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Universitat Politècnica de Catalunya, Barcelona

TALP Research Center
{oriol.domingo.roig, david.bergés

roser.cantenys, roger.creus}@estudiantat.upc.edu
{jose.fonollosa}@upc.edu

Abstract

This work establishes key guidelines on how,
which and when Machine Translation (MT)
techniques are worth applying to RDF-to-Text
task. Not only do we apply and compare the
most prominent MT architecture, the Trans-
former, but we also analyze state-of-the-art
techniques such as Byte Pair Encoding or Back
Translation to demonstrate an improvement in
generalization. In addition, we empirically
show how to tailor these techniques to enhance
models relying on learned embeddings rather
than using pretrained ones. Automatic metrics
suggest that Back Translation can significantly
improve model performance up to 7 BLEU
points, hence, opening a window for surpass-
ing state-of-the-art results with appropriate ar-
chitectures1.

1 Introduction

A Knowledge Base (KB) is a large source of infor-
mation represented in a structured way. The infor-
mation structure is based on Resource Description
Framework (RDF), which consist of three elements:
〈subject, predicate, object〉. Thus, it establishes
relations (predicate) between entities (subject, ob-
ject).

It is known that KBs are being widely consid-
ered in the industry for applications such as ques-
tion answering (Q&A) systems (Fader et al., 2014),
search engines (Ding et al., 2004), recommender
systems (Huang et al., 2002), etc. However, this
data representation is not human-friendly, i.e. is
not in a language form, hence, it is hard for human
to comprehend the information embedded in these
triples.

The team address this problem under the context
of Natural Language Generation (NLG). This task

1Data and source code available at https://github.
com/uridr/RDF-TextGeneration

can be divided into: text-to-text generation or data-
to-text generation, according to Gatt and Krahmer
(2017). The latter is the most common approach
taken to solve the RDF-to-Text task, since it is
based on a mapping from structured data to text.
However, we focus on applying MT architectures
and techniques, which are considered for text-to-
text generation.

To further improve the quality of the text gener-
ated by our models, we assess the advantages of
Back-Translation (BT) (Sennrich et al., 2016) for
this task, as well as, compare the benefits of learn-
ing the embeddings from scratch to the alternative
of providing pretrained embeddings.

The specific contributions of our work to the
field are:

• We train an encoder-decoder Transformer ar-
chitecture, in end-to-end and pipeline man-
ners, for RDF-to-Text task.

• We enhance our models with Byte Pair Encod-
ing (BPE) (Sennrich et al., 2015), embedding
analysis and BT for better generalization. To
the best of our knowledge, our BT experiment
is the first ever applied in the RDF-to-Text do-
main. In this paper is shown that working with
synthetic corpus leads to best results as long as
models consider BPE and learned embedding
techniques in an end-to-end environment.

2 Task Formulation

The RDF-to-Text task aims to generate natural text
from a set of RDF, which are entities in the form
of words establishing relations between them.

The input to our system is a KB that can be de-
noted as a set of RDF, i.e. K := {r1, ..., rn}. Each
element in RDF ri can be defined as 〈si, pi, oi〉,
these elements stand for subject, predicate and ob-
ject, respectively.
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Type of Text Lexicalise Delexicalise
RDF 〈 Rome, capital of, Italy 〉 〈 CITY, capitalOf, COUNTRY 〉
Target Sentence Rome is the capital of Italy. CITY is the capital of COUNTRY.

Table 1: Lexicalise and delexicalise language.

Finally, we aim to generate a sequence of sen-
tences S, which consists of a sequence of words
[w1, ..., wm]. The resulting sentences in S should
be grammatically correct and should also contain
all the information present in the KB K.

In order to assess the correctness of S, the
following metrics are studied: BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
chrF++ (Popović, 2017); for which greater values
mean better performance, and TER (Snover et al.,
2006); for which lower values means better perfor-
mance.

3 Related Work

The present task was also proposed in the WebNLG
Challenge 20172. Submissions to this challenge
included different approaches, such as: Neural
Machine Translation (NMT), Statistical Machine
Translation (SMT) and Pipeline systems (Gardent
et al., 2017b). The best model regarding auto-
matic metrics was submitted by the University of
Melbourne. Such model consisted of an encoder-
decoder Bidirectional Long Short-Term Memory
architecture with attention3. Although the model
falls in NMT field, it is not an strict end-to-end
approach as it matches input and output with delex-
icalised templates.

