respectively.

Three unseen categories were introduced in
this year edition: Film, Scientist, and Musical-
Work. Out of 220 unique properties in the test
set for the D2T task, 39 properties were never
seen in the training and development data.

Statistics of the test splits are shown in Table 2.
Unlike the test set, the development set included
data from seen categories only. However, partici-
pants were notified about the inclusion of unseen
data from the beginning of the challenge and had
to model the unseen data scenario by their own
means.

New data for WebNLG-3.0 was collected with
Amazon Mechanical Turk, and some triple verbal-
isations (part of the Film category) were done by
students. For crowdsourcing, we followed the same
procedure as was followed for the collection of the
initial WebNLG data (Gardent et al., 2017a), but
without the verification step. Instead, after collec-
tion, a spellchecker and quality checks were run
and, if problems were spotted, texts were edited
manually. Quality checks mainly consisted in ver-
ifying if triple entities are present in texts. We
collected around three references per RDF triple
sets.

2.2 Russian WebNLG

Russian WebNLG was translated from English
WebNLG for nine DBpedia categories: Airport,
Astronaut, Building, CelestialBody, ComicsChar-
acter, Food, Monument, SportsTeam, and Univer-
sity. Table 3 shows some statistics of the Russian
dataset. For the test set, only the data of the seen
categories type is present, which makes the Rus-
sian track much easier to handle for participating
systems.

Russian data also possesses some additional fea-
tures compared to the English data: links between
English and Russian entities from subjects and ver-
bal objects of RDF triples were given. Some of
them were extracted from DBpedia between En-



Train Dev Test (D2T) Test (SP)

RDF triple sets 5,573 790 1,102 474
Texts 14,239 2,026 2,780 1,206
Properties 226 115 192 164

Table 3: WebNLG 3.0 Russian data statistics. Proper-
ties: the number of unique DBpedia properties.

glish and Russian entities by means of the property
sameAs (e.g., (Spaniards, sameAs, испанцы)). For
the entities without such a property, links were cre-
ated manually. The links served as pointers for
translators. During the test phase, those features
were available for the RDF-to-text track.

The Russian data creation followed the proce-
dure below:

1. Russian WebNLG was translated from the
English WebNLG version 2.0 with the MT system
of Sennrich et al. (2017), as described in Shimorina
et al. (2019).

2. It was then post-edited using crowdsourcing
on the Yandex.Toloka platform in two steps:

• we asked people to post-edit Russian texts
given original English texts and provided them
with some pointers for translation of entities
(the links described above). Crowdworkers
were asked to use the pointers as much as
possible.

• given the post-edited sentences, we asked peo-
ple to check if the text was translated properly
(in terms of grammar, spelling, etc.) and if the
entity translation was correct. If the transla-
tion was detected as erroneous, it was moved
to the post-edit step again.

3. Afterwards, some sanity checks and a
spellchecker were run to ensure data quality. All
the detected cases were then manually verified by
experts (Russian native speakers), and they edited
the texts one more time if needed.

Based on this procedure, we assume that the
Russian data is of a decent quality. However, based
on manual inspections, some texts may still be
lacking in terms of fluency and correctness. Note
also that the Russian version was derived from the
English WebNLG version 2.0, where some errors
in semantic content realisation were present.

3 Participating Systems

The WebNLG+ data was downloaded more than
100 times, 17 teams submitted 48 system runs.

From this sample, two teams withdrew their re-
sults, which gave us 15 participating teams with
46 runs for automatic evaluation (Table 4). For
human evaluation, we evaluated 14 teams for En-
glish and 6 teams for Russian. Only one team par-
ticipated in all four tasks (bt5). Two participants
(Amazon AI (Shanghai) and CycleGT) submitted
models for both generation and semantic parsing
but only for English. All other submissions focused
on generation, one only for Russian (med), five for
English only (TGen, UPC-POE, RALI-Université
de Montréal, ORANGE-NLG, NILC) and four for
both Russian and English (cuni-ufal, FBConvAI,
Huawei Noah’s Ark Lab, OSU Neural NLG).

In what follows, we summarise the primary sub-
missions of the 15 participating teams.

3.1 Monolingual, Mono-Task,
Template-based Approaches

Among all system submissions, two of them
used templates: RALI-Université de Montréal and
DANGNT-SGU.

RALI-Université de Montréal. Lapalme (2020)
implements a symbolic approach which captures
the various substeps of NLG programmatically.
The input set of RDF triples is partitioned and or-
dered into sentence sized subsets. Each subset
is then transformed into a sentence using Python
procedures designed to encode 200 manually de-
fined sentence templates. Aggregation is handled
by combining templates and referring expression
generation by using names for first occurrences
and pronouns for subsequent occurrences (within
a template). The REAL surface realiser is used to
map the resulting sequence of sentence templates
to sentences.

DANGNT-SGU. Tran and Nguyen (2020) derive
delexicalised templates from the data by replacing
RDF subjects and objects with placeholders and
identifying their text counterparts using the Jaro-
Winkler similarlity metrics.

3.2 Mono-lingual, Mono-task, Neural
Approaches

med. Blinov (2020) focuses on generation into
Russian. They used the pre-trained Russian GPT-2
language model (Radford et al., 2019) augmented
with a classification head and fine-tuned on the
WebNLG+ RDF-to-Russian dataset. The author
experimented with various sampling methods and



Team Affiliation Country D2T SP
En Ru En Ru

med Sber AI Lab Russia - X - -
RALI-Université de Montréal Université de Montréal Canada X - - -
ORANGE-NLG Orange Labs France X - - -
cuni-ufal Charles University Czechia X X - -
TGen AIST Japan X - - -
bt5 Google US X X X X
UPC-POE Universitat Politècnica de Catalunya Spain X - - -
DANGNT-SGU Saigon University Vietnam X - - -
Huawei Noah’s Ark Lab Huawei Noah’s Ark Lab UK X X - -
Amazon AI (Shanghai) Amazon AI (Shanghai) China X - X -
NILC University of São Paulo Brazil X - - -
NUIG-DSI National University of Ireland Ireland X - - -
CycleGT Amazon China X - X -
OSU Neural NLG The Ohio State University US X X - -
FBConvAI Facebook US X X - -

Table 4: WebNLG+ 2020 Participants.

with data augmentation. For data augmenta-
tion, they use the Baidu SKE dataset (194,747
RDF/Chinese text pairs) and automatically trans-
late its text part into Russian.

ORANGE-NLG. Montella et al. (2020) explore
data augmentation for RDF-to-English generation.
They pre-train BART (Lewis et al., 2020) first on
a corpus of Wikipedia sentences (57 million sen-
tences) and second on a noisy RDF/English text
corpus they created using Open Information Ex-
traction on the collected sentences. For fine-tuning,
they experiment with curriculum learning based
on the size (number of triples) of the input. They
find that pre-training and data augmentation does
help improve results. Conversely, they found that
curriculum learning leads to a drop in performance.

TGen. Kertkeidkachorn and Takamura (2020) in-
troduce a pipeline model which first orders the
input triples (plan selection) and second verbalises
the resulting sequence of triples (verbalisation).
Verbalisation is done using the T5 transformer-
based encoder-decoder model (Raffel et al., 2020)
trained through an unsupervised multi-tasking
(span masking) on the Colossal Clean Crawled Cor-
pus (C4) and fine-tuning on the RDF-to-English
dataset. The Plan Selection model is learned us-
ing a ranking loss on a corpus which aligns each
set of RDF triples with its possible linearisations
and the corresponding texts (using the verbaliser)
and where the plan which yields the text with the
highest BLEU score is labelled as correct.

UPC-POE. Domingo Roig et al. (2020) attempt
a semi-supervised, back translation approach where

additional text data is retrieved from Wikipedia
pages that are about entities similar to those present
in the WebNLG+ dataset (using Wikipedia2vec em-
beddings for entities and words from Wikipedia).
They then apply syntactic parsing to this addi-
tional text and integrate this synthetic data with
the WebNLG+ data for training. The full dataset
has around 350K instances. The model is a
Transformer-based encoder-decoder with a BPE
vocabulary of 7K subwords.

NILC. Sobrevilla Cabezudo and Salgueiro Pardo
(2020) use the large BART Transformer Encoder-
Decoder model and fine-tune it on the WebNLG+
data. The results are lower than the WebNLG+
baseline but preliminary investigations suggests
that BART sometimes generates correct para-
phrases for the reference.

NUIG-DSI. Pasricha et al. (2020) leverage
the T5 transformer-based encoder-decoder model
which was pre-trained on multiple supervised and
unsupervised tasks. Before fine-tuning on the
WebNLG+ data, they further pre-train T5 using
a Mask Language Modelling objective (with 15%
of the tokens masked) on two additional datasets:
the WebNLG corpus and a corpus of DBpedia ab-
stracts which consists of all abstracts for the entities
which are present in the WebNLG+ training set.

