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Abstract

This paper presents a simple method that ex-
tends a standard Transformer-based autore-
gressive decoder, to speed up decoding. The
proposed method generates a token from the
head and tail of a sentence (two tokens in to-
tal) in each step. By simultaneously gener-
ating multiple tokens that rarely depend on
each other, the decoding speed is increased
while the degradation in translation quality
is minimized. In our experiments, the pro-
posed method increased the translation speed
by around 113%–155% in comparison with
a standard autoregressive decoder, while de-
grading the BLEU scores by no more than
1.03. It was faster than an iterative non-
autoregressive decoder in many conditions.

1 Introduction

Most neural machine translation systems are based
on an encoder–decoder architecture. Although
there are some frameworks, such as recurrent neu-
ral network-based translation (Sutskever et al.,
2014; Bahdanau et al., 2014) and Transformer-
based translation (Vaswani et al., 2017), they
employ autoregressive decoding for high-quality
translation. However, autoregressive decoding re-
quires a decoding time that depends on sentence
length because it generates a single token in each
step.

To solve this problem, non-autoregressive de-
coding, which generates all tokens in one step,
has been proposed (Gu et al., 2017; Lee et al.,
2018; Ghazvininejad et al., 2019). However, the
translation quality of non-autoregressive decoding
has not yet matched the quality of autoregressive
decoding. To improve the quality, some meth-
ods, such as Mask-Predict (Ghazvininejad et al.,
2019), apply non-autoregressive decoding itera-
tively. This is a trade-off between quality and

speed because the decoding time depends on the
number of iterations.

This paper presents an autoregressive decoder
that simultaneously generates two tokens in each
step, as an intermediate solution between autore-
gressive and non-autoregressive decoding. The
proposed method is based on the Transformer de-
coder and generates a token from the head and tail
of a sentence (two tokens in total) in each step.
Although this is a simple extension of standard au-
toregressive decoding, it has some notable features
as follows:

• By simultaneously generating multiple to-
kens that rarely depend on each other, our
method increases decoding speed while mini-
mizing the degradation of translation quality.

• Because it is an extension of standard autore-
gressive decoding, our proposed method in-
herits its merits.

– All tokens can be learned in parallel in
the training phase.

– In contrast to non-autoregressive de-
coders, our method does not determine
generation lengths in advance.

In the following sections, we first briefly review
autoregressive and non-autoregressive decoding.
We then explain the proposed method and eval-
uate it, from the viewpoints of translation quality
and speed.

2 Related Work

2.1 Transformer-based Autoregressive
Decoding

Autoregressive decoding infers a token yt of the
current timestep t from the sequence of generated
tokens y<t.

ŷt = argmaxyt Pr(yt|y<t,x), (1)
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where x denotes the sequence of source tokens.
When a test phase of translation, the argmax
operation is replaced with a beam search, and
the highest-probability hypothesis is selected from
multiple candidates.

Transformer-based decoding considers gener-
ated tokens as a context using the self-attention
mechanism. Namely,

Pr(yt) = Yt = Out(hLt ), (2)

hℓt = TFLayerℓ(hℓ−1
≤t ,henc), (3)

h0t = Emb(yt−1, t), (4)

henc = Encoder(x), (5)

where Yt denotes the posterior probability distri-
bution of the token yt. The Out, TFLayer, Emb,
and Encoder functions denote the mapping from
a hidden state h to the probability distribution, the
function of a Transformer layer (L is the number
of layers), the function that computes the word and
positional embeddings, and the encoder function,
respectively.

Decoding has a direction. Generation from the
head of a sentence to the tail is called left-to-right
(L2R) decoding, and generation in the opposite di-
rection is called right-to-left (R2L) decoding. In
L2R decoding, the decoder only refers to the left
context. The decoding finishes when the end-of-
sentence (EOS) token is generated.

In Equation 3, the system requires the previous
states hℓ−1

<t , to compute the current state hℓt . How-
ever, the previous states have already been com-
puted while predicting the previous tokens. There-
fore, only the state hℓ−1

t needs to be computed if
we preserve the previous states. We call this inner
state preservation in this paper.