Recently, most of the taken approaches to solve
this NLG task are based on encoder-decoder ar-
chitectures as well as Graph Neural Networks
(GNN). The main idea behind these methods is
to exploit the input structure, which can be seen as
a graph. It can be empirically shown how encoder-
decoder GNN architectures can achieve similar re-
sults to the best submission in WebNLG Challenge
2017 (Marcheggiani and Perez-Beltrachini, 2018)
or even improve these benchmarks (Trisedya et al.,
2018).

4 System Architecture

This section describes the pipeline architecture
from preprocessing K to postprocessing the out-

2https://webnlg-challenge.loria.fr
3https://webnlg-challenge.loria.fr/

files/melbourne_report.pdf

put of intermediate models. However, the system
will be adapted to allow different experiments.

4.1 Preprocessing

First of all, each RDF is delexicalise as suggested
in the WebNLG Challenge 2017. Table 1 illustrates
how one RDF that establishes a relationship be-
tween specific entities (Rome, Italy) can be
generalised to any pair of entities of the same
type (CITY, COUNTRY). Hence, we also need
to delexicalise every target sentence to match the
delexicalise input during training phase.

Then, Moses tokenizer (Koehn et al., 2007) is
applied to separate punctuation from words, pre-
serving special tokens such as dates, and normalize
characters. Finally, BPE is also applied to improve
the translation quality. More details about the ad-
vantages and disadvantages of this technique will
be discused in Section 6.1.

4.2 Transformer model

The team implemented a sequence-to-sequence,
encoder-decoder based on the Transformer model
proposed in (Vaswani et al., 2017). Moreover,
Transformer can be interpreted as a special case of
GNN, mentioned by Chaitanya Joshi4. Hence, this
approach is also aligned with the latest research,
mainly based on GNN, conducted to solve the RDF-
to-text task.

This model is implemented5 with an attention
mechanism to allow modeling dependencies re-
gardless their distance in the input or output se-
quences. This results in a fundamental feature for
NLG, since automated generation of text depends
on the capability of combining information given
by different, and not only consecutive, words.

4.3 Postprocessing

Models output a sequence of predicted words, then,
the system removes the tokenization as well as BPE.
Moreover, we need to perform a relexicalisation
step in order to recover the specific relationships
and meanings from the original lexicalise RDF.

4https://graphdeeplearning.github.io/
post/transformers-are-gnns/

5See Appendix A for additional details on the hyperparam-
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Embedding Dimension Format BPE BLEU (↑) METEOR (↑) chrF++ (↑) TER (↓)
Learned 256 Delexicalise 5000 38.33 0.36 0.62 0.53
GloVe 100 Lexicalise — 36.98 0.35 0.60 0.48
GloVe 200 Lexicalise — 42.41 0.39 0.66 0.46
GloVe 300 Lexicalise — 42.85 0.39 0.66 0.46
Wikipedia2Vec 100 Lexicalise — 37.45 0.35 0.61 0.48
Wikipedia2Vec 300 Lexicalise — 41.69 0.39 0.65 0.45

Table 2: Transformer performance with learned embbeding using BPE 5000 and delexicalise format, and different
pretrained embeddings using lexicalise format in release v2.1 dataset. Not considering BPE is marked as —.

BPE BLEU (↑) METEOR (↑) chrF++ (↑) TER (↓)
— 37.15 0.36 0.61 0.55
500 36.41 0.35 0.60 0.53
1000 37.11 0.35 0.61 0.52
5000 38.33 0.36 0.62 0.53
7000 37.01 0.35 0.61 0.56

Table 3: Transformer performance regarding different
number of BPE subwords in release v2.1 dataset. All
models are trained with delexicalisation and learned
embeddings of 256-dimensions. Not considering BPE
is top-row, marked as —.

5 Data

The data used in this work is the release v2.1
and webnlg challenge 2017 (Gardent et al., 2017a)
taken from the WebNLG corpus6. Both datasets
are partitioned into three subsets: train, dev
and test. The release v2.1 respectively have
34338, 4313 and 4222 instances, and the
webnlg challenge 2017 have 18102, 2268 and
1862 with unseen relations in the test set. These
datasets are based on DBPedia, which is a multilin-
gual KB that was built from several kinds of struc-
tured information included in Wikipedia (Mendes
et al., 2012).

