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Abstract

We introduce our TMU system submitted to
the Japanese↔English Multimodal Task (con-
strained) for WAT 2020 (Nakazawa et al.,
2020). This task aims to improve translation
performance with the help of another modality
(images) associated with the input sentences.
In a multimodal translation task, the dataset is,
by its nature, a low-resource one. Our method
used herein augments the data by generating
noisy translations and adding noise to existing
training images. Subsequently, we pretrain a
translation model on the augmented noisy data,
and then fine-tune it on the clean data. We
also examine the probabilistic dropping of ei-
ther the textual or visual context vector in the
decoder. This aims to regularize the network
to make use of both features while training.
The experimental results indicate that transla-
tion performance can be improved using our
method of textual data augmentation with nois-
ing on the target side and probabilistic drop-
ping of either context vector.

1 Introduction

In recent years, neural machine translation (NMT)
has become the standard machine translation sys-
tem owing to its high performance (Sutskever et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015).
However, NMT requires considerable parallel cor-
pora for training; thus, it does not perform well in
situations where low-resource data are present. To
address this issue, Sennrich et al. (2016a) proposed
back-translation that generates pseudo-parallel data
by translating monolingual data in the target lan-
guage.

Multimodal machine translation (MMT) is a task
whose purpose is to generate better translations
with information from other modalities (such as
images) related to the source sentences (Specia
et al., 2016). Owing to the nature of MMT, which
requires image information paired with sentences,

the size of the available data is relatively small com-
pared to that of text-only data. To overcome this
issue, in this study, we augment training texts and
images using several methods without external data.
In our experiments, we pretrain the MMTdecinit

model (see Subsection 3.2) on the augmented train-
ing data and fine-tune it on the original training
data to improve translation performance.

Furthermore, to effectively utilize the features
of both images and texts, we introduce the drop-
net method (Zhu et al., 2020) into MMT models.
It is expected to regularize the network training
by probabilistically dropping one of the context
vectors (textual or visual context vector) in the de-
coder. To the best of our knowledge, this is the
first attempt incorporating the dropnet method into
MMT with a recurrent neural network (RNN).

Our main findings herein are as follows:

• Textual data augmentation are better than vi-
sual data augmentation for MMT.

• Placing noise on the target side of the aug-
mented data is effective in improving trans-
lation performance in the English→Japanese
direction.

• The use of the dropnet method leads to im-
provements in translation performance.

2 Related Work

Several approaches to MMT have been proposed
in the recent studies. Caglayan et al. (2016) and
Calixto et al. (2017) proposed the doubly-attentive
model wherein the encoder is a bi-directional gated
recurrent unit (BiGRU) (Cho et al., 2014) that pro-
cesses only the source sequence, and the decoder is
a conditional GRU (CGRU)1 that simultaneously

1https://github.com/nyu-dl/
dl4mt-tutorial/blob/master/docs/cgru.pdf

https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
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pays attention to the source sequence and the spa-
tial visual feature. Calixto and Liu (2017) also
used global visual features to initialize either the
encoder or the decoder of the attention-based NMT.
In the WMT 17 Shared Task on MMT, the models
using global features were shown to be better than
those using spatial features (Caglayan et al., 2017a).
Additionally, Grönroos et al. (2018) adapted the
Transformer (Vaswani et al., 2017) model to a mul-
timodal setting and proposed concatenating the re-
gional visual features encoded as a pseudo-word
embedding to the word embeddings of the source
sentence. According to them, however, the im-
provement achieved by incorporating visual infor-
mation is modest, and they observed that external
parallel data can significantly improve the perfor-
mance. In contrast, we augmented training data
without external data.

With respect to research on data augmentation in
NMT, in addition to the method mentioned in Sec-
tion 1, Fadaee et al. (2017) generated synthetic
sentence pairs containing low-frequency words
by leveraging the language models trained on
large monolingual corpora. Under simulated low-
resource settings, their results showed that transla-
tions using this augmentation approach have more
low-frequency words than those not using this ap-
proach, leading to improved performance. Edunov
et al. (2018) investigated back-translation at a large
scale for generating useful synthetic source sen-
tences using several approaches. They obtained
back-translated data via sampling and noisy beam
outputs and added them to parallel corpora. They
found that the above methods outperform the ones
that generate synthetic sentences based on argmax
inference (e.g., beam or greedy search), except in
low-resource settings.