When training, all tokens can be learned in par-
allel using a mask of the triangular matrix, which
restricts the tokens for the self-attention mecha-
nism (Figure 1(a)).

Another strategy for speeding up autoregressive
decoding is to substitute the self-attention mech-
anism with the other units. The Average Atten-
tion Network (AAN) (Zhang et al., 2018; Junczys-
Dowmunt et al., 2018) and Simpler Simple Re-
current Unit (SSRU) (Kim et al., 2019) are faster
than the self-attention mechanism because they
depend only on the last state. Similar to our
method, which is described in this paper, Zhou
et al. (2019) proposed a model that simultaneously
decodes two tokens from the head and tail of a

Query (t)

1 2 3 4 5 6 7 8

Key

Value

(t)

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓
6 ✓ ✓ ✓
7 ✓ ✓
8 ✓
(a) Single-token

Query (Lt, Rt)

L1 R1 L2 R2 L3 R3 L4 R4

Key

Value

(Lt, Rt)

L1 ✓✓✓✓✓✓✓✓
R1 ✓✓✓✓✓✓✓✓
L2 ✓✓✓✓✓✓
R2 ✓✓✓✓✓✓
L3 ✓✓✓✓
R3 ✓✓✓✓
L4 ✓✓
R4 ✓✓
(b) Double-token

Figure 1: Examples of self-attention masks for training.
Queries only refer to key–value pairs of the checked
timesteps.

sentence. They modified the self-attention mecha-
nism to mix two contexts that are output from the
forward and backward mechanisms.

2.2 Non-autoregressive Decoding

Non-autoregressive decoding generates all to-
kens simultaneously, utilizing the parallelism of
Transformer (Gu et al., 2017; Lee et al., 2018;
Ghazvininejad et al., 2019). For example, the
Mask-Predict method (Ghazvininejad et al., 2019)
recovers masked tokens ([mask]) using the left
and right contexts, like BERT encoders (Devlin
et al., 2019). The initial tokens are all masks.
Because of the parallel generation, the genera-
tion lengths must be determined in advance. The
Mask-Predict method predicts these lengths from
the encoder output.

Although non-autoregressive decoding per-
forms fast generation, the translation quality in
one step is relatively low. We can improve the
quality by iteratively applying the parallel decod-
ing. However, iterative decoding causes the fol-
lowing problems.

• The decoding speed reduces as the number
of iterations increases. This is a trade-off be-
tween quality and speed.

• Iterative non-autoregressive decoding must
recompute all states because it refers to whole
contexts in a sentence, in contrast to autore-
gressive decoding, which can utilize inner
state preservation.

Because of the above problems, high-quality and
fast non-autoregressive decoding, which outper-
forms autoregressive decoding, has not yet been
realized.
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3 Proposed Method

3.1 Double-token Bidirectional Decoding
The proposed method of decoding combines L2R
and R2L autoregressive decoding. That is, it gen-
erates each token from the head and tail of a sen-
tence. This approach aims to realize fast decoding
while maintaining translation quality by simulta-
neously generating multiple tokens that are adja-
cent to the fixed tokens but rarely depend on each
other (that is, they are almost mutually indepen-
dent).

Concretely, Equation 3 is replaced by the fol-
lowing equation.

(hℓLt, h
ℓ
Rt) = TFLayerℓ(hℓ−1

≤Lt,h
ℓ−1
≤Rt,henc), (6)

where hℓLt and hℓRt denote the left and right out-
puts from layer ℓ at timestep t, respectively. Simi-
larly, hℓ−1

≤Lt and hℓ−1
≤Rt denote the left and right con-

texts output from layer ℓ− 1.
The decoding starts from the initial tokens,

yL0 = BOS and yR0 = EOS, and sequentially
generates a pair of left and right tokens (Figure 2).
Therefore, the decoder generates pairs of tokens
from left to right, although each of the two tokens
has a different meaning.

The decoding stops when a pair contains the
end-of-decoding (EOD) token (Gu et al., 2019).
At this time, the L2R and R2L tokens are sepa-
rated from the sequence of pairs, and the final sen-
tence is output after reordering them. During the
decoding process, inner state preservation is also
applied.