3.3 Mono-task, Bilingual Approaches

cuni-ufal. The mBART model (Liu et al., 2020)
is pre-trained for multilingual denoising on the
large-scale multilingual CC25 corpus extracted
from Common Crawl, which contains data in 25
languages. The noise function of mBART replaces



text spans of arbitrary length with a mask token
(35% of the words in each instance) and permutes
the order of sentences. To generate into both En-
glish and Russian, Kasner and Dusek (2020) fine-
tune two separate mBART models for English and
Russian on the WebNLG+ RDF-to-English and
RDF-to-Russian datasets.

Huawei Noah’s Ark Lab. Delexicalisation is
used to help handle rare entities. Named entities
are replaced by placeholders in the input and the
output, the model is trained on the delexicalised
data and the predictions are relexicalised before
evaluation. While previous work on delexicalisa-
tion is mostly string based, Zhou and Lampouras
(2020) propose a novel approach to delexicalisation
which is based on embedding (semantic) similar-
ity. To handle both English and Russian, they use
LASER cross-lingual embeddings. To account for
contextual variations, they complement the relex-
icalisation step with a contextualised post-editing
model. They also explore the respective perfor-
mance of delexicalisation, subwords and an ap-
proach combining both (using delexicalisation for
unseen entities and word pieces for seen input).

OSU Neural NLG. Xintong et al. (2020) use the
monolingual T5 model for English and the multilin-
gual mBART model for Russian. Both models are
fine-tuned on the WebNLG+ data. The authors also
explore the impact of a reverse model reranking to
rerank the model predictions after beam search.

FBConvAI. Yang et al. (2020) use BART for pre-
training and explore different ways of modeling
the RDF graph and its relation to natural language
text. Different linearisation strategies (deph-first,
bread-first traversal, bracketed representations) are
compared. Multi-tasking and pipeline architectures
are also examined to analyse how different ways
of integrating generation with document planning
(triples order) impact performance. To help bridge
the gap between the input graph and the output
linear structure, a second phase of pre-training is
applied using DocRED, a noisy parallel corpus of
sentences and their automatically extracted relation
(17K entries). Lexicalisation of RDF properties are
also curated from the WebNLG+ and the DocRED
datasets.

3.4 Bi-Directional, Monolingual Approaches

Amazon AI (Shanghai). Zhao et al. (2020) in-
troduced a two-step model for RDF-to-Text gen-

eration which combines a planner trained to learn
the order in which triples should be verbalised and
a decoder for verbalising each triple. Guo et al.
(2020a) train Zhao et al. (2020)’s planner on the
WebNLG+ dataset and use the pre-trained T5-large
model to verbalise the linearised triples. For the
Text-to-RDF task, entity linking is applied to the
text and DBpedia is queried to retrieve the corre-
sponding triples.

CycleGT. Guo et al. (2020b) present a weakly
supervised method where generation and seman-
tic parsing models are learned by bootstrapping
from purely text and purely RDF data and itera-
tively mapping between the two forms. The T5
pre-trained sequence-to-sequence model is used to
bootstrap the generation model. For semantic pars-
ing, the authors use Qi et al. (2020) entity extraction
model to identify all entities present in the input
text and a multi-label classifier to predict the rela-
tion between pairs of entities. Each input text and
each input graph is aligned with its back-translated
version and the resulting aligned data for training.
The two models are improved by repeatedly alter-
nating the optimisation of each model. The text
and the RDF data used to bootstrap the model are
the WebNLG+ 2020 dataset, shuffled to ensure that
the data is fully non parallel (text and RDF in each
of the datasets are not aligned).

3.5 Bi-directional, Bi-lingual Approaches

bt5. Agarwal et al. (2020) use T5 as a pre-trained
model and explores multilingual multi-task learn-
ing during pre-training and fine-tuning. For pre-
training, their best model is T5 pre-trained on En-
glish and Russian Wikipedia and further trained
on WMT English/Russian parallel corpus. For
fine-tuning, they compare monolingual models,
bilingual models multi-tasked on both languages
and then fine-tuned for one and the same bilin-
gual models fine tuned on a corpus derived from
the WebNLG+ data by aligning English and Rus-
sian sentences and entities. They find that the later
model provides significant improvements on un-
seen relations.

4 Evaluation Methodology

4.1 RDF-to-Text (Generation)

Automatic Metrics. The participating systems
were automatically evaluated with some of the most
popular traditional and novel text generation met-



rics. In the former group, we compared the tex-
tual outputs of the participating systems with their
corresponding gold-standards using BLEU (Pap-
ineni et al., 2002), regular and with the Smoothing
Function 3 proposed in (Chen and Cherry, 2014)
(e.g., BLEU NLTK); METEOR (Lavie and Agar-
wal, 2007); TER (Snover et al., 2006) and chrF++
(Popović, 2017) (with word bigrams, character 6-
grams and β = 2). Regarding the novel metrics,
we computed BERTScore (Zhang et al., 2020) for
English and Russian outputs and BLEURT (Sel-
lam et al., 2020) (with bleurt-base-128 ver-
sion) for the English ones. The main difference
between traditional and novel metrics is that the
former measures the similarity between hypothesis
and references using a discrete representation of
their tokens, whereas the latter methods use a vec-
tor representation of these units. As an outcome of
this shared task, we aim to investigate which one
out these two kinds better correlate with human
ratings.

For both considered languages, the participating
systems were automatically evaluated in a multi-
reference scenario. Each English hypothesis was
compared with a maximum of 5 references, and
each Russian one with a maximum of 7 refer-
ences. On average, English data has 2.89 refer-
ences per test instance, and Russian data has 2.52
references per instance. We requested the par-
ticipants to provide their hypothesis in the deto-
kenised and truecased form. Thus, the metrics
were computed over the truecased format of the
inputs. For the traditional metrics (e.g., BLEU,
METEOR, chrF++, etc.), we tokenised the texts
using the NLTK framework (Loper and Bird, 2002)
for English, and razdel2 for Russian. Novel met-
rics as BERTScore and BLEURT provide their own
tokenisers.

Human Evaluation. We have conducted a hu-
man evaluation of all submitted systems for the
RDF-to-Text task for both English and Russian
data. In case of multiple submissions per partic-
ipant for a single task, we asked to indicate the
primary submission for human evaluation. Thus,
we had fourteen submissions for English data and
six submissions for Russian data. We have also
evaluated baseline outputs and ground-truth refer-
ences of both English and Russian data.

For both English and Russian data, we sampled
10% of RDF-text pairs from the respective test set

2https://github.com/natasha/razdel

Triple Set Size
1 2 3 4 5 6 7 All

English 36 40 30 31 22 9 10 178
Russian 26 20 19 20 22 0 3 110

Table 5: The number of samples per triple set size from
the test set for both languages.

for human evaluation in a random stratified fashion.
Specifically, we sampled 178 triples from the En-
glish test set and 110 triples from the Russian test
set. As Table 5 shows, we randomly chose sam-
ples based on the number of triples in a single data
item. We also controlled for the type of the triples:
our English data for human evaluation contained
54/37/87 samples for seen categories, unseen en-
tities and unseen categories respectively. Russian
data had triples of the first type only (seen cate-
gories). For each sample, we collected judgements
from three different annotators. Our human anno-
tators were recruited through the crowd-sourcing
platform Amazon Mechanical Turk (MTurk) for
English data and Yandex.Toloka for Russian data.
They were asked to evaluate each sample based on
the following criteria:

1. Data Coverage: Does the text include de-
scriptions of all predicates presented in the
data?

2. Relevance: Does the text describe only such
predicates (with related subjects and objects),
which are found in the data?

3. Correctness: When describing predicates
which are found in the data, does the text
mention correct the objects and adequately
introduces the subject for this specific predi-
cate?

4. Text Structure: Is the text grammatical, well-
structured, written in acceptable English lan-
guage?

5. Fluency: Is it possible to say that the text
progresses naturally, forms a coherent whole
and it is easy to understand the text?

Example tasks presented to the annotators (with
criteria descriptions and examples of the data) are
shown in the Appendix A for English and Appendix
B for Russian. As can be seen from these exam-
ples, each annotator saw the following elements

https://github.com/natasha/razdel


when working on our task: (i) the set of instruc-
tions with descriptions of each criterion, (ii) data (a
collection of RDF triples), (iii) a system output (a
text). Under each criterion description, a slider for
the scale from 0 to 100 was given. Human anno-
tators were required to use the slider and the scale
to indicate the extent to which they agree with the
statement about the specific measure. Each annota-
tor was presented with a single evaluation sample
per page. The full set of instructions is available in
the GitHub challenge evaluation repository3.

Our English tasks were available for annotators
from English-speaking countries (the US, the UK,
Australia, Ireland, Canada), who have completed
more than 5,000 tasks on MTurk and had the ap-
proval rate of at least 95%. If a sample had 1,
2 or 3 RDF triples, we paid 0.15$ for the anno-
tation of that sample. For triples of other sizes
(4-7), we paid 0.20$ due to the higher task com-
plexity. Our Russian tasks were available for the
Russian-speaking annotators from Russia, Ukraine,
Belarus and Kazakhstan. We paid the same amount
of money for completing the Russian data annota-
tion task as for the English data collection.