3 Model

3.1 NMT Model

Our baseline NMT (Caglayan et al., 2017a) is an
attentive encoder-decoder model, wherein the en-
coder is BiGRU, and the decoder is CGRU. Thus,
our MMT models are based on RNNs.

To generate synthetic data via textual data aug-
mentation methods (see Subsection 4.1), we used
the Transformer (Vaswani et al., 2017) model.

3.2 MMT Model with Decoder Initialization

This MMT model initializes the hidden state of the
decoder of our baseline NMT with global visual

features (Caglayan et al., 2017a). This model’s
architecture is used for our baseline MMT as well
as MMT models using augmented data. We denote
this model as MMTdecinit.

3.3 MMT Model with Double Attention

In our MMT model with a double attention mecha-
nism, the decoder part of our baseline NMT model
is extended to be multimodal (Caglayan et al.,
2017a). While decoding, this model individually
pays attention to the source sentence and the im-
age to obtain the textual and visual context vectors.
Subsequently, it combines both context vectors to
obtain the multimodal context vector. In our experi-
ments, we also adopt a hierarchical attention mech-
anism to combine each context vector (Libovický
and Helcl, 2017). At each decoding step i, this
attention combination projects each context vector
into a common space (Equation 1) and computes
another distribution with the projected context vec-
tors (Equation 2). Then, we obtain the multimodal
context vector by calculating the weighted average
corresponding to each context vector (Equation 3).
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where c(k)i is the k-th context vector (visual and
textual), si is the decoder hidden state, vb and Wb

are trainable parameters, and U (k)
b and U (k)

c are
encoder-specific matrices.

We denote this model as MMTdatt. In contrast
to the MMTdecinit models, we do not conduct ex-
periments for MMTdatt models using augmented
data2. We incorporate the dropnet method (see
Subsection 3.3) into only this model for regulariza-
tion owing to its architecture that combines each
context vector.

Dropnet method Zhu et al. (2020) studied in-
corporating BERT (Devlin et al., 2019) into the

2We conducted preliminary experiments for both
MMTdecinit and MMTdatt models using augmented data, al-
though our dataset used in those experiments had the different
splits of the dataset given by WAT 2020. As a result, the
baseline MMTdatt model is inferior to the MMTdecinit model;
moreover, the baseline MMTdatt model outperformed the
ones pretrained on the augmented data. We therefore do not
train MMTdatt models using augmented data.
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Transformer (Vaswani et al., 2017) model in the
translation task. They proposed the dropnet method
that intends to regularize the network training to
fully utilize the features output from BERT and
the conventional encoder. Specifically, at any layer
l in the encoder during training, with probability
pnet/2 , the output from either BERT or the (l−1)-
th layer of the encoder is selected for computing the
l-th layer’s output, and with probability (1− pnet),
both outputs are used for computing the l-th layer’s
output, where the dropnet rate pnet ∈ [0, 1].

Similar to the above method, we attempt regu-
larization by probabilistically dropping either the
textual or the visual context vector. Our MMTdatt

model combines each context vector to obtain the
multimodal context vector in the decoder. There-
fore, we adapt the dropnet method to the decoder.
At each decoding step i while training, with proba-
bility pnet/2, either the textual context vector or the
visual context vector is used for computing the mul-
timodal context vector; with probability (1− pnet),
both context vectors are used for the multimodal
context vector (Equation 4). In Equation 4, I(·) is
the indicator function, ri is a random variable uni-
formly sampled from [0, 1], c(k)i is the k-th context
vector.

4 Data Augmentation Method

4.1 Textual Data Augmentation

Sampling This method samples the hypothesis
from the output distribution at each decoding step
to generate synthetic parallel data (Edunov et al.,
2018).

Random noising This method was originally
used to generate synthetic ungrammatical sentences
in the grammatical error correction task (Xie et al.,
2018). They penalized every hypothesis on the
beam by adding noise rβ to its hypothesis’ score,
where r is drawn from the uniform distribution on
the interval [0, 1] during the beam search proce-
dure, and β controls the noise intensity. If β is suf-
ficiently large, this method is similar to the method
that randomly shuffles the ranks of the hypotheses

according to their scores.