6 Ablation Experiment and Results

The first experiment analyses the influence of the
number of BPE subwords. The second experiment
study the improvements of pretrained embeddings
against learned embeddings. Last experiment is
designed to enlarge training data by means of dif-
ferent BT approaches.

6.1 Byte Pair Encoding
It has been demonstrated that the method used to
treat rare items in data-to-text generation strongly
impacts system performance (Shimorina and Gar-
dent, 2018). The authors (Shimorina and Gardent,
2018) also stated that character-based techniques,

eter tuning and optimizing approaches.
6https://gitlab.com/shimorina/

webnlg-dataset

such as BPE, obtained very poor results in the
WebNLG dataset. Nevertheless, the combination
of delexicalisation and BPE was not considered,
neither the fact of learning the embeddings from
scratch as most MT system do. Thus, we stud-
ied the influence of the BPE technique under the
use of delexicalisation and learned embeddings of
256-dimensions.

Table 3 shows that not considering BPE could
lead to worse performance than using BPE. Nev-
ertheless, the number of BPE subwords needs to
be fine-tuned, otherwise, the system’s performance
could significantly decrease, as in the case of 500
BPE subwords.

One remarkable aspect, is that the test set, from
which these metrics were computed, has a vocab-
ulary that mostly appears in the train set. Thus,
the performance of systems using BPE technique
should be more robust to data that consist of unseen
vocabulary than systems that do not consider such
a technique since they would decrease their perfor-
mance as unknown vocabulary increases, attaining
greater differences.

6.2 Embedding Analysis
In the MT field, the most common approach is
to learn embeddings from scratch due to amount
of available data. Although this is not our case,
in which thousands of instances are provided, we
present a comparison between using learned em-
beddings and pretrained embeddings. We found
that suitable embeddings could be: GloVe (Pen-
nington et al., 2014) and Wikipedia2Vec (Yamada
et al., 2020) since instances are extracted from
Wikipedia.

The preprocessing and postprocessing pipeline
had to be slightly adapted to allow the use of pre-
trained embeddings. These embeddings rely di-
rectly on the lexicalise format as shown in Table
1. Notice that the generalization that the delexi-
calisation step was giving, it is no longer present
using these pretrained embeddings. However, these
embeddings have been built using a large amount
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BT Model Tagged Corpus Embedding Dimension BPE BLEU (↑) METEOR (↑) chrF++ (↑) TER (↓)
Transformer No 79639 GloVe 300 — 31.62 0.30 0.54 0.61
Parsing No 79639 GloVe 300 — 38.26 0.35 0.61 0.51
Parsing No 79639 Learned 256 5000 41.97 0.39 0.65 0.45
Parsing Yes 79639 Learned 256 5000 43.37 0.40 0.67 0.43
Parsing No 155897 Learned 256 10000 44.01 0.40 0.67 0.44
Parsing Yes 155897 Learned 256 10000 44.22 0.40 0.67 0.43

Table 4: Transformer performance after training with the release v2.1 and synthetic corpus in BT experiment.

of data that should lead to good generalization be-
tween entities as well.

In Table 2, it is clearly shown how the learned
embedding approach with BPE can be surpassed re-
garding any metric even with lower dimensionality,
200-dimension GloVe, by the pretrained embed-
ding approach. Nevertheless, we will see in the fol-
lowing Section 6.3 that adding more instances ben-
efits more the learned embedding approach rather
than the pretrained one. This might reveal that the
learned embedding approach is underperforming
the pretrained embedding approach at this stage
due to a low number of data instances.

Finally, there is not a notable difference between
200-dimension GloVe, 300-dimension GloVe and
300-dimension Wikipedia2Vec.

6.3 Back-Translation

This work specifically focuses on BT, which op-
erates in a semi-supervised setup where both par-
allel corpora and monolingual data in the target
language are available (Sennrich et al., 2016).

First of all, BT trains an intermediate system
on the parallel data which is used to translate the
target monolingual data into the source language,
i.e. text-to-RDF. The latter, results in a parallel cor-
pus where the source, RDF, is synthetic MT output
while the target is genuine text written by humans.
Afterwards, the generated synthetic parallel corpus
is added to the real bitext in order to train a final
model that will translate from the source to the
target language, equivalently RDF-to-text.

Moreover, we also studied the performance of
Tagged Back-Translation (Caswell et al., 2019).
This technique adds an extra token at the beginning
of each synthetic instance allowing the model to
differentiate them from real data.