To ensure the quality in annotators’ judgements,
we conducted a round of qualification tasks. Only
workers who have completed these tasks were al-
lowed to participate in our primary tasks. The qual-
ification tasks were created manually and included
two examples of RDF-text pairs per single task.
These tasks contained multiple instances of several
types:

• The text correctly depicts and describes all
information from the data (expected rating:
high for all criteria).

• The text does not meet requirements for a
single criterion (expected rating: low for the
specific criterion).

• The text has many flaws across the majority
of criteria (expected rating: low for most of
the criteria).

A single annotator was qualified to work on the ac-
tual tasks if, given the results of qualification round
(i) both qualification samples were evaluated as ex-
pected, (ii) evaluation of one qualification sample
was slightly varied from what is expected. In all

3https://github.com/WebNLG/
GenerationEval/tree/humaneval/human_
evaluation/en/hit_properties

(a) English data: MTurk

(b) Russian data: Yandex.Toloka

Figure 1: Annotator statistics: # of annotators vs. # of
tasks submitted per annotator.

other cases, the annotator was not given access to
our tasks. We also removed all annotators who
were rating English ground-truth texts with low
scores across multiple criteria. For Russian data,
we manually controlled for this aspect since not all
ground-truth texts are of high quality.

We conducted two rounds of human evaluation
for English data and have recruited 109 annotators.
We have also imposed soft limitations on the num-
ber of samples an annotator is allowed to evaluate.
In the first round, we allowed each worker to com-
plete 150-170 tasks. In the second round, the range
was changed to 130-150 tasks per annotator. Anno-
tators from the first round (experienced annotators)
were asked to participate in the second round. With
this, we aimed at using their high level of expertise
in our task to get better and more consistent judge-
ments. For English data, we collected judgements
from 109 annotators with 63 experienced annota-
tors. Similarly, for Russian data, we recruited 37
annotators and each of them was allowed to sub-
mit 80-100 tasks in the first round and 120-140
tasks in the second round. We note that we softly

https://github.com/WebNLG/GenerationEval/tree/humaneval/human_evaluation/en/hit_properties
https://github.com/WebNLG/GenerationEval/tree/humaneval/human_evaluation/en/hit_properties
https://github.com/WebNLG/GenerationEval/tree/humaneval/human_evaluation/en/hit_properties


controlled the number of possible task submissions
per worker. We tracked the number of submitted
tasks from each worker and restricted their access
when the number had exceeded the limit. This up-
date was performed every 5 minutes, and during
this period, the worker could have submitted more
tasks than allowed. Therefore, we do not set the
maximally allowed number of submitted tasks per
worker to a single number, but to a range of num-
bers instead. Fig. 1 demonstrates the distribution
of task submissions for all our annotators.

Also, we manually checked submissions from
each annotator who participated in our tasks. We
have noticed the following patterns in the behaviour
of bad annotators: first, their submissions contained
identical scores (e.g., all 0s, all 100s, all 50s, etc.)
for all criteria across all RDF-text sets. Second,
their scores for several criteria were not logically
correct (e.g., a low score for Data Coverage given
that the text covers all predicates from the data).
Third, bad submissions were typically sent in a
short amount of time (around 10-20 seconds to
complete a single task), and all bad annotators were
highly active in submitting many tasks. Based on
these patterns, we manually judged workers as ei-
ther spammers or not. For English data, we iden-
tified 21 bad annotators, submitting around 25%
of all data for English evaluation. We recollected
20% of these annotations, ensuring that their qual-
ity is reliable, and removed the other 5% of data
from the results. For Russian data, we identified
four malicious annotators who submitted around
5% of all data. We recollected these judgements.4

Overall, we spent around 490 US dollars and 2,400
US dollars for human evaluation of Russian and
English data, respectively.

Once the human evaluation was done, we pre-
processed the ratings before computing the final
human evaluation rankings for the systems:

• To diminish the differences between the scor-
ing strategies of the distinct human raters, we
normalized the scores of each participant by
computing their z-scores (scores subtracted
by the participant’s overall mean score divided
by their overall standard deviation).

• The standardised scores were averaged for

4The results of the human evaluation in this report are the
final results. Please note that the system description papers
might report/analyse non-filtered results (e.g. human evalua-
tion results based on the annotators’ data which has not been
manually inspected), if not stated otherwise.

each instance (as around 3 judgements were
collected per instance), and then they were
averaged across all sample instances (avg. z).

• We performed the Wilcoxon Rank-Sum Test
to evaluate whether there is a statistically sig-
nificant difference between the average evalua-
tion scores of the systems. The result is shown
as a system’s rank, which was set measur-
ing the pair-wise statistical tests between the
averaged z-score results of a top-performing
systems with the results of each of its lower-
performing ones.

• We computed final human evaluation results
for (i) the whole set of sampled test set outputs
per system, (ii) for outputs per each test set
type (seen categories, unseen entities, unseen
categories).

Baselines. We used the FORGe generator (Mille
et al., 2019a) as a baseline, an all-purpose grammar-
and template-based generator that takes predicate-
argument structures as input. FORGe was adapted
to triple-based inputs such as the E2E and several
DBpedia-oriented datasets — including WebNLG
and WebNLG+ — with the addition of a module for
the mapping of RDF to predicate-argument (exter-
nal module) and a module for aggregation. It con-
sists of 16 graph-transduction grammars that per-
form the following tasks as a pipeline: (i) aggrega-
tion of predicate-argument templates, (ii) definition
of sentence structure for each resulting aggregated
graph, (iii) introduction of idiosyncratic words and
syntactic relations, (iv) syntax-based sentence ag-
gregation and referring expression generation, and
(v) linearisation and inflection. The grammars cur-
rently contain about 2,000 active rules, most of
which are language- and domain-independent.5 For
instance, the micro-planning grammars use features
such as the presence of repeated substructures to
package some triples together, but do not target spe-
cific elements. Similarly, the sentence structures
are chosen by default according to the configura-
tion of the packaged semantic graph.

For the adaptation of the generator to the
WebNLG+ dataset, the following steps were re-
quired: (i) for each individual property, one
predicate-argument template (in a PropBank-like
fashion (Babko-Malaya, 2005)) was handcrafted,
(ii) for each lexical unit used in the templates, a

54 rules have been specifically designed to cope with
some particular WebNLG and WebNLG+ inputs.



lexicon entry was added with the description of its
subcategorisation pattern and minimal collocation
information, (iii) each inflected form needed for
the verbalisation was added to morphological dic-
tionary, and (iv) the coverage of a few rules was
extended to handle new configurations. Most of the
templates, lexical units and full-fledged forms had
already been established for the first edition of the
WebNLG challenge. The training and development
sets were used to see how the different properties
are verbalised and to get inspiration for crafting
the predicate-argument templates; basic templates
were also added for each unseen property.

During the mapping from the RDF triples to the
predicate-argument structures, we added informa-
tion (in the form of feature-value pairs) obtained
by querying DBpedia (class, number, cardinality,
gender), removed all Wikipedia disambiguation
information, i.e. what is in parentheses in the sub-
ject and object values, added generic processing
rules to normalise numbers and dates, and split
comma-separated object values. We also added
rules specific to the WebNLG+ dataset to handle se-
mantically overlapping triples (e.g. the triple about
a person being deceased was removed when there
was a triple about the death date). Before being
sent to FORGe, the triples were ordered in a way
that the ones with common subject and/or object
are consecutive, the triples involving the most fre-
quent entities being placed at the beginning. Since
the semantic and syntactic aggregation grammars
only group a triple/syntactic subtree with a (directly
or indirectly) preceding element, this partially es-
tablishes the final order in which the triples are
verbalised.

For English, the second baseline is the FORGe
system as submitted at the WebNLG 2017 task
(Mille et al., 2019b), which we run using the
WebNLG+ predicate-argument templates, lexical
and morphological resources. The second baseline
does not have access to the improvements in terms
of grammars (in particular about sentence structur-
ing and triple- and syntax-based aggregations) that
the first baseline has. For Russian, we generated
English texts using the first baseline, and translated
the outputs using Google Translate.

The motivation behind using a rule-based base-
line is to be found in the 2017 task, in which
FORGe got stable results in the human evaluations
for the seen and unseen categories, with high scores
according to all evaluation criteria. We expect the

baseline to score reasonably high in terms of hu-
man assessments, in particular according to cov-
erage, correctness and relevance, since there are
no hallucinations in grammar-based systems, and
we ensured that all the properties are covered. For
fluency and text structure, we expect the scores to
be lower, but to still provide a strong baseline.

4.2 Text-to-RDF (Semantic Parsing)
For the Semantic Parsing task, we did not conduct
the human evaluation of the submitted systems.
Thus, only automatic metrics were used to evaluate
the performance.