In this method, sinusoidal positional embedding
(Vaswani et al., 2017) is not suitable because the
tokens in each pair are not contiguous in the ac-
tual order. We use a learned positional embedding,
which refers to learned parameters similar to the
word embedding.

The difference from Zhou et al. (2019)’s method
is that their method requires the model (specif-
ically, the self-attention mechanism) to be mod-
ified. On the contrary, our method mainly re-
alizes double-token decoding in the preprocess-
ing and postprocessing phases and the modified
beam search, except for the positional embed-
ding. Therefore, another speedup method involv-
ing model modification, such as the AAN (Zhang
et al., 2018), can be applied to our method.

3.2 Implementation

Algorithm 1 Beam search with double-token bidi-
rectional decoding
Input: encoder output henc, beam width W , number of out-

puts K
Output: K-best translation hypotheses H

# Bt: beam of timestep t
# Yt: probability distribution according to the beam
# (yLt, yRt): output token pair

1: B0 ← {(yL0 = BOS, yR0 = EOS)}
2: H ← ∅
3: t← 1
4: while |H| < K do
5: Bt ← ∅
6: (YLt, YRt)← DECODEBEAM(Bt−1,henc)
7: (yLt, yRt)

1..3W ← DOUBLETOPK(YLt, YRt,W )
8: for i← 1 to W do
9: if yi

Lt = EOD or yi
Rt = EOD then

10: H ← H ∪ FINALIZE(yi
Lt, y

i
Rt, Bt−1)

11: end if
12: end for
13: for i← 1 to 3W do
14: if yi

Lt ̸= EOD and yi
Rt ̸= EOD then

15: Bt ← Bt ∪ EXPANDBEAM(yi
Lt, y

i
Rt, Bt−1)

16: end if
17: if |Bt| ≥W then
18: break
19: end if
20: end for
21: t← t+ 1
22: end while

Algorithm 1 shows the beam search performed
by our method. The number of iterations of lines
4–22 is half of that of standard autoregressive de-
coding, and the speed is increased.

The DECODEBEAM function on line 6 sequen-
tially computes Equations 4, 6, and 2. The
DOUBLETOPK function on line 7 obtains 3W
pairs (yLt, yRt) from the probability distribu-
tions (YLt, YRt). The FINALIZE function on line
10 completes a sentence from generated tokens.
The EXPANDBEAM function generates beams at
timestep t from the selected tokens and the pre-
vious beam. The DECODEBEAM and DOUBLE-
TOPK functions are executed mainly on GPUs.
The FINALIZE and EXPANDBEAM functions are
executed mainly on CPUs, but partially on GPUs.

Our method assumes that two generated tokens
are almost independent of each other. This means
that, on line 7 of Algorithm 1, yLt and yRt can
be selected independently. Using this assumption,
the DOUBLETOPK function first selects 2W to-
kens for yLt, and then selects 3W tokens for yRt

considering the left probabilities. The processing
time is almost proportional to the beam width W .
Notably, the DOUBLETOPK function obtains 3W
candidates from the probability distributions. This
is because at least W unfinished candidates, which
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Figure 2: An example of double-token bidirectional decoding: “We will go to Tokyo .”

do not contain EODs, must remain to continue the
search.

During training, the model is learned from data
in which the order of tokens in target sentences is
reconstructed as follows.

1. Divide the sequence of tokens into left and
right halves, reverse the right half, and alter-
nately fold the halves.

2. Supply one or two EOD tokens, to make the
total number of tokens even.

The self-attention mask for training is a triangular
matrix in which the unit is a pair of tokens (Figure
1(b)).

4 Experiments

4.1 Experimental Settings
Systems: We modified the fairseq translation
system (Ott et al., 2019)1 for the proposed method.
For comparison, we considered the following
three system types.

• Single-token (i.e., standard) autoregressive
decoding. We used the original fairseq as the
baseline. Both L2R and R2L directions were
evaluated.

• Double-token unidirectional decoding. This
method generates two contiguous tokens in
each step, to evaluate the effect of bidirec-
tional decoding.

