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Abstract

The paper devoted to the problem of automatic
text generation from RDF triples. This prob-
lem was formalized and proposed as a part of
the 2020 WebNLG challenge. We describe our
approach to the RDF-to-text generation task
based on a neural network model with the Gen-
erative Pre-Training (GPT-2) architecture. In
particular, we outline a way of base GPT-2
model conversion to a model with language
and classification heads and discuss the text
generation methods. To research the parame-
ters’ influence on the end-task performance a
series of experiments was carried out. We re-
port the result metrics and conclude with pos-
sible improvement directions.

1 Introduction

The idea of semantic web has a long history of
research and development. The Resource Descrip-
tion Framework (RDF) is the most common and
known standard for semantic data interchange de-
veloped by the World Wide Web Consortium (Las-
sila et al., 1998). The RDF data model allows
to encode knowledge in a form of (subject, pred-
icate, object) statements known as triples. Thus
providing a way of creating common knowledge
databases understandable for machine and human.

This idea together with recent development
of transformer language models unlock a set of
promising research directions. Two of them were
highlighted at this year’s workshop on Natural
Language Generation from the semantic Web
(WebNLG) (Castro Ferreira et al., 2020). The
WebNLG organizers proposed: 1) RDF-to-text gen-
eration task and 2) Text-to-RDF semantic parsing
task (reverse of the first one). Each task was sug-
gested for English and Russian language.

Basically the first task is the following: given an
input RDF triples set, build a system to yield its

verbal logical equivalent in natural language. For
example, given the RDF set of three triples:

Adare Manor|completionDate|1862
Adare Manor|architect|Augustus Pugin
Adare Manor|buildingStartDate|1700

a good answer would be ”The construction of
Adare Manor began in 1700 and was completed
in 1862. The manor was designed by Augustus
Pugin.”

Such a system, if proven to show human com-
parable performance, potentially can have several
practical applications. Based on the system a tool
for specific domain RDF databases verbalization
can be created. Generally making interaction with
knowledge graphs and databases more natural for
lay users. Another use case includes an applica-
tion in the dialog systems development process.
Often conversational agents use retrieval-based (Ji
et al., 2014; Yang et al., 2018) or hybrid (Yang
et al., 2019) approaches for best utterance selection.
Those approaches require a predefined candidate re-
sponse set, which can be automatically verbalized
from an appropriate RDF database.

In this work, we restrict ourselves only to the
RDF-to-text generation task for the Russian lan-
guage. Our ultimate goal was to benchmark perfor-
mance of a neural network language model with
GPT-2 architecture (Radford et al., 2019) together
with some decoding methods.

2 Data

The workshop organizers provided the dataset (in
the XML file format) for each language along with
the split: train, dev and test. The Russian data
was collected from 9 DBpedia (Auer et al., 2007)
categories. Absolute numbers for each category
and split part can be found in Table 1.

Basically each data entry may contain up to 7
RDF triplets and a few variants of this triplet set
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Category train dev test
Airport 949 136 190

Astronaut 463 66 92
Building 852 120 167

CelestialBody 555 79 109
ComicsCharacter 250 35 50

Food 1,231 175 245
Monument 234 30 44

SportsTeam 684 98 134
University 355 51 71

Total 5,573 790 1,102

Table 1: Statistic details of the Russian dataset.

verbalization. Based on the train data, the median
value of an entry triplets is 3. Except for a few
outliers the number of verbalisations for an entry
also no more than 3. Each entry also includes some
additional parameters, for example specs on triplet
positional arrangement, but we didn’t use it ex-
cept for the translation links. To stay in the single
language space we also had to explicitly translate
predicate statements (227 unique elements) thus
finalizing triplets conversion to the Russian lan-
guage.

Furthermore, as there were no restrictions on
external data use, we tried to experiment with ad-
ditional data (see Section 3.2). For this purpose
Baidu SKE dataset1 was automatically translated
from Chinese to Russian2 and used as an augmen-
tation data. The dataset (much larger is size) has a
similar structure, each entry is a set of associated
tuples (subject, predicate, object) and a text descrip-
tion. The number of unique predicate statements is
50 and there are 194,747 entries in total.

3 Proposed approach

Since their introduction the neural network mod-
els with transformer-based architecture (Vaswani
et al., 2017) has become the default choice when
approaching a natural language processing prob-
lem. This success primarily is the performance
boost and usability across a wide range of tasks.
The same base model can be finetuned for a spe-
cific task (in an end-to-end fashion) with a low cost
effort and relatively small amount of data.