Automatic Metrics. Precision, Recall, and F1
score metrics were calculated for the Text-to-RDF
task. This calculation was based on the Named En-
tity Evaluation for SemEval 2013, Task 9.1 (Segura-
Bedmar et al., 2013). First, the triples were pre-
processed: the snake cased subject and object, and
camel cased predicate, were converted to regular
strings. Then, the resulting strings were lower-
cased, quotation marks were removed, and if an
object contained text between parentheses (e.g.,
“The Honeymoon Killers (American band)”), that
was removed as well. After this pre-processing
step, the evaluation script looked for the optimal
alignment between each candidate and reference
triple. Then, generated triples and gold standard
triples were converted separately to a string with
start and end index information. Furthermore, the
subject, verb, and object information were saved as
an entity for the evaluation. With this information,
using metrics based on Named Entity Evaluation
becomes possible. Four different ways to measure
Precision, Recall, and F1 score were investigated
(see also Table 7):6

1. Strict: Exact match of the candidate triple
element with the reference triple element is
required. And the element type (subject, pred-
icate, object) should match with the reference.

2. Exact: Exact match of the candidate triple
element with the reference triple element is
required, and the element type (subject, predi-
cate, object) is irrelevant.

3. Partial: The candidate triple element should
match at least partially with the reference
triple element, and the element type (subject,
predicate, object) is irrelevant.

6See Batista (2018) for a more detailed explanation of the
different measures.



Team Name BLEU BLEU METEOR chrF++ TER BERT BERT BERT BLEURTNLTK Precision Recall F1

Amazon AI (Shanghai) 0.540 0.535 0.417 0.690 0.406 0.960 0.957 0.958 0.620
OSU Neural NLG 0.535 0.532 0.414 0.688 0.416 0.958 0.955 0.956 0.610
FBConvAI * 0.527 0.523 0.413 0.686 0.423 0.957 0.955 0.956 0.600
bt5 0.517 0.517 0.411 0.679 0.435 0.955 0.954 0.954 0.600
NUIG-DSI 0.517 0.514 0.403 0.669 0.417 0.959 0.954 0.956 0.610
cuni-ufal 0.503 0.500 0.398 0.666 0.435 0.954 0.950 0.951 0.570
DANGNT-SGU 0.407 0.405 0.393 0.646 0.511 0.940 0.946 0.943 0.450
CycleGT 0.446 0.432 0.387 0.637 0.479 0.949 0.949 0.948 0.540
RALI-Université de Montréal 0.403 0.393 0.386 0.634 0.504 0.944 0.944 0.944 0.450
TGen 0.509 0.482 0.384 0.636 0.454 0.952 0.947 0.949 0.540
Baseline-FORGE2020 0.406 0.396 0.373 0.621 0.517 0.946 0.941 0.943 0.470
Huawei Noah’s Ark Lab 0.396 0.387 0.372 0.613 0.536 0.935 0.937 0.935 0.370
Baseline-FORGE2017 0.379 0.371 0.364 0.606 0.553 0.933 0.935 0.930 0.420
NILC 0.320 0.313 0.350 0.545 0.629 0.920 0.922 0.920 0.400
ORANGE-NLG 0.384 0.377 0.343 0.584 0.587 0.927 0.922 0.924 0.330
UPC-POE 0.391 0.379 0.337 0.579 0.564 0.933 0.927 0.929 0.370

Table 6: Automatic Evaluation results for English RDF-to-text system submissions on the full test set. The teams
are sorted by METEOR scores. Two baseline systems (from the previous and current WebNLG challenges) are
coloured in grey. * indicates late submission.

4. Type: The candidate triple element should
match at least partially with the reference
triple element, and the element type (subject,
predicate, object) should match with the refer-
ence.

Gold Gold Pred Pred Type Partial Exact Strict
entity string entity string

SUB Bionico MIS MIS MIS MIS
OBJ Granola SPU SPU SPU SPU

PRED place PRED birth place COR PAR INC INC
SUB Bionico OBJ Bionico INC COR COR INC
PRED architect PRED architect COR COR COR COR
SUB Capers OBJ Super Capers INC PAR INC INC

Table 7: Examples of possible error types for semantic
parsing, and how these are interpreted by the measures.
COR = correct, INC = incorrect, PAR = partial, MIS =
missed, SPU = spurious.

For development purposes, the evaluation script
also provided information about the number of cor-
rect, incorrect, partial missed, spurious, possible,
and actual matches for the four measures.

Baselines. A baseline was constructed by using
Stanford CoreNLP’s Open Information Extraction
module (Manning et al., 2014) on the texts in the
test set. This module allows for the extraction of
subjects, relations, and objects in a string with-
out any training necessary. Extraction of these
triples was limited to 10 per text, to avoid memory
overflow errors when running the evaluation script.
As this Open Information Extraction module was
only developed for English, the Russian sentences

were translated to English using DeepL,7 before ex-
tracting the RDF triples using Stanford CoreNLP’s
Open Information Extraction module.

5 Results of Automatic Evaluation

In this section, we present the automatic scores on
English and Russian datasets for both tasks, namely,
RDF-to-text and Text-to-RDF. For English, we dis-
cuss the automatic scores, and make a distinction
between results on (i) the entire dataset, (ii) seen
semantic categories, (iii) seen semantic categories
but unseen entities and (iv) unseen semantic cate-
gories. For Russian, the only reported results are
for the entire dataset, as the test set only contained
seen entities and categories.

5.1 RDF-to-text
English. Table 6 displays the results of the au-
tomatic evaluation of the RDF-to-text systems, or-
dered by METEOR scores on the entire test set.
Most systems (10 out of 15) outperformed at least
one of the baselines, which are highlighted in gray.

Following a popular trend in Natural Language
Processing, fine-tuning large pre-trained language
models, such as BART and T5, was a common
strategy among the participants to achieve better
results. From the 6 best ranked systems for in-
stance, 4 made use of T5 (1st, 2nd, 4th and 5th),
the third used BART whereas the sixth generates
the texts using a multilingual version of the latter
called mBART.

7https://www.deepl.com/en/translator

https://www.deepl.com/en/translator


Seen Categories

Team Name BLEU BLEU METEOR chrF++ TER BERT BERT BERT BLEURTNLTK Precision Recall F1

FBConvAI * 0.613 0.608 0.436 0.730 0.395 0.964 0.961 0.962 0.610
OSU Neural NLG 0.612 0.607 0.434 0.727 0.393 0.964 0.960 0.962 0.610
Amazon AI (Shanghai) 0.604 0.596 0.434 0.723 0.404 0.964 0.961 0.962 0.590
bt5 0.611 0.611 0.433 0.725 0.391 0.965 0.961 0.963 0.600
ORANGE-NLG 0.593 0.584 0.428 0.712 0.415 0.963 0.957 0.960 0.600
cuni-ufal 0.591 0.588 0.422 0.712 0.403 0.964 0.957 0.960 0.580
NUIG-DSI 0.583 0.579 0.416 0.699 0.408 0.964 0.958 0.960 0.600
NILC 0.562 0.550 0.409 0.700 0.430 0.961 0.957 0.958 0.580
DANGNT-SGU 0.463 0.452 0.406 0.675 0.523 0.944 0.949 0.946 0.420
Huawei Noah’s Ark Lab 0.497 0.482 0.402 0.674 0.504 0.950 0.949 0.949 0.460
CycleGT 0.474 0.458 0.394 0.654 0.490 0.951 0.950 0.950 0.500
RALI-Université de Montréal 0.437 0.417 0.394 0.652 0.530 0.947 0.949 0.948 0.420
Baseline-FORGE2020 0.430 0.415 0.387 0.650 0.563 0.945 0.942 0.943 0.410
Baseline-FORGE2017 0.412 0.398 0.384 0.642 0.599 0.938 0.938 0.936 0.330
TGen 0.610 0.518 0.381 0.641 0.432 0.961 0.948 0.954 0.550
UPC-POE 0.512 0.495 0.373 0.648 0.478 0.957 0.943 0.949 0.500

Unseen Entities

Team Name BLEU BLEU METEOR chrF++ TER BERT BERT BERT BLEURTNLTK Precision Recall F1

OSU Neural NLG 0.524 0.520 0.416 0.694 0.398 0.963 0.960 0.961 0.650
NUIG-DSI 0.528 0.523 0.415 0.691 0.381 0.964 0.961 0.962 0.670
bt5 0.508 0.505 0.415 0.687 0.411 0.961 0.959 0.959 0.650
FBConvAI * 0.503 0.497 0.414 0.689 0.411 0.962 0.961 0.961 0.650
Amazon AI (Shanghai) 0.523 0.517 0.413 0.691 0.394 0.963 0.960 0.961 0.650
cuni-ufal 0.512 0.500 0.406 0.687 0.417 0.960 0.958 0.959 0.630
TGen 0.507 0.504 0.405 0.672 0.410 0.958 0.956 0.957 0.610
RALI-Université de Montréal 0.435 0.422 0.395 0.658 0.464 0.950 0.950 0.949 0.530
DANGNT-SGU 0.411 0.409 0.391 0.655 0.493 0.947 0.952 0.949 0.520
CycleGT 0.466 0.445 0.390 0.653 0.448 0.956 0.954 0.955 0.600
Baseline-FORGE2020 0.402 0.393 0.384 0.648 0.476 0.949 0.950 0.949 0.550
Huawei Noah’s Ark Lab 0.424 0.411 0.375 0.631 0.487 0.944 0.944 0.944 0.480
Baseline-FORGE2017 0.381 0.366 0.367 0.626 0.515 0.933 0.941 0.932 0.500
NILC 0.219 0.215 0.340 0.509 0.671 0.914 0.919 0.916 0.420
ORANGE-NLG 0.358 0.354 0.326 0.565 0.590 0.929 0.913 0.920 0.260
UPC-POE 0.353 0.338 0.324 0.569 0.570 0.937 0.929 0.932 0.400