• Mask-Predict (Ghazvininejad et al., 2019),
which is one of the non-autoregressive de-
coding methods.2 In our experiments, we did

1https://github.com/pytorch/fairseq
2https://github.com/facebookresearch/

Mask-Predict
This code is based on the fairseq translation system.

not apply knowledge distillation, to coordi-
nate the setting with that of the other meth-
ods.3

Corpora: We used two corpora: the English–
German (en-de) corpus of WMT-14 (4.5M sen-
tences) (Bojar et al., 2014) and the Japanese–
English (ja-en) corpus of ASPEC (3M sentences)
(Nakazawa et al., 2016).

To make the evaluation stable, we concate-
nated all test sets in the corpora, except for val-
idation sets. That is, we used 19,666 sentences
(newstest2010-2016) for the WMT-14 corpus and
3,596 sentences (devtest and test) for the ASPEC
corpus, as the test sets. The newstest2009 set in
WMT-14 and the dev set in ASPEC were used as
the validation sets.

All corpora were segmented into subwords
(Sennrich et al., 2016). We used 37K shared vo-
cabulary in WMT-14 and 16K vocabularies for the
source and target languages in ASPEC.

Models and Hyperparameters: We used two
model types: the Transformer base model (six lay-
ers, eight heads, 512 model dimensions, and 2,048
FFN dimensions) and the Transformer big model
(six layers, 16 heads, 1,024 model dimensions,
and 4,096 FFN dimensions).

Table 1 shows the details of the hyperparame-
ters. All models were trained using almost the
same settings, except for the learning rates and
stopping criteria.

In the test phase, we used a beam width of 10
for autoregressive decoding. For Mask-Predict,
we used a beam width of 5.4 The mini-batch sizes

3We additionally applied knowledge distillation. As a re-
sult, the BLEU scores of all the methods, including Mask-
Predict, were similarly improved.

4The beam width for the Mask-Predict method is usually

https://github.com/pytorch/fairseq
https://github.com/facebookresearch/Mask-Predict
https://github.com/facebookresearch/Mask-Predict
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Type Autoregressive Mask-Predict
Model Base model: 6 layers, 8 heads, 512 model di-

mensions, 2,048 FFN dimensions, dropout: 0.1
Big model: 6 layers, 16 heads, 1,024 model di-
mensions, 4,096 FFN dimensions, dropout: 0.3,
attention dropout: 0.1, layernorm before

Training warmup: 5 epochs, annealing: inverse square-
root, weight decay: 0.0001, clip norm: 5, loss
function: labeled smoothed cross-entropy (ϵ =
0.1), batch size: approx. 500 sentences, op-
timization: Adam (β1 = 0.9, β2 = 0.99,
ϵ = 10−6), 10 best checkpoint averaging
learning rate: 0.0004,
early stopping (10
epochs)

learning rate: 0.0001,
300,000 updates

Test batch size: 32 sentences sorted by the source
length, length penalty: 1.0, half-precision float-
ing point computation
beam width: 10 beam width: 5

Table 1: Details of hyperparameters.

were all 32 sentences.

Evaluation Metrics: We used case-sensitive
BLEU (Papineni et al., 2002) to evaluate trans-
lation quality. The MultEval tool was used for
significance testing (Clark et al., 2011).5 For the
evaluation of speed, we measured translation time
(which does not include loading and initialization)
five times, and computed the average number of
tokens translated per second. An NVIDIA V100
GPU was used during the evaluation.

4.2 Results

The results are shown in Table 2. The “Ratio” col-
umn of the table shows the speed ratio, compared
with single-token L2R decoding.

The BLEU scores of the proposed method
(double-token bidirectional) were slightly lower
than those of single-token decoding. However,
the differences were between 0.08 and 1.03 in the
cases of both WMT-14 and ASPEC.

When we compare bidirectional (proposed) and
unidirectional (L2R and R2L) double-token de-
coding, the BLEU scores of unidirectional decod-
ing were lower than those of the proposed method.
This phenomenon indicates that it is difficult to si-
multaneously generate two contiguous tokens be-
cause they depend on each other.

Focusing on speed, the proposed method was
faster than single-token decoding. Speedups of
13%–24% for WMT-14 and 49%–55% for AS-

small because it decisively generates a translation for a pre-
dicted length.