In this work we exploit the same strategy by tak-
ing Russian GPT-2 model3 (24 transformer block

1http://ai.baidu.com/broad/introduction
2https://yadi.sk/d/P55m92dEyC3w8g
3In shortage of pre-trained GPT-2 models for the Russian

layers, 1024-dimensional word embeddings and 16
self-attention heads, with about 350M parameters
in total) as base and finetune it for the RDF-to-text
generation task.

The GPT-2 essentially is a language model that is
trained to predict the next token (a sub-word) given
all previous tokens of a sequence. Technically the
cross-entropy loss function over n vocabulary to-
kens {t1, ..., tn} used to estimating the conditional
probability distribution p(ti|t1, ..., ti−1). But we
cannot directly apply such a model to our task as
the genuine GPT-2 model has a lack of control over
the generation process and succeeds only in spawn-
ing of text endings given a beginning. Our goal
is to force the model to wrap (join and rephrase)
the given RDF set triplets in the form of coherent,
syntactically and semantically correct natural lan-
guage phrases. For this purpose we defined the
model with double heads. First one is the same (as
in GPT-2) language head and the second one is the
classification head. The aim for the second head
is exactly to distinguish between correct or wrong
(a sample was randomly selected to represent a
negative example) verbalisation of an input RDF
set. Thus our final loss function is the sum of two
cross-entropy components. By minimizing such
loss our model learns to automatically translate an
RDF set to an adequate natural language phrase.

The sample input data for the model is a pool of
indices lists and masks. The main part of this pool
is the list of token indices of an input sequence,
which could be broken down into two parts: RDF-
part and phrase-part. These parts are separated
from each other by the special mediator token (by
start/end tokens analogy). In the inference mode
there is only an RDF-part and the mediator token
is the trigger to start a phrase generation process
(Section 3.1). We trained the unified model for all
categories and triplet cardinalities.

3.1 Text generation stage

Once the model has been trained it can generate
verbalisations for unseen RDF triplet sets. Basi-
cally it is an iterative process of tokens’ probability
estimation and the ”best” token selection, until the
stop criteria is reached (e.g. the terminate token
is encountered). The obvious strategy is greed-
ily choosing the most probable token at each step.
But it has major drawbacks of text repetitions and
obvious phrases selection. Instead of a greedy al-

language we had to train one from scratch.
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gorithm, we use a beam search algorithm which
implements the idea of keeping and scoring an alter-
native set of beams during the generation process.
Thus allowing immediately un-obvious variants to
evolve further to high quality ones.

As recently highlighted in Holtzman et al. (2020)
the high quality natural language text has an irregu-
lar structure and is much less predictable in terms of
simple token probability maximization strategy. To
introduce more variability and improve the quality
of generated text particular sampling methods (Top-
K and Top-P sampling) have been proposed (Fan
et al., 2018; Holtzman et al., 2020). Their overall
idea is to choose a random token according to the
probability distribution from only a fixed top-range
of high probable candidates. The Top-K parameter
explicitly limits the range to K tokens. And the
Top-P parameter defines the tokens range by cumu-
lative probability value P. Also the overall proba-
bility distribution shape can be controlled with the
Temperature parameter (Ackley et al., 1985).

The above mentioned methods do not contradict
with each other and could be jointly implemented
in a single text generation pipeline. Due to the
sampling methods this pipeline can be viewed as
a randomized process. For an input RDF set the
pipeline can be executed Run-K times and each
run samples a verbalisation candidate. We’ve done
some experiments with this Run-K and other gen-
eration parameters (Section 3.2). By analogy with
the beam search algorithm we can estimate the
candidate’s score (as the probability product of its
tokens). And the final RDF’s verbalisation was
selected by this score maximization.

Finally, we’ve applied some post-processing
(with regular expressions) on the final candidates to
overcome tokenization artefacts, like paired char-
acters concatenation, a float delimiter unification,
etc.

3.2 Experimental results

The evaluation of systems that produce natural lan-
guage text as a result is a non-trivial problem. Sev-
eral metrics have been designed to quantitatively as-
sess such systems’ performance. For this challenge
the organizers provided the evaluation tool with
five base metrics (Castro Ferreira et al., 2020). In
this study the BLEU metric (Papineni et al., 2002)
was selected as the primary one.

We’ve implemented the above mentioned model
using the Transformers library (Wolf et al., 2019).