4.2 Visual Data Augmentation

We incorporate several image data augmentation
methods based on computer vision tasks (Shorten
and Khoshgoftaar, 2019). According to Luke and
Geoff (2018), they augmented images in several
ways in the image recognition task and demon-
strated that the cropping method achieved the high-
est accuracy, followed by rotation. We likewise
choose cropping (center cropping and random crop-
ping) and rotation methods from the above results.

Center cropping This method crops a center
patch (256×256 size) of each image.

Random cropping This method randomly se-
lects a patch (256×256 size) of each image and
crops it.

Rotation This method rotates the images right
or left on an axis between −20◦ and 20◦ randomly.
This range is useful for digit recognition tasks such
as MNIST (Shorten and Khoshgoftaar, 2019).

5 Experimental Setup

5.1 Data

For training and validation, we use the Flickr30k
Entities Japanese dataset3 for Japanese sentences,
the Flickr30k Entities dataset4 for English sen-
tences, and the Flickr30k dataset5 for images. For
test data, we use both Japanese and English sen-
tences provided by WAT 2020, and their associated
images are in the Flickr30k dataset. The Japanese
training data size is originally 59,566 sentences,
but four sentences are missing; thus, we use 59,562
sentences (both Japanese and English) for training.
We use Moses (Koehn et al., 2007) scripts to low-
ercase, normalize, and tokenize English sentences,

3https://github.com/nlab-mpg/
Flickr30kEnt-JP

4https://github.com/BryanPlummer/
flickr30k_entities

5http://shannon.cs.illinois.edu/
DenotationGraph/

https://github.com/nlab-mpg/Flickr30kEnt-JP
https://github.com/nlab-mpg/Flickr30kEnt-JP
https://github.com/BryanPlummer/flickr30k_entities
https://github.com/BryanPlummer/flickr30k_entities
http://shannon.cs.illinois.edu/DenotationGraph/
http://shannon.cs.illinois.edu/DenotationGraph/
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and tokenized Japanese sentences using MeCab6

with the IPA dictionary. The evaluation metric
used is BLEU calculated by multibleu.perl7

of Moses. We use the word-level vocabularies
of 9,546 items for English and 11,235 items for
Japanese. We also used byte pair encoding (BPE:
Sennrich et al., 2016b) for vocabularies, but the
word-level method demonstrated better results than
BPE; therefore, we decide to use word-level vocab-
ularies.

To augment training texts, we train a text-
only Transformer model on the original training
texts. Subsequently, we translate the original En-
glish/Japanese training texts into Japanese/English
texts as additional training texts using the trained
model. We train the models with three different
seeds and translate with the trained model hav-
ing the highest score on the dev set among the
three trained models. We generate noisy train-
ing sentences using the sampling method and the
random noising method with each value β =
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 (if β = 0, the
models simply translate English or Japaneses sen-
tences without noise).

For images, we augment images using
Albumentations8, which is a library for im-
age data augmentation. We extract the visual fea-
tures from a pretrained CNN model, ResNet-50
(He et al., 2016). The size of the spatial features
extracted from the res4f relu layer is 14×14×1024,
and the global features extracted from the pool5
layer are 2,048-dimensional features.

5.2 Model

We conduct our experiments with the toolkit
nmtpytorch version 4.0.09 (Caglayan et al.,
2017b), except during the textual data augmenta-
tion step. The encoder and decoder GRUs have 320
hidden dimensions, and word embeddings are 200
dimensions. We use the Adam (Kingma and Ba,
2015) optimizer with a learning rate of 4e-4, and
a batch size of 64 for training and 32 for evalua-
tion. We adopt the early stopping for training if the
BLEU score of the dev set does not improve for ten
epochs. The beam size is 12, and the total gradient

6https://taku910.github.io/mecab/
7https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

8https://github.com/
albumentations-team/albumentations

9https://github.com/lium-lst/
nmtpytorch/tree/v4.0.0

norm is clipped to 1. We set the dropnet probability
pnet to 0.3. For the English→Japanese (En→Ja)
direction, dropout (Srivastava et al., 2014) rates
applied to source embeddings, source annotations,
and pre-softmax activations are (0.4, 0.4, 0.6) for
our NMT model, (0.3, 0.4, 0.5) for our MMTdecinit

model, and (0.4, 0.4, 0.4) for our MMTdatt model,
respectively. For the Japanese→English (Ja→En)
direction, we set the dropout rates (0.4, 0.3, 0.4) for
our NMT model, (0.5, 0.3, 0.4) for our MMTdecinit

model, and (0.4, 0.3, 0.3) for our MMTdatt model.
We use same dropout rates set on each model when
both pretraining and fine-tuning.