Unseen Categories

Team Name BLEU BLEU METEOR chrF++ TER BERT BERT BERT BLEURTNLTK Precision Recall F1

Amazon AI (Shanghai) 0.492 0.491 0.404 0.660 0.413 0.957 0.953 0.954 0.600
OSU Neural NLG 0.474 0.474 0.397 0.652 0.437 0.953 0.951 0.951 0.570
FBConvAI * 0.462 0.463 0.394 0.647 0.444 0.951 0.949 0.950 0.570
bt5 0.440 0.441 0.393 0.636 0.470 0.948 0.948 0.947 0.560
NUIG-DSI 0.456 0.454 0.388 0.632 0.438 0.953 0.949 0.950 0.580
DANGNT-SGU 0.359 0.364 0.384 0.617 0.512 0.935 0.942 0.938 0.420
CycleGT 0.409 0.405 0.379 0.615 0.486 0.945 0.946 0.945 0.540
TGen 0.438 0.436 0.379 0.618 0.472 0.947 0.944 0.945 0.500
RALI-Université de Montréal 0.359 0.360 0.375 0.606 0.507 0.940 0.939 0.939 0.420
cuni-ufal 0.422 0.425 0.375 0.617 0.460 0.946 0.942 0.943 0.520
Baseline-FORGE2020 0.376 0.370 0.357 0.584 0.510 0.944 0.936 0.940 0.440
Baseline-FORGE2017 0.346 0.343 0.347 0.565 0.544 0.930 0.930 0.925 0.390
Huawei Noah’s Ark Lab 0.291 0.293 0.345 0.553 0.575 0.922 0.926 0.924 0.230
UPC-POE 0.295 0.288 0.316 0.526 0.608 0.918 0.917 0.917 0.180
NILC 0.162 0.161 0.311 0.435 0.719 0.900 0.905 0.902 0.190
ORANGE-NLG 0.233 0.229 0.288 0.485 0.680 0.907 0.906 0.906 0.030

Table 8: Automatic Evaluation results for the RDF-to-text task for English on seen categories, unseen entities, and
unseen categories. * indicates late submission.



Team Name BLEU BLEU METEOR chrF++ TER BERT BERT BERT
NLTK Precision Recall F1

bt5 0.516 0.521 0.676 0.683 0.420 0.909 0.907 0.907
cuni-ufal 0.529 0.532 0.672 0.677 0.398 0.914 0.905 0.909
Huawei Noah’s Ark Lab 0.468 0.468 0.632 0.637 0.456 0.899 0.890 0.893
FBConvAI * 0.453 0.451 0.617 0.641 0.452 0.903 0.894 0.898
OSU Neural NLG 0.473 0.477 0.616 0.622 0.453 0.897 0.882 0.888
med 0.431 0.430 0.576 0.595 0.487 0.898 0.873 0.884
Baseline-FORGE2020 0.255 0.256 0.467 0.514 0.665 0.841 0.835 0.837

Table 9: Automatic Evaluation results for Russian RDF-to-text system submissions on the full test set. The
systems are sorted by METEOR score and the baseline system is coloured in grey. * indicates late submission.

Team Name Match F1 Precision Recall

Amazon AI (Shanghai) Exact 0.689 0.689 0.690
Amazon AI (Shanghai) Ent Type 0.700 0.699 0.701
Amazon AI (Shanghai) Partial 0.696 0.696 0.698
Amazon AI (Shanghai) Strict 0.686 0.686 0.687

bt5 Exact 0.682 0.670 0.701
bt5 Ent Type 0.737 0.721 0.762
bt5 Partial 0.713 0.700 0.736
bt5 Strict 0.675 0.663 0.695

CycleGT Exact 0.342 0.338 0.349
CycleGT Ent Type 0.343 0.335 0.356
CycleGT Partial 0.360 0.355 0.372
CycleGT Strict 0.309 0.306 0.315

Baseline Exact 0.158 0.154 0.164
Baseline Ent Type 0.193 0.187 0.202
Baseline Partial 0.200 0.194 0.211
Baseline Strict 0.127 0.125 0.130

(a) English submissions

Team Name Match F1 Precision Recall

bt5 Exact 0.911 0.907 0.917
bt5 Ent Type 0.923 0.918 0.930
bt5 Partial 0.917 0.913 0.924
bt5 Strict 0.911 0.907 0.917

Baseline Exact 0.119 0.113 0.129
Baseline Ent Type 0.147 0.137 0.163
Baseline Partial 0.156 0.146 0.172
Baseline Strict 0.087 0.083 0.094

(b) Russian submissions

Table 10: Automatic Evaluation results for Text-to-
RDF (Semantic Parsing) task for both languages rep-
resented with Macro scores.

In the comparison between rule-based and neural
approaches, results of the latter were usually higher
than the former. Out of the 4 rule-based systems
(including the baselines), DANGNT-SGU was the
one that ranked highest in the automatic evaluation,
being in the 7th position.

Table 8 depicts the results distinguished by (i)
trials from semantic categories seen during train-

ing, (ii) trials from seen categories but with entities
that were unseen during training and (iii) trials
from categories fully unseen during training. We
hypothesise that the difficulty increases along the
different test sets: converting RDFs from semantic
categories seen during training to texts is easier
than generating from unseen semantic categories,
where we want to evaluate how well the models
can generalize. This hypothesis is indeed supported
when looking at the number of systems that out-
perform the baselines (mostly based on their ME-
TEOR scores). 12 out of 15 systems were better
than both baselines in the seen categories, whereas
only 10 outperform the baselines in the fully un-
seen categories.

Across the three kinds of evaluation, the top per-
forming systems were basically the same, except
for NUIG-DSI which took the second position in
the unseen entities, showing a better generalisation
capability in comparison to the other top 5 systems.
Conversely, ORANGE-NLG and NILCwere ranked
better when generating text for RDFs seen during
training, but performed poorly when information
not seen during training was present in the input
RDF triples.

Russian. Table 9 shows the automatic evaluation
results for the entire test set. Out of the 6 RDF-to-
text systems for Russian, 5 are bilingual and were
also submitted for the English variation of the task.
These system were also the top performing ones,
ranked higher than the unique monolingual systems
for Russian. From the bilingual approaches, 2 are
based on a T5 fine-tuned language model and 2
on the BART language model. In the comparison
among them, bt5 showed a superior performance
in terms of METEOR and chrF++, however, on
the other metrics cuni-ufal performed better.
Our baseline was the system which had the lowest
scores. Such results were expected due to its out-



Seen Categories

Team Name Match F1 Precision Recall

bt5 Exact 0.877 0.875 0.880
bt5 Ent Type 0.888 0.885 0.891
bt5 Partial 0.883 0.881 0.886
bt5 Strict 0.877 0.875 0.880

Amazon AI (Shanghai) Exact 0.693 0.693 0.694
Amazon AI (Shanghai) Ent Type 0.718 0.718 0.718
Amazon AI (Shanghai) Partial 0.707 0.707 0.707
Amazon AI (Shanghai) Strict 0.693 0.692 0.693

CycleGT Exact 0.548 0.541 0.560
CycleGT Ent Type 0.618 0.599 0.648
CycleGT Partial 0.585 0.572 0.607
CycleGT Strict 0.545 0.538 0.558

Baseline Exact 0.165 0.163 0.170
Baseline Ent Type 0.211 0.205 0.221
Baseline Partial 0.211 0.205 0.221
Baseline Strict 0.140 0.139 0.143

Unseen Categories

Amazon AI (Shanghai) Exact 0.658 0.657 0.660
Amazon AI (Shanghai) Ent Type 0.661 0.660 0.663
Amazon AI (Shanghai) Partial 0.662 0.661 0.663
Amazon AI (Shanghai) Strict 0.655 0.655 0.657

bt5 Exact 0.551 0.540 0.568
bt5 Ent Type 0.653 0.636 0.679
bt5 Partial 0.609 0.595 0.631
bt5 Strict 0.539 0.528 0.555

CycleGT Exact 0.223 0.222 0.227
CycleGT Ent Type 0.195 0.193 0.200
CycleGT Partial 0.234 0.233 0.240
CycleGT Strict 0.181 0.179 0.183

Baseline Exact 0.140 0.137 0.146
Baseline Ent Type 0.179 0.172 0.188
Baseline Partial 0.188 0.182 0.199
Baseline Strict 0.105 0.103 0.108

Unseen Entities

Amazon AI (Shanghai) Exact 0.746 0.746 0.747
Amazon AI (Shanghai) Ent Type 0.751 0.750 0.753
Amazon AI (Shanghai) Partial 0.751 0.751 0.753
Amazon AI (Shanghai) Strict 0.740 0.739 0.741

bt5 Exact 0.649 0.617 0.701
bt5 Ent Type 0.675 0.640 0.731
bt5 Partial 0.664 0.631 0.718
bt5 Strict 0.645 0.614 0.697

CycleGT Exact 0.239 0.238 0.247
CycleGT Ent Type 0.185 0.183 0.188
CycleGT Partial 0.243 0.242 0.252
CycleGT Strict 0.179 0.178 0.182

Baseline Exact 0.184 0.178 0.194
Baseline Ent Type 0.196 0.190 0.205
Baseline Partial 0.210 0.202 0.224
Baseline Strict 0.152 0.149 0.157

Table 11: Text-to-RDF (Semantic Parsing) results per
test data type for English: we show Macro scores for
seen categories, unseen categories and unseen entities.

puts were obtained by simply automatically trans-
lating the texts generated by the English baseline.