5https://github.com/jhclark/multeval

PEC were achieved. The speed of double-token
unidirectional decoding was almost equal to that
of the proposed method because they utilized the
same algorithm and model structure. The speed
of the Mask-Predict method differed dramatically
depending on the number of iterations. In the
case of four iterations, the speed of the proposed
method was equal for the ASPEC corpus, but
Mask-Predict was faster for the WMT-14 corpus.

Comparing the Transformer base and big mod-
els, the speed ratios of the big models were greater
than those of the base models in the proposed
method. This phenomenon will be discussed in
Section 5.2.

5 Analysis

5.1 N -gram Precision Rates

A feature of our method is bidirectional decoding.
To analyze this feature, we evaluated n-gram pre-
cision rates when the hypotheses were limited to a
certain number of tokens from the head and tail.

Table 3 shows the results for the WMT-14 and
ASPEC corpora, which were restricted to sen-
tences over 30 tokens (8,251 sentences for WMT-
14 and 1,320 sentences for ASPEC). When we
evaluated left tokens, there were no great dif-
ferences between the unigram precision rates of
the baseline (single-token L2R) and the proposed
method (double-token bidirectional). However,
evaluating right tokens, the unigram precision
rates of the proposed method were 0.4%–1.6%
(WMT-14) and 1.1%–2.6% (ASPEC) higher than
those of the baseline. These results demonstrate
the effect of bidirectional decoding.

Despite these good results, the final BLEU
score of the proposed method was less than that
of the baseline. This is because the 4-gram preci-
sion of the left tokens was worse then the baseline,
whereas that of the right tokens was better. The
proposed method changes the original token order
and connects the L2R and R2L hypotheses at the
center of the sentence; these modifications have a
detrimental effect on long n-grams, and will be the
subject of future improvement.

5.2 Translation Speed for Settings

The speedup effect of the proposed method is in-
fluenced by the model and evaluation settings. In
this section, we discuss the speedup effect from
the viewpoints of model size, vocabulary size, and
beam width.

https://github.com/jhclark/multeval
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WMT-14 en-de ASPEC ja-en
Speed Speed

Method BLEU Tokens/s (Ratio) BLEU Tokens/s (Ratio)
Double-token bidir. (proposed) 25.62 †‡ 2,251 (113%) 28.23 2,811 (149%)
Single-token L2R 26.45 ‡ 1,997 (—) 28.65 1,891 (—)
Single-token R2L 25.79 † 2,004 (100%) 28.31 1,775 ( 94%)
Double-token L2R 24.55 †‡ 2,349 (118%) 26.47 †‡ 2,717 (144%)
Double-token R2L 24.43 †‡ 2,327 (117%) 27.26 †‡ 2,725 (144%)
Mask-Predict (10 iterations) 22.31 †‡ 1,564 ( 78%) 25.05 †‡ 1,476 ( 78%)
Mask-Predict (4 iterations) 19.62 †‡ 2,910 (146%) 22.08 †‡ 2,836 (150%)

(a) Transformer base models

WMT-14 en-de ASPEC ja-en
Speed Speed

Method BLEU Tokens/s (Ratio) BLEU Tokens/s (Ratio)
Double-token bidir. (proposed) 25.56 †‡ 1,888 (124%) 27.50 ‡ 2,241 (155%)
Single-token L2R 26.59 ‡ 1,520 (—) 27.85 1,449 (—)
Single-token R2L 26.14 † 1,537 (101%) 28.23 1,376 ( 95%)
Double-token L2R 24.16 †‡ 1,915 (126%) 26.17 †‡ 2,229 (154%)
Double-token R2L 24.42 †‡ 1,958 (129%) 26.57 †‡ 2,208 (152%)
Mask-Predict (10 iterations) 23.47 †‡ 1,092 ( 72%) 25.00 †‡ 1,095 ( 76%)
Mask-Predict (4 iterations) 20.34 †‡ 2,234 (147%) 22.30 †‡ 2,060 (142%)

(b) Transformer big models

Table 2: Translation quality and speed of each method. The symbols † and ‡ indicate the scores that are significantly
different from single-token L2R and R2L, respectively (p < 0.05).