Data augmentation We train a text-only Trans-
former model on the original training texts using
the fairseq10 toolkit for generating noisy texts.
Both the encoder and the decoder have six blocks,
and the input and output embeddings of the de-
coder are shared. The word embedding size and
the hidden size is 512 dimensions. We optimize
the models with Adam (β1 = 0.9, β2 = 0.98). The
learning rate is 4e-4 and the maximum number of
tokens for each mini-batch is 4,096. The beam size
is 5, and the total gradient norm is clipped to 5.0.
We set the dropout rate of 0.1 for both directions.

We repeated each experiment with three different
seeds to calculate the BLEU score by averaging
three scores on the dev set in order to select the best
model for textual augmentation and fine-tuning as
well as to ensemble the models.

5.3 Training

5.3.1 w/o augmented data
Our baseline NMT, baseline MMTdecinit and
MMTdatt models are trained on the original train-
ing data.

5.3.2 w/ augmented data
For the MMTdecinit models using augmented data,
we first pretrain our MMTdecinit model on aug-
mented data obtained via the above-mentioned
method (see Section 4). We pretrain three mod-
els with each different seed and select the best pre-
trained model. Thereafter, we fine-tune the selected
pretrained model on clean data.

Augmented texts Usually, when using aug-
mented texts, training data comprise noisy texts
on the source side and clean texts on the target side.
In addition, we experimented with noisy texts on

10https://github.com/pytorch/fairseq

https://taku910.github.io/mecab/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations
https://github.com/lium-lst/nmtpytorch/tree/v4.0.0
https://github.com/lium-lst/nmtpytorch/tree/v4.0.0
https://github.com/pytorch/fairseq
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Model (En→Ja) dev

Baseline NMT 40.34
Baseline MMTdecinit 40.50

Textual data augmentation
MMTdecinit w/ sampling (target) 40.33
MMTdecinit w/ random noising (β = 5; source) 40.68
MMTdecinit w/ random noising (β = 5; target) 40.69
MMTdecinit w/ mix (β = 1, 5, 6; target) 40.75

Visual data augmentation
MMTdecinit w/ center cropping 40.50
MMTdecinit w/ random cropping 40.59
MMTdecinit w/ rotation 40.54

Table 1: En→Ja results: BLEU scores on the dev set. “MMTdecinit w/ sampling (target)” denotes the model is pre-
trained on the noisy texts generated via sampling on the target side, and fine-tuned on the clean data. “MMTdecinit

w/ random noising (β = 5; source)” denotes the model is pretrained on the noisy texts generated with random
noising (β = 5) on the source side, and fine-tuned on the clean data. The model “MMTdecinit w/ mix (β = 1, 5, 6;
target)”, is pretrained on the data mixed with each text generated with random noising method with β = 1, β = 5
and β = 6 each on the target side. The model “MMTdecinit w/ center cropping” is pretrained on augmented images
which are center cropped, and fine-tuned on clean data.

Model (Ja→En) dev

Baseline NMT 42.86
Baseline MMTdecinit 42.81

Textual data augmentation
MMTdecinit w/ sampling (target) 42.73
MMTdecinit w/ random noising (β = 2; source) 42.38
MMTdecinit w/ random noising (β = 4; target) 42.84
MMTdecinit w/ mix (β = 4, sampling; target) 42.55

Table 2: Ja→En results: BLEU scores on the dev set. The model “MMTdecinit w/ mix (β = 4, sampling; target)”
is pretrained on the mixed data of the noisy texts with random noising (β = 4) and the one with sampling both on
the target side.

the target side and clean texts on the source side
during pretraining. We thus aim to utilize the visual
feature more by smoothing attention to texts during
decoding. Furthermore, we combine the noisy texts
generated by different textual data augmentation
methods for pretraining. For example, if we com-
bine each generated data with a random noising
method with β = 1 and β = 2, the mixed textual
data comprise 119,124 sentences.