5.2 Text-to-RDF
English. Table 10a shows the results for
the entire test set. bt5 and Amazon AI
(Shanghai) achieved similar results. bt5
achieved higher scores than Amazon AI
(Shanghai) on the more liberal Ent Type and
Partial measurement types, while Amazon
AI showed better results on the stricter Exact and
Strict matches.

Table 11 depicts the results distinguished by (1)
trials from categories seen during training, (2) tri-
als from seen categories but with unseen entities
during training and (3) trials from domains fully
unseen during training. For the seen categories,
bt5 demonstrated superior performance, achiev-
ing higher F1 scores across all metrics in compari-
son to the other participants.

On unseen categories, Amazon AI
(Shanghai) took the first place on this
test set showing a generalisation capability
for handling unseen categories. Amazon AI
(Shanghai) achieved nearly 0.66 F1 across
all metrics while the second-best performing
system, bt5, achieved 0.60 on average. CycleGT
performed slightly better than the baseline but still
improved over the baseline results.
Amazon AI (Shanghai) also took first

place on the unseen entities set and achieved nearly
0.75 F1 across all metrics while the second-best
performing system, bt5, achieved 0.64 on average.
Similar to the unseen categories, CycleGT also
achieved a slight improvement over the baseline
for the unseen entities. The results of all systems
on this test set show a similar tendency as the un-
seen categories test set, but, overall, the scores were
higher than on unseen categories. The results on the
unseen test sets suggest that the bt5 and Amazon
AI (Shanghai) models were reasonably capa-
ble of generalising the position of the entities in the
text. This is further corroborated by the relatively
small drop of those models between the seen and
unseen test sets. However, the differing nature of
the entities across categories made generalisation
more difficult.

Russian. Table 10b shows the results on the en-
tire test set, which was comprised of seen cate-
gories only. bt5 was the only system to perform
this task and achieved impressive F1 results in
comparison to the baseline on all metrics. It also
achieved even higher scores than the bt5 system
obtained on the English seen categories test set.



DATA COVERAGE RELEVANCE CORRECTNESS TEXT STRUCTURE FLUENCY
TEAM NAME Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw
FBConvAI * 2 0.151 93.169 2 0.117 93.898 1 0.206 92.700 1 0.319 93.089 1 0.327 90.837
AmazonAI (Shanghai) 1 0.222 94.393 1 0.214 95.196 1 0.248 93.531 1 0.305 92.951 1 0.326 90.286
OSU Neural NLG 1 0.235 95.123 1 0.163 94.615 1 0.224 93.409 1 0.289 92.438 1 0.323 90.066
WebNLG-2020-REF 1 0.251 95.442 1 0.139 94.392 1 0.256 94.149 1 0.254 92.105 1 0.279 89.846
NUIG-DSI 2 0.116 92.063 1 0.161 94.061 1 0.189 92.053 1 0.258 91.588 2 0.233 88.898
bt5 2 0.161 93.836 1 0.184 95.220 1 0.224 93.583 1 0.236 91.914 2 0.218 88.688
cuni-ufal 2 0.155 93.291 1 0.164 94.555 1 0.161 91.587 1 0.208 90.752 2 0.185 87.642
TGen 3 -0.075 88.176 1 0.132 92.640 2 0.074 88.626 1 0.168 89.041 2 0.182 86.163
CycleGT 3 0.023 91.231 1 0.125 93.370 2 0.071 89.846 2 0.045 87.879 3 0.072 84.820
Baseline-FORGE2020 1 0.170 92.892 1 0.161 93.784 1 0.190 91.794 2 0.039 87.400 3 0.011 82.430
Baseline-FORGE2017 2 0.127 92.066 2 0.113 92.588 2 0.13 90.138 2 -0.064 85.737 4 -0.143 80.941
DANGNT-SGU 1 0.259 95.315 1 0.185 94.856 1 0.179 92.489 3 -0.203 83.501 4 -0.161 78.594
RALI-Université de Montréal 1 0.272 95.204 1 0.171 94.810 1 0.163 92.128 3 -0.285 81.835 4 -0.241 77.759
ORANGE-NLG 5 -0.554 79.959 4 -0.710 79.887 4 -0.668 74.977 3 -0.338 80.462 5 -0.332 75.675
Huawei Noah’s Ark Lab 4 -0.310 84.743 3 -0.425 85.265 3 -0.389 80.760 3 -0.373 80.219 5 -0.369 75.205
NILC 4 -0.477 81.605 3 -0.499 83.522 3 -0.589 76.702 3 -0.402 80.463 5 -0.408 74.851
UPC-POE 6 -0.782 75.845 4 -0.531 82.051 4 -0.701 74.374 4 -0.456 78.503 5 -0.508 72.280

Table 12: Human Evaluation results for English: scores for all test data types. The systems are sorted by averaged
Fluency raw scores. The colour intensity signifies final ranking in terms of averaged raw scores: more intense
colour reflects higher performance for the specific criterion. * indicates late submission.

6 Results of Human Evaluation

In this section, we describe the results of the human
evaluation conducted on a sample of the outputs of
RDF-to-text system submissions for both English
and Russian data. For English we evaluate systems’
performance for (i) the full sampled test subset,
(ii) subsets of each of the triple categories (seen
categories, unseen entities, unseen categories). For
Russian, we provide results for the full sampled
test subset only. The final results for all test data
types are shown in Table 12 for English systems.
In Table 13 we evaluate systems for each of the test
data types separately for the English data. Table 14
shows results for Russian system submissions.

English. Table 12 shows the results of the
human evaluation for the RDF-to-text task for
English system submissions. We first look at
the differences between the results of the human
and automatic evaluation: although the Fluency
and Text Structure ratings of the rule-based
systems (RALI-Université-Montréal,
DANGNT-SGU, Baseline-FORGE2020)
ranked similar to the automatic metrics in the
lower part of the leaderboard, their human ratings
for Data Coverage, Relevance and Correctness
were among the highest.

Regarding Text Structure and Fluency, re-
sults of neural approaches as FBConvAI,
AmazonAI (Shanghai) and OSU Neural
NLG were rated surprisingly high, sharing
the same ranking cluster with the ground-
truth references (WebNLG-2020-REF). As
expected, in terms of Data Coverage and
Relevance, the rule-based participating sys-
tems (RALI-Université-Montréal,

DANGNT-SGU) performed quite strongly, being in
the same cluster as the references.

In fact, the relation between Fluency and Data
Coverage is noticeably different: although systems
based on fine-tuned T5 and BART language mod-
els ranked on the top for Fluency (Amazon AI,
FBConvAI, OSU Neural NLG), the ones based
on the latter language model (BART, FBConvAI)
suffered a drop in performance in terms of Data
Coverage, whereas the ones based on the former
(T5) performed similarly to the rule-based ap-
proaches.

Table 13 depicts the human ratings for the RDF-
to-text task in English, discriminated by three types
of data: seen categories, unseen entities and unseen
categories. Across the three different types of data,
it is possible to notice some of the tendencies that
were also found for the automatic evaluation. For
instance, the difference in performance between
the three kinds of data from models like NILC and
ORANGE-NLG, which introduce good results for
trials from semantic categories seen during training,
but fail to generalise to new entities and semantic
categories. For unseen categories which were not
presented during training, most of the models were
not able to outperform the ground-truth references
(WebNLG-2020-REF) across multiple criteria.