6.3.1 Monolingual Data
We used english monolingual data extracted from
Wikipedia. The scrapped pages were from most
similar entities to the ones in the training cor-
pus following an embedding distance-based ap-
proach. This distance was computed regarding

Wikipedia2Vec (Yamada et al., 2020) that allows
to query for entities rather than words. For in-
stance, ’Barack Obama’ most similar entities can
be queried without lowercasing either splitting,
which is not allowed in most pretrained embed-
dings.

6.3.2 Back-Translation Model
There is a small difference in our task with respect
to MT when applying BT, which is that MT solves
the same task in both directions, as it is working in
a text-to-text context. However, this is not our case
were RDF-to-text is a generative task while text-
to-RDF is a parsing task. Thus, our best approach
consisted of parse trees that guarantee that elements
in the RDF appear in the text. We updated and
adapted the script proposed here7 that is based on
the algorithm presented by (Rusu et al., 2007).

In Table 4, we report the performance of the
model after training with real and synthetic data.
The synthetic data generated from the Transformer
was of little quality, in fact, training with this data
lead to achieve the worst results yet presented. Al-
though parsing approach significantly improve syn-
thetic data and its performance, results were worse
in comparison with training without this synthetic
corpus, as in Table 2. Not until learned embeddings
and BPE were considered did we notice some im-
provement with respect to training with only origi-
nal data. Combining learned embeddings with BPE
improved their best performance obtained in Table
3 by almost 6 BLEU points, 0.04 METEOR points,
0.05 chrF++ points and 0.1 TER points. Further-
more, Tagged BT obtained similar or better metrics
even when training was done with nearly half of
the data used in the best BT output.

7 Models Summary
In the following, the best models obtained in each
of the considered experiments as well as their per-
formance are presented. Moreover, we also provide
a comparison between our models and some of the
most relevant models in the RDF-to-Text domain.

7https://github.com/calosh/
RDF-Triple-API
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WebNLG 〈Alfred Moore Scales, successor, Daniel Gould Fowle 〉, 〈 Daniel Gould Fowle, alma mater, Princeton University〉
BPE The alma mater of Alfred Moore Scales was the Princeton University and he was succeeded by Daniel Gould Fowle.

Embedding Daniel Gould Fowle succeeded Alfred Moore Scales , whose alma mater was the university of Gottingen.

BT Alfred Moore Scales was succeeded by Daniel Gould Fowle and his alma mater was Princeton University.

Tagged BT Daniel Gould Fowle succeeded Alfred Moore Scales.

Table 5: Example of a set of RDF from the test set, top, and the prediction of each model in different experiments.

Model BLEU (↑) METEOR (↑) chrF++ (↑) TER (↓)
BPE 38.33 0.36 0.62 0.53
Embedding 42.85 0.39 0.66 0.46
BT 44.01 0.40 0.67 0.44
Tagged BT 44.22 0.40 0.67 0.43

Table 6: Performance summary between best results
of each experiment using a Transformer architecture in
release v2.1 dataset.

Model BLEU (↑) METEOR (↑) TER (↓)
Seen Unseen Seen Unseen Seen Unseen

Transformer 40.45 4.56 0.38 0.11 0.48 1.06
BT Transformer 39.9 21.44 0.37 0.29 0.46 0.73
Melbourne (3) 54.52 33.27 0.41 0.33 0.37 0.55
(Trisedya et al., 2018) 58.6 34.1 0.4 0.32 0.41 0.57

Table 7: Comparison between Transformer with BPE
1000 and learned embeddings, BT Transformer with
BPE 10000 and learned embedding, and state-of-the-
art models with respect to webnlg challenge 2017
dataset.

7.1 Work Comparison

Models considering pretrained embeddings rather
than learned embeddings can lead to good perfor-
mance metrics, however, BT and Tagged BT are
better when embeddings are learned from scratch.
Not only was the best performance achieved with
BT, see Table 6, but the text generated from BT
models were more coherent with the inputs as
shown in Table 5, where both BT models are the
ones to only include relations appearing in the in-
put.