Augmented images In the case of using aug-
mented images for pretraining, we use clean texts
with associated augmented images which are cen-
ter cropped, random cropped or rotated. When
fine-tuning, both clean texts and clean images are
used.

6 Results and Analysis

En→Ja translation Table 1 shows the BLEU
scores on the dev set for the English→Japanese
direction. We found that using noisy data with the
random noising method is effective for the En-Ja
direction. For the “random noising” models on the
target side, the model of random noising method
with β = 5 has achieved the highest score among
the ones with other data augmentation methods,
followed by β = 1 and β = 6. Therefore, we
chose β = 1, β = 5, and β = 6 for the “mix”
model. Our MMTdecinit model outperforms the
baseline NMT by 0.16 BLEU points. MMTdecinit

models pretrained on augmented textual data gain
more than 0.18 points compared to the baseline
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Model (En→Ja) dev test

BLEU RIBES

Baseline MMTdecinit 40.41 43.30 0.8639
MMTdatt w/ dropnet 39.96 42.65 0.8657
MMTdecinit w/ random noising (β = 1, 5, 6; target) 40.42 44.12 0.8648
Ensemble (3 baseline MMTdecinit models) 40.80 43.99 0.8684
Ensemble (3 MMTdatt models w/ dropnet) 41.30 43.78 0.8715
Ensemble (top 6 models) 41.40 44.57 0.8699

Table 3: En→Ja published results: BLEU and RIBES scores on the dev and test set. The tokenizer is MeCab.
“Ensemble (top 6 models)” is ensembled of the six models (“MMTdecinit w/ random noising (β = 1; target)”,
“MMTdecinit w/ random noising (β = 0; target)”, “Baseline MMTdecinit”, “MMTdecinit w/ random noising (β =
10; target)”, “MMTdecinit w/ random cropping” and “MMTdecinit w/ random noising (β = 6; target)”).

Model (Ja→En) dev test

BLEU RIBES

Baseline MMTdecinit 42.73 46.19 0.8951
MMTdatt w/ dropnet 42.70 46.26 0.8959
Ensemble (3 baseline MMTdecinit models) 44.03 48.38 0.8996
Ensemble (3 MMTdatt models w/ dropnet) 44.33 48.33 0.9007
Ensemble (top 6 models) 44.44 47.86 0.9000

Table 4: Ja→En published results: BLEU and RIBES scores on the dev and test set. The tokenizer is Moses.
“Ensemble (top 6 models)” ensembled of the six models (“Baseline MMTdecinit”, “MMTdecinit w/ random nois-
ing (β = 4; target)”, “MMTdecinit w/ random noising (β = 1; target)”, “MMTdecinit w/ sampling (target)”,
“MMTdecinit w/ random noising (β = 4; target)” and “MMTdecinit w/ random noising (β = 8; target)”)

MMTdecinit, except for “sampling (target)”. “ran-
dom cropping” has the highest score among the
three models using augmented visual data, but its
score exceeds that of the baseline MMTdecinit by
only 0.09 points. Therefore, we did not conduct
experiments using augmented visual data for the
Ja→En direction.

We show our published results for the En→Ja di-
rection. In Table 3, the single model has the highest
score among its three models with each different
seed. The model “Ensemble (top 6 models)” is
an ensemble of the top six models in terms of the
BLEU metric among all trained single models. It
outperforms the other models in terms of the BLEU
metric, but its RIBES scores are lower than those
of “Ensemble (3 MMTdatt models w/ dropnet)”.
Moreover, comparing “Baseline MMTdecinit” and
“MMTdatt w/ dropnet”, the RIBES score of the
latter is higher than the former but not the BLEU
metric.

Additionally, we show the translation examples
of several models in the appendix, focusing on
the quality of “Ensemble (top 6 models)”. A good

translation of “Ensemble (top 6 models)” is in Table
7, and a poor translation of it is in Table 8.