Note that the scores for unseen categories
are generally lower for all systems com-
pared to the scores for seen categories and
unseen entities. Overall, while rule-based
systems (RALI-Université-Montréal,
DANGNT-SGU) perform well for the criteria which
evaluate connection between RDF triple and the
text (Data Coverage, Relevance, Correctness),
for the categories which evaluate naturalness and



Data Coverage Relevance Correctness Text Structure Fluency
Team Name Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw
FBConvAI * 1 0.178 93.543 2 0.112 93.111 1 0.261 93.472 1 0.326 92.966 1 0.358 91.654
bt5 1 0.196 94.460 1 0.222 95.167 1 0.312 94.843 1 0.264 91.846 1 0.280 89.892
cuni-ufal 1 0.257 94.941 1 0.203 94.870 1 0.273 93.886 1 0.263 91.429 1 0.281 89.454
OSU Neural NLG 1 0.176 94.287 2 0.084 93.373 1 0.233 94.015 1 0.239 91.599 1 0.253 88.651
NUIG-DSI 2 0.059 91.253 1 0.178 94.512 2 0.162 92.494 1 0.234 90.744 1 0.180 88.611
WebNLG-2020-REF 1 0.264 95.491 1 0.135 94.142 1 0.236 93.355 1 0.198 91.225 1 0.225 88.136
AmazonAI (Shanghai) 1 0.258 94.090 1 0.170 93.586 1 0.295 93.691 1 0.293 91.154 1 0.308 87.750
NILC 1 0.225 94.448 1 0.266 96.269 1 0.212 93.071 1 0.212 91.225 2 0.155 87.306
ORANGE-NLG 2 0.109 92.593 2 0.112 93.673 2 0.145 91.478 2 0.074 88.034 2 0.112 85.302
Huawei 2 0.101 92.173 2 0.011 92.222 2 0.080 90.269 2 0.067 88.380 2 0.064 85.111
CycleGT 3 -0.137 88.386 1 0.125 92.120 2 0.062 88.633 3 -0.121 84.262 2 -0.036 83.287
TGen 3 -0.394 81.670 2 0.074 91.099 2 -0.028 86.793 2 0.034 86.886 2 0.005 83.037
Baseline-FORGE2020 1 0.280 95.296 1 0.153 94.568 1 0.226 93.593 2 0.074 87.040 2 0.030 82.664
UPC-POE 4 -0.404 82.173 2 -0.019 90.503 3 -0.115 84.858 2 0.096 87.309 2 -0.077 80.577
DANGNT-SGU 1 0.239 94.367 1 0.164 93.596 2 0.140 90.772 3 -0.132 84.691 3 -0.159 79.559
RALI-Université de Montréal 1 0.274 93.846 1 0.148 93.049 2 0.198 91.423 3 -0.170 82.614 3 -0.157 79.238
Baseline-FORGE2017 2 0.065 90.253 2 -0.043 89.568 2 0.042 87.608 3 -0.160 82.892 3 -0.406 75.037

(a) Seen categories

Data Coverage Relevance Correctness Text Structure Fluency
Team Name Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw
AmazonAI (Shanghai) 1 0.291 95.532 1 0.272 96.329 1 0.293 94.703 1 0.348 94.288 1 0.452 93.365
TGen 1 0.209 93.649 1 0.234 95.356 1 0.230 91.883 1 0.347 92.347 1 0.448 91.869
FBConvAI * 2 0.139 93.536 2 0.169 95.644 1 0.201 94.000 1 0.334 94.405 1 0.365 91.599
OSU Neural NLG 1 0.158 94.203 1 0.253 95.662 1 0.178 92.338 1 0.292 92.482 1 0.385 91.293
WebNLG-2020-REF 1 0.283 95.991 1 0.315 97.117 1 0.268 95.171 1 0.281 93.189 1 0.285 90.788
bt5 1 0.158 93.734 2 0.146 95.351 1 0.154 93.239 1 0.263 91.766 1 0.318 89.595
NUIG-DSI 1 0.165 91.752 1 0.181 93.694 1 0.260 92.446 1 0.358 93.041 1 0.303 89.577
CycleGT 2 0.094 92.703 1 0.181 95.198 1 0.171 92.541 1 0.233 92.036 1 0.286 89.189
cuni-ufal 1 0.206 93.937 1 0.213 94.995 1 0.149 91.086 1 0.314 93.243 2 0.098 86.559
Baseline-FORGE2017 1 0.196 92.207 1 0.266 93.797 1 0.317 91.302 2 0.003 85.644 2 0.039 83.604
RALI-Université de Montréal 1 0.317 95.775 1 0.194 95.338 1 0.215 93.333 2 -0.088 86.559 2 -0.019 83.140
Baseline-FORGE2020 1 0.161 93.360 1 0.271 96.099 1 0.199 92.635 2 -0.011 88.243 2 0.025 82.126
Huawei Noah’s Ark Lab 2 -0.259 85.041 3 -0.366 85.559 2 -0.242 84.126 2 -0.204 83.383 2 -0.221 79.315
DANGNT-SGU 1 0.230 95.329 1 0.249 96.658 1 0.160 93.459 2 -0.245 81.977 2 -0.116 78.599
ORANGE-NLG 3 -0.624 78.149 3 -0.697 78.950 3 -0.738 71.342 2 -0.285 80.505 3 -0.263 74.586
NILC 3 -0.343 84.896 3 -0.299 88.230 2 -0.563 78.315 3 -0.629 78.550 3 -0.492 74.360
UPC-POE 4 -0.982 72.928 3 -0.497 82.950 3 -0.678 75.032 3 -0.482 77.829 3 -0.383 74.095

(b) Unseen entities

Data Coverage Relevance Correctness Text Structure Fluency
Team Name Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw
AmazonAI (Shanghai) 1 0.170 94.098 1 0.215 95.713 1 0.201 92.933 1 0.295 93.498 1 0.284 90.550
WebNLG-2020-REF 1 0.230 95.178 2 0.066 93.389 1 0.263 94.207 1 0.277 92.190 1 0.310 90.508
OSU Neural NLG 1 0.303 96.033 1 0.173 94.941 1 0.237 93.489 1 0.319 92.941 1 0.340 90.423
FBConvAI * 2 0.140 92.780 2 0.098 93.644 1 0.173 91.669 1 0.308 92.605 1 0.293 90.006
NUIG-DSI 2 0.130 92.697 2 0.142 93.937 1 0.175 91.613 1 0.230 91.494 1 0.237 88.787
bt5 2 0.140 93.492 1 0.177 95.197 1 0.200 92.948 1 0.207 92.019 2 0.137 87.556
cuni-ufal 2 0.069 91.992 2 0.119 94.172 2 0.096 90.374 2 0.129 89.272 1 0.163 86.979
TGen 3 0.002 89.887 2 0.125 92.443 2 0.071 88.379 1 0.175 88.973 1 0.177 85.676
CycleGT 2 0.092 92.372 2 0.102 93.368 2 0.035 89.452 2 0.069 88.356 2 0.048 83.914
Baseline-FORGE2017 2 0.137 93.130 2 0.145 93.948 2 0.105 91.213 2 -0.032 87.542 2 -0.057 83.473
Baseline-FORGE2020 2 0.106 91.201 2 0.120 92.312 1 0.163 90.320 2 0.039 87.264 2 -0.007 82.414
DANGNT-SGU 1 0.284 95.897 1 0.172 94.872 1 0.210 93.142 3 -0.229 83.410 3 -0.182 77.992
RALI-Université de Montréal 1 0.253 95.805 1 0.176 95.678 1 0.119 92.054 3 -0.441 79.343 3 -0.387 74.554
ORANGE-NLG 5 -0.935 72.887 4 -1.225 71.728 4 -1.143 66.280 4 -0.617 75.743 4 -0.637 70.163
NILC 5 -0.970 72.234 4 -1.060 73.609 4 -1.098 65.856 4 -0.685 74.598 4 -0.721 67.330
Huawei Noah’s Ark Lab 4 -0.586 80.004 3 -0.721 80.822 3 -0.743 73.427 4 -0.718 73.808 4 -0.700 67.308
UPC-POE 5 -0.932 73.157 3 -0.863 76.423 4 -1.075 67.586 4 -0.786 73.324 4 -0.828 66.358

(c) Unseen categories

Table 13: Human Evaluation results for English for each test data type. The systems are sorted by averaged
Fluency raw scores. The colour intensity signifies final ranking in terms of averaged raw scores: more intense
colour reflects higher performance for the specific criterion. * indicates late submission.

DATA COVERAGE RELEVANCE CORRECTNESS TEXT STRUCTURE FLUENCY
TEAM NAME Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw
bt5 1 0.312 95.630 1 0.174 95.385 1 0.340 95.594 1 0.219 95.745 1 0.232 93.088
cuni-ufal 1 0.203 93.155 1 0.077 93.306 2 0.101 90.382 1 0.218 96.073 1 0.213 92.921
FBConvAI * 1 0.133 92.339 2 0.027 93.491 2 0.080 90.779 2 0.079 93.764 2 0.063 90.248
WebNLG-2020-REF 1 0.230 94.000 2 0.065 93.636 2 0.109 90.630 2 -0.005 92.082 2 0.022 89.021
OSU Neural NLG 2 -0.422 82.836 2 -0.182 90.433 3 -0.181 84.830 2 0.019 92.958 2 -0.050 88.558
med 3 -0.467 82.230 2 -0.022 92.224 2 0.021 88.585 2 -0.077 91.309 2 -0.060 88.252
Huawei Noah’s Ark Lab 2 -0.189 86.448 2 -0.060 91.761 2 -0.084 87.033 3 -0.183 89.515 3 -0.174 85.679
Baseline-FORGE2020 1 0.200 93.191 2 -0.079 91.294 4 -0.387 80.830 3 -0.270 87.645 3 -0.247 84.691

Table 14: Human Evaluation results for Russian RDF-to-text system submissions. The systems are sorted by
averaged Fluency raw scores. The colour intensity signifies final ranking in terms of averaged raw scores: more
intense colour reflects higher performance for the specific criterion. * indicates late submission.