1-gram precision 4-gram precision
Tokens Single-token Double-token Single-token Double-token

Left Right L2R bidir. L2R bidir.
∞ ∞ 59.8% 59.9% (+0.1%) 18.9% 18.2% (-0.7%)
5 0 53.8% 53.8% (±0.0%) 16.8% 16.2% (-0.6%)
10 0 49.1% 49.0% (-0.1%) 15.1% 14.5% (-0.6%)
15 0 45.1% 45.0% (-0.1%) 13.7% 13.2% (-0.5%)
0 5 62.9% 64.5% (+1.6%) 14.7% 15.3% (+0.6%)
0 10 62.2% 63.0% (+0.8%) 16.5% 16.8% (+0.3%)
0 15 61.8% 62.2% (+0.4%) 16.7% 16.6% (-0.1%)

(a) WMT-14 corpus

1-gram precision 4-gram precision
Tokens Single-token Double-token Single-token Double-token

Left Right L2R bidir. L2R bidir.
∞ ∞ 65.8% 66.2% (+0.4%) 18.5% 17.8% (-0.7%)
5 0 59.2% 59.4% (+0.2%) 16.2% 15.6% (-0.6%)
10 0 53.7% 53.9% (+0.2%) 14.5% 13.9% (-0.6%)
15 0 49.3% 49.5% (+0.2%) 13.1% 12.5% (-0.6%)
0 5 73.5% 76.1% (+2.6%) 17.5% 18.9% (+1.4%)
0 10 72.4% 74.6% (+2.2%) 17.3% 18.9% (+1.6%)
0 15 71.5% 72.6% (+1.1%) 17.3% 18.3% (+1.0%)

(b) ASPEC corpus

Table 3: Unigram and four-gram precision rates when the number of tokens was limited to n from the head and tail
of the hypotheses (Transformer base models, over 30 tokens). Values in parentheses indicate differences between
the single-token L2R and double-token bidirectional methods.

5.2.1 Model Size

In the experiments in Section 4, we evaluated
translation speed using the Transformer base and
big models. The absolute speed of the base mod-
els was greater than that of the big models, in all
methods. From the perspective of the speed ratio,

which compares the proposed method (double-
token bidirectional) with the baseline (single-
token L2R), the speedup effect of the big model
was greater than that of the base model. For ex-
ample, the speed ratio of the big model was 124%
for the WMT-14 corpus, whereas that of the base
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Figure 3: Variation of speed ratio with beam width.

model was 113%. This tendency was the same
for the ASPEC corpus. We can conclude that the
speedup effect of the proposed method is greater
for larger models.

5.2.2 Vocabulary Size
Table 4 shows the translation speed of the base
model as the vocabulary size was increased from
4K to 64K. The number of tokens per sentence is
also shown in the table because it changes if we
change the vocabulary based on subwords.

In addition to the translation speed decreasing,
the speed ratio decreased as the vocabulary size in-
creased. This means that the speedup effect of the
proposed method was reduced as the vocabulary
size increased.

We expected the speed ratio to increase as the
vocabulary size increased, because the model size
increased. However, the opposite result was actu-
ally observed. One of the possible reasons is that
the sentence length (number of tokens) increased
when the vocabulary size was small, and therefore
the effect of the double-token decoding increased.

5.2.3 Beam Width
Figure 3 shows the speed ratio for each value of
beam width. A greater ratio means that the pro-
posed method is more effective. As a result, the
speed ratio was greater when the beam width was
small, in this experiment.

It is difficult to consistently explain the phe-
nomena shown in this section because the process-
ing times of the CPU and GPU are unknown even
though the effectiveness must depend on them.
However, we can summarize that the speedup ef-
fect of the proposed method is increased when we

use 1) big models, 2) small vocabulary, and 3)
small beam width.

6 Conclusions

This paper presented a bidirectional decoding
method that simultaneously generates two to-
kens. The proposed method achieves fast decod-
ing while minimizing quality degradation by gen-
erating tokens that rarely depend on each other. It
is faster than both the standard autoregressive de-
coder and the Mask-Predict method in many con-
ditions.
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Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
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