Ja→En translation Table 2 shows the BLEU
scores on the dev set for the Ja→En direction. We
found that the noisy data did not have a positive
effect on translation performance. We chose β = 2
because the model pretrained on noisy data on the
source side with the random noising method with
β = 2 is the best. Likewise, we chose β = 4 of
the random noising method, which achieves the
best score among the models pretrained with the
noisy data on the target side, followed by sampling.
Hence, we used the noisy data (both on the target
side) with random noising (β = 4) and sampling
for pretraining the model “mix”. Contrary to the
En→Ja results, our baseline NMT model is 0.05
points higher than that of the baseline MMTdecinit.
“random noising (β = 4; target)” gains 0.03 points
over the baseline MMTdecinit; however, it still does
not reach the baseline NMT score.

We present our published results for the Ja→En
direction in Table 4. “Ensemble (top 6 models)”
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Model En→Ja Ja→En

BLEU RIBES BLEU RIBES

Baseline MMTdecinit 40.50 0.8190 42.81 0.8741
MMTdatt w/o dropnet 39.89 0.8193 42.16 0.8726
MMTdatt w/ dropnet 40.39 0.8206 42.72 0.8730

Table 5: BLEU and RIBES scores on the dev set for comparing the effect of the models with or without dropnet
method. Each score is the averaged score of three models with different seeds.

En→Ja Ja→En

source 40.21 42.01
target 40.59 42.50

Table 6: BLEU scores on the dev set for each direction;
a comparison between placing noise on the source side
and target side when pretraining. “source” is the score
that averages each score of thirteen models with differ-
ent β pretrained on the noisy data on the source side.

does not achieve the best score in terms of both the
BLEU and RIBES metrics. “Ensemble (3 baseline
MMTdecinit models)” surpasses the other models
in terms of the BLEU metric, and “Ensemble (3
MMTdatt models w/ dropnet)” is the best in terms
of the RIBES metric.

We show the translation examples of several
models in the appendix, focusing on the quality
of “Ensemble (top 6 models)”. There are a good
translation of “Ensemble (top 6 models)” in Table
9 and a poor translation of it in Table 10.

Dropnet Table 5 shows the results of MMT mod-
els with and without the dropnet method. Although
the models trained both with and without the drop-
net method have lower BLEU scores than the base-
line MMTdecinit, the model with dropnet gains 0.5
BLEU points for the En→Ja direction and 0.56
BLEU points for the Ja→En direction than the one
without dropnet. For the RIBES metric, the model
with dropnet achieves the best RIBES score in the
En→Ja direction, but the baseline MMTdecinit is
the best model for the Ja→En direction. More-
over, the differences between the RIBES scores
of each model are marginal; however, the models
with dropnet are better than those without dropnet.
These demonstrate that incorporating the dropnet
method into MMTdatt models can help improve
the translation performance.

Source vs target noising We investigated how
the score is affected by whether the noise data for

pretraining is on the source or the target side. As
indicated in Table 6, we pretrain the models on the
noisy data generated with thirteen different β val-
ues (i.e., β = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20)
and calculate the average of these thirteen models
scores. This table shows that using the noisy data
on the target side is better than on the source side
for both directions while pretraining. Although it
is unclear why the noisy data on the target side
is effective, we infer this setting is useful under
low-resource or MMT situations.

7 Conclusion

We introduced several data augmentation meth-
ods to solve the low-resource problem in MMT.
These methods have been shown to be useful for
the En→Ja direction, but not for the Ja→En di-
rection. The random noising method positively
affects translation performance compared to other
data augmentation methods. Furthermore, it is no-
table that adding noise on the target side is more
effective than on the source side for textual data
augmentation. We also adapted the dropnet method
for the regularization of double attention mecha-
nism for MMT. This method is effective compared
to not using dropnet.

For future work, we investigate why the noisy
data on the target side is effective. We also ex-
plore other textual and visual data augmentation
methods and mixing visual augmented data for pre-
training; moreover, we research whether combining
textual and visual augmented data improves the per-
formance or not. Furthermore, we study how the
MMT models with the dropnet method work.
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Mats Sjöberg, Umut Sulubacak, Jörg Tiedemann,
Raphael Troncy, and Raúl Vázquez. 2018. The
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A Translation Examples

We show several translation examples focusing on
“Ensemble (top 6 models)” below.

Image

Source
a man with blue sleeveless shirt and sunglasses paints a face
while on his knees .