7.2 Related Work Comparison

Table 7 depicts a comparative analysis between
Transformer architecture trained end-to-end with
and without synthetic data, i.e. considering BT,
and state-of-the-art models, both presented in Sec-
tion 3. It is clearly shown how the performance in
unseen domain is improved when considering BT
in the Transformer. In fact, there is a significant
metric improvement when BT is applied (i.e. 7
BLEU point improvement). Notice also that the
performance in the seen domain is quite invariant
to the improvement in the unseen domain. Hence,
state-of-the-art models could still perform much
better with BT.

This finding opens a window for training these
state-of-the-art models with our synthetic corpus, if
possible. Expecting these results to be very promi-
nent due to the fact that we have demonstrated that
training with synthetic data in an end-to-end man-
ner is worth applying in RDF-to-Text domain.

8 Conclusions

This work provides a solution to the RDF-to-text
task by means of MT techniques, which falls in
a different NLG domain, text-to-text, rather than
data-to-text. The team observed that if a delexi-
calisation step is performed with BPE and learn-
ing embeddigs, the better the number of words in
BPE is tunned, the better the results can be. More-
over, we showed that pretrained embeddings are
worth considering in comparison to use learned
embeddings. The performance obtained with learn-
ing embeddings and BPE significantly increased
(∆ ' 7 BLEU, ∆ ' 0.05 METEOR, ∆ ' 0.05
chrF++ and ∇ ' 0.1 TER), reaching the best re-
sults presented in this work, when synthetic corpus
was used in training phase, as it did not happen
with pretrained embeddings. Hence, revealing that
BPE and learned embeddings benefit more than
pretrained embeddings from a larger dataset. In fu-
ture work, we plan to enlarge the synthetic corpus
since Back Translation results are promising and
monolingual text is extensively available, and use
this synthetic corpus to train other relevant models
in the RDF-to-Text task.
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A Appendix

This appendix describes the training regime for the
proposed models.

A.1 Model Parameters and Optimization
We used a Transformer model with a total of 3 lay-
ers with Feed Forward Networks of dimensionality
1024 and 8 attention heads, performing cross + self
attention at each layer. We used 256 dimension
embeddings, shared across the entire network plus
fixed (not learned) sinusoidal positional encodings.

We performed a grid search on the number of
layers, the embedding dimension and the number
of attention heads. In the end, the best values were
between 3 or 4 layers, 256 and 300 dimensions for
the embeddings and 8 attention heads.

In addition to the above-mentioned, we further
studied the Transformer model, by means of per-
forming another small grid search with the hidden
dimension of the Feed Forward Network (FFN),
whether to use learned positional embeddings and
whether to use cross + self attention throughout the
different layers. At last, we obtained the best results
using 1024 as the hidden dimension for the FFNs,
using fixed sinusoidal positional embeddings and
cross attention.

A.1.1 Hardware and Schedule
We trained our models on a single machine equiped
with 2 NVIDIA GTX 2080Ti GPUs. In order to
speedup training for the initial hyperparameter tun-
ing approach, we used Mixed Precision Training
(FP16) (Micikevicius et al., 2017) and both avail-
able GPUs. For the final models we trained on a
single GPU and normal precision training in pur-
suance of stability and consistency.

As a reference, the final transformer finished
training with just over 1 hour for a total of 20
epochs.

A.2 Optimizer
We used the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ε = 10−9.
We increased the learning rate linearly for a total
of 4000 warming steps to 1e−03, and decreased
it following an inverse square root formula from
there. Additionally, we applied several regulariza-
tion techniques such as dropout, gradient clipping
and label smoothing for our loss formula.

lri =
lr0 ·
√
warmup updates√

i
(1)

46

https://doi.org/10.18653/v1/W18-6543
https://doi.org/10.18653/v1/W18-6543
https://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf
https://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf
https://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://doi.org/10.18653/v1/P18-1151
https://doi.org/10.18653/v1/P18-1151
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762


A.2.1 Regularization
We studied employing three types of regularization
during training:

Dropout: In both models, we apply dropout
(Srivastava et al., 2014) to the output of each sub-
layer before it is fed to the next one. In addition,
we reckon it could be interesting to further study
the effect of dropout inside the attention weights
and the activation functions.

Gradient Clipping: In order to avoid problems
with exploding gradients, we renormalised the gra-
dients if their norm exceeded 0.1 (Pascanu et al.,
2012).

Label Smoothing: During training, we em-
ployed label smoothing with εls = 0.1 (Szegedy
et al., 2015). This might have hurt perplexity, as
the model learned to be more unsure, but helped to
improve some metrics like BLEU score.
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