Measure 1 2 3 4 5 6 7 8 9 10 11

1. BLEU NLTK 1.00
2. METEOR 0.81 1.00
3. chrF++ 0.89 0.85 1.00
4. TER -0.87 -0.78 -0.85 1.00
5. BERTScore F1 0.73 0.69 0.79 -0.74 1.00
6. BLEURT 0.69 0.68 0.75 -0.77 0.76 1.00
7. Correctness 0.35 0.29 0.41 -0.39 0.46 0.55 1.00
8. Data Coverage 0.27 0.27 0.38 -0.31 0.39 0.49 0.71 1.00
9. Fluency 0.38 0.31 0.4 -0.43 0.46 0.54 0.62 0.49 1.00
10. Relevance 0.28 0.22 0.33 -0.32 0.38 0.47 0.72 0.7 0.51 1.00
11. Text Structure 0.35 0.28 0.36 -0.39 0.44 0.51 0.56 0.45 0.8 0.51 1.00

(a) English

Measure 1 2 3 4 5 6 7 8 9 10

1. BLEU NLTK 1.00
2. METEOR 0.91 1.00
3. chrF++ 0.92 0.92 1.00
4. TER -0.91 -0.91 -0.9 1.00
5. BERTScore F1 0.83 0.83 0.93 -0.88 1.00
6. Correctness 0.23 0.23 0.31 -0.24 0.31 1.00
7. Data Coverage 0.20 0.2 0.32 -0.22 0.29 0.50 1.00
8. Fluency 0.17 0.17 0.20 -0.22 0.26 0.42 0.31 1.00
9. Relevance 0.14 0.14 0.17 -0.15 0.17 0.56 0.50 0.28 1.00
10. Text Structure 0.16 0.16 0.19 -0.18 0.21 0.43 0.27 0.74 0.24 1.00

(b) Russian

Table 15: Pearson correlations for RDF-to-text task for both languages. All of them were statistically significant
with p-value < 0.01.

grammaticality (Text Structure, Fluency) they
score lower than neural approaches.

Russian. Table 14 shows the results of the hu-
man evaluation for the RDF-to-text systems in
Russian. Similar to the automatic evaluation, the
top-performing systems in all ratings are bt5,
cuni-ufal and FBConvAI. Also, the ratings
for the first two systems were significantly better
than the ones for the ground-truth references for
Relevance, Text Structure and Fluency. bt5 also
ranked higher than the references for Correctness.
As described in Section 2.2, Russian data might
have issues with fluency and correctness, so we
attribute the lower ratings for references to the qual-
ity of the data. Interestingly, Huawei Noah’s
Ark Lab performed much worse on the human
evaluation across all criteria compared to their au-
tomatic evaluation metric scores.

7 Correlation between Automatic and
Human Evaluation Metrics

Tables 15a and 15b describe the sentence-level
Pearson correlations of the evaluation metrics
for the RDF-to-text task in English and Rus-
sian, respectively. Novel learned metrics, such
as BERTScore and BLEURT, seem to correlate
more with the human evaluation ratings than tra-
ditional token- and character-overlapping metrics,
such as BLEU, METEOR, chrF++ and TER. For
the English evaluation, BLEURT, the newest met-
ric, was the one that best correlated with the hu-
man evaluation ratings, especially with Correctness
and Fluency. For Russian, BERTScore was the
automatic metric that best correlated with the hu-
man ratings, except for Data Coverage, with which
chrF++ correlated the most. This latter was one of
the character- and n-gram metrics that correlates
more with human ratings.



8 Conclusion

This report described the data, participating sys-
tems, results and findings of the 2020 Bilingual,
Bi-Directional WebNLG+ shared task. The shared
task of this year involved two tasks: RDF-to-text
and Text-to-RDF. In the following sections, we de-
scribe the main findings for each task conducted
on this version of the shared task.

8.1 RDF-to-text

Similar to the WebNLG challenge of 2017, the
RDF-to-text task consisted of verbalising sets of
RDF triples. Different from the last version of this
shared task, the task in this year was introduced
in two languages: English and Russian. In total,
we received 14 submissions for English and 6 for
Russian.

Neural vs. Rule-based approaches. Looking at
the results for the automatic and human evaluation,
we could notice some differences between rule-
based and neural approaches for data-to-text gen-
eration. The former models seem to automatically
generate text comparable in quality with human
texts in terms of adequacy, i.e., the generated texts
express exactly the communicative goals contained
in the input tripleset. On the other hand, novel neu-
ral approaches produce text comparable to human
texts in terms of fluency.

Fine-tuned Large Language Models. Follow-
ing a popular trend in Natural Language Process-
ing, many of the participating neural approaches
use fine-tuned large pre-trained language models,
such as BART and T5. These systems, such as
Amazon AI, FBConvAI, OSU Neural NLG
and bt5 were among the top-ranked systems and
were rated high in terms of fluency and structure
of the generated texts. T5 and BART were the
large language models most frequently used by the
participating systems. When comparing the use
of both models, they seem to perform similarly in
terms of fluency. However, the systems based on
BART suffered a drop in performance in terms of
data coverage. In contrast, the ones based on the T5
performed similarly to the rule-based approaches.

Memorisation vs. Generalisation. We evalu-
ated the RDF-to-text systems in distinct data set-
tings in order to verbalise (i) trials from semantic
categories seen during training, (ii) trials from seen
categories but with entities that were unseen during

training and (iii) trials from categories fully unseen
during training. We hypothesise that the former
setting is the easiest, since the generation models
would just have to memorise the content seen dur-
ing training. On the other hand, in the latter the
models would have to generalize the content learnt
during training to unseen data. In fact, results con-
firmed that converting RDF triples from semantic
categories seen during training to texts is easier
than generating from unseen entities and semantic
categories.

Automatic vs. Human Evaluation Metrics.
We evaluated the participating systems using sev-
eral traditional automated (e.g. BLEU, METEOR)
metrics as well as novel learning-based evaluation
ones (e.g. BERTScore, BLEURT) for text genera-
tion. The inclusion of all these metrics allowed
us to investigate which metrics show stronger
correlations with human ratings. We have ob-
served that novel embedding-based metrics, such
as BERTScore and BLEURT, achieved higher cor-
relations with human ratings than traditional token-
overlapping ones, such as BLEU and METEOR.

Parity with Human-Written References. Sev-
eral systems achieved high performance in human
evaluation across all the measured criteria and
ended up in the same cluster with human references.
Could we say that automatic systems generated al-
most human-like texts and “solved” the data-to-text
WebNLG task? Those conclusions should be made
with caution since the WebNLG dataset has its lim-
itations. First, its vocabulary is relatively restricted;
second, the dataset has a template-based structure
where properties are lexicalised in a similar man-
ner across texts. Given those drawbacks, the next
edition of the shared task should aim for more com-
plex and naturally occurring texts verbalising RDF
triples. Specifically, for Russian, we will need to
collect better data to measure parity with automatic
systems.

Overall, modelling language is always a moving
target. So we should strive for better and versatile
datasets and evaluation settings.

8.2 Text-to-RDF

The Text-to-RDF task was a new challenge for
WebNLG. Natural language texts had to be con-
verted to RDF triples from the Semantic Web. Sim-
ilar to RDF-to-text, this task was introduced in two
languages: English and Russian. In total, three



teams participated in the task. One team partici-
pated in both the English and Russian version of the
task, whereas two participated only in the English
version.

The evaluation was only performed using au-
tomatic metrics (F1, Precision, Recall) on four
different levels (Exact, Ent Type, Partial, Strict).
The results on these metrics for English submis-
sions show that all of them were able to outperform
the baseline based on Stanford CoreNLP’s Open
Information Extraction module (Manning et al.,
2014). In particular, Amazon AI (Shanghai)
and bt5 performed well compared to this base-
line. At the same time, when comparing the re-
sults per data type, a drop in performance was ob-
served for all systems when tested for the sets with
unseen categories and unseen entities, indicating
that all submitted semantic parsing systems strug-
gle with generalisation to unseen entities and cate-
gories. However, note that the scores for Amazon
AI (Shanghai) and bt5 still stayed relatively
high when being tested on the unseen categories
and unseen entities.

Only bt5 participated in the Russian version of
the task and achieved very high scores compared
to the baseline. However, we emphasise that the
Russian test set included only seen entities and
categories. Hence, it is not clear how well the
Russian bt5 system would be able to generalize
to unseen entities and categories.
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tenys Sabà, Roger Creus Castanyer, and José Adrián
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Appendix A Example task for human evaluation experiments on MTurk



Appendix B Example task for human evaluation experiments on Yandex.Toloka