Baseline NMT 青い袖なしのシャツを着てサングラスをかけた男性が、膝の
上に顔を塗っている。

Baseline MMTdecinit
青い袖なしシャツとサングラスを身につけた男性は、膝の上
に顔を描いている。

MMTdatt w/ dropnet 青い袖なしのシャツを着てサングラスをかけた男性が膝の
上に顔を描いている。

MMTdecinit w/ random noising (β =
1, 5, 6; target)

青い袖なしシャツを着てサングラスをかけた男性が、顔を膝
に塗っている。

Ensemble (3 baseline MMTdecinit models) 青い袖なしのシャツを着てサングラスをかけた男性が、膝の
上に顔を塗っている。

Ensemble (3 MMTdatt models w/ dropnet) 青い袖なしのシャツを着てサングラスをかけた男性が、膝の
上に顔を塗っている。

Ensemble (top 6 models) 青い袖なしのシャツを着てサングラスをかけた男性が、膝を
ついて顔を描いている。

Reference 青い袖無しシャツにサングラスの男性が、ひざまづいて顔を
描いている。

Table 7: A good translation example of “Ensemble (top 6 models)” and other models’ examples on the dev set for
the En→Ja direction.
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Image

Source
a older man in a orange wrap looks into the camera on the
sidewalk of a city .

Baseline NMT オレンジ色の布を着た年配の男性が街の歩道でカメラを覗
き込んでいる。

Baseline MMTdecinit
オレンジ色の布を身につけた年配の男性が街の歩道でカメ
ラを覗き込んでいる。

MMTdatt w/ dropnet オレンジ色のラップトップを着た年配の男性が、街の歩道で
カメラを覗き込んでいる。

MMTdecinit w/ random noising (β =
1, 5, 6; target)

街の歩道で、オレンジ色の布を身に着けた年配の男性がカメ
ラを覗き込んでいる。

Ensemble (3 baseline MMTdecinit models) オレンジ色のラップトップを着た年配の男性が、街の歩道で
カメラを覗き込んでいる。

Ensemble (3 MMTdatt models w/ dropnet) オレンジ色の布を着た年配の男性が、街の歩道でカメラを覗
き込んでいる。

Ensemble (top 6 models) オレンジ色のラップトップを着た年配の男性が、街の歩道で
カメラを覗き込んでいる。

Reference オレンジ色の布をまとった年配の男性が街の歩道でカメラ
の中を見る。

Table 8: A poor translation example of “Ensemble (top 6 models)” and other models’ examples on the dev set for
the En→Ja direction.
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Image

Source プロパンバーベキューの隣で、小さなスツールに腰掛けなが
ら、何かを食べている女性。

Baseline NMT
a woman sitting on a small stool eating something while
sitting on a small stool next to a pale barbecue .

Baseline MMTdecinit
a woman sitting on a small stool sitting on a small stool
eating something .

MMTdatt w/ dropnet
a woman sitting on a small stool eating something next to a
princess barbecue .

Ensemble (3 baseline MMTdecinit models)
a woman eating something while sitting on a small stool
next to a charcoal barbecue .

Ensemble (3 MMTdatt models w/ dropnet)
a woman eating something while sitting on a small stool
next to a charcoal barbecue .

Ensemble (top 6 models)
a woman eating something while sitting on a small stool
next to a propane barbecue .

Reference
a woman eating some food while sitting on a tiny stool next
to a propane barbecue .

Table 9: A good translation example of “Ensemble (top 6 models)” and other models’ examples on the dev set for
the Ja→En direction.
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Image

Source アジアの少年のグループがバーベキューで肉が焼けるのを
待っている。

Baseline NMT a group of asian boys wait for meat and meat at a barbecue .

Baseline MMTdecinit a group of asian boys wait for meat on a barbecue .

MMTdatt w/ dropnet a group of asian boys wait for meat on a barbecue .

Ensemble (3 baseline MMTdecinit models) a group of asian boys are waiting for meat on a barbecue .

Ensemble (3 MMTdatt models w/ dropnet) a group of asian boys are waiting for meat on a barbecue .

Ensemble (top 6 models) a group of asian boys wait at a barbecue at a barbecue .

Reference group of asian boys wait for meat to cook over barbecue .

Table 10: A poor translation example of “Ensemble (top 6 models)” and other models’ examples on the dev set
for the Ja→En direction.