Metric dev test synthetic
BLEU 35.7 43.1 38.5± 0.8

BLEU NLTK 35.4 43.0 38.9± 0.8
METEOR 51.6 57.6 60.0± 0.5

chrF++ 54.3 59.5 61.8± 0.4
TER 55.1 48.7 54.4± 0.6

BERT-score P 87.8 89.8 87.7± 0.1
BERT-score R 85.0 87.3 88.0± 0.1
BERT-score F1 86.2 88.4 87.9± 0.1

Table 2: Systems performance metrics (%).

And trained it (from the base GPT-2 model) with
the Adam optimizer (initial learning rate 3× 10−5),
an input sequence length of 512 tokens and the
batch size of 2 examples for 3 epochs on a Tesla
V100 GPU. Alternatively we’ve tried to first make
a pre-training on the translated RDF data (see Sec-
tion 2) and then finish the training with this chal-
lenge dataset. But this strategy did not seem to
affect the performance much (see the dashed line
on the a-part of Figure 1) so we abandoned this
approach.

In our experiments the generation process was
governed by four main parameters: Run-K, Tem-
perature, Top-K and Top-P. The Figure 1 depicts
dependency between these parameters values (x-
axis) and the BLEU metric (y-axis) on the dev set.
In each case only a single parameter value was var-
ied while the other ones were fixed. As can be seen
from the Figure 1 the performance correlations
are not so explicit, especially for the Temperature
parameter values. Our best guess is that the RDF-
to-text task is much simpler than an open-ended
language generation and these parameters’ values
are less important. The number of pipeline runs
Run-K parameter seems the most influential one,
but also values after 11 practically yield the same
BLEU. For the final generation run on the test data
we used the following parameters: Run-K=19, Tem-
perature=0.7, Top-K=11, Top-P=0.9. Full list of
metrics for the values of generation parameters are
shown in Table 2 (dev and test columns).

In an attempt to get an idea about performance
range values in this task we made the following
experiment. As the majority of entries contain sev-
eral verbalisation variants the one can be randomly
picked as a true variant and the other would be ref-
erences. We have joined train and dev data in the
single pool and randomly sampled a batch of 790
entries (the size of dev set) from it, followed by
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Figure 1: Model performance (BLEU-metric, %) on the validation dataset.

the metrics computation. The sampling and eval-
uation procedures were repeated 37 times. From
the results we can compute average metrics along
with standard deviations. These values are shown
in column synthetic of the Table 2. The comparison
with dev metrics shows that the proposed model
has a potential room for improvement.

Further, the large gap between dev and test met-
rics implies that entries’ distribution substantially
differs. We suppose the shift was caused by the
way of test data selection, because only RDF triples
with the entities and categories already seen in the
training data was included in the test.

Beside automatic evaluation metrics the organiz-
ers performed the human evaluation of participants
results according to five criteria: data coverage, rel-
evance, correctness, text structure and fluency (Cas-
tro Ferreira et al., 2020). Furthermore the baseline
system (Moussallem et al., 2020) also was assessed
in terms of this criterias. Our system was able to
overcome the baseline for all criterias except the
data coverage.

4 Conclusions

In this paper we presented our RDF triples verbal-
ization system based on the neural network model
with GPT-2 architecture. Specifically the model
with language and classification heads were used
to generate appropriate text given a set of Russian
triples. We described the model implementation
details and briefly discussed common decoding

methods and its recent sampling variants.
The data provided in WebNLG challenge al-

lowed us to train the model and experiment with
the generation pipeline. From this we can conclude
that the verbalisation task from RDF data is more
restricted (compared to open-ended language gen-
eration) and sustainable results can be obtained
from a wide range of generation parameters. At the
same time metric comparison with the other partic-
ipant’s systems and synthetic benchmark revealed
the limitation of such approach.

While this model can be used for verbalisation
candidate generation the procedure of best can-
didate selection obviously should be further im-
proved. A recap of processed test entries showed
that sometimes not all parts of triples are mentioned
in text or repetitions are encountered, while the
candidate pool contained more appropriate vari-
ants. The mediocre results of human evaluation on
the data coverage criteria are another confirmation
of such system inefficiency. We’ll consider to build
a separate ranking model which hopefully would
be able to better distinguish such cases.

References
David H. Ackley, Geoffrey E. Hinton, and Terrence J.

Sejnowski. 1985. A learning algorithm for boltz-
mann machines. Cogn. Sci., 9(1):147–169.
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