
Proceedings of the Fifth Arabic Natural Language Processing Workshop, pages 268–274
Barcelona, Spain (Online), December 12, 2020

268

Weighted combination of BERT and N-GRAM features for Nuanced
Arabic Dialect Identification

Abdellah El Mekki1∗, Ahmed Alami2, Hamza Alami2∗, Ahmed Khoumsi3, Ismail Berrada1

1School of Computer and Communication Sciences,
Mohammed VI Polytechnic University, Ben Guerir, Morocco

2Faculty of Sciences Dhar EL Mehraz,
Sidi Mohamed Ben Abdellah University, Fez, Morocco

3Department of Electrical and Computer Engineering, University of Sherbrooke, Canada
{abdellah.elmekki,ismail.berrada}@um6p.ma

ahmed.alami@usmba.ac.ma
hamza0alami@gmail.com ahmed.khoumsi@usherbrooke.ca

Abstract

Around the Arab world, different Arabic dialects are spoken by more than 300M persons, and
are increasingly popular in social media texts. However, Arabic dialects are considered to be
low-resource languages, limiting the development of machine-learning based systems for these
dialects. In this paper, we investigate the Arabic dialect identification task, from two perspec-
tives: country-level dialect identification from 21 Arab countries, and province-level dialect iden-
tification from 100 provinces. We introduce an unified pipeline of state-of-the-art models, that
can handle the two subtasks. Our experimental studies applied to the NADI shared task under
the team name BERT-NGRAMS, show promising results both at the country-level (F1-score of
25.99%) and the province-level (F1-score of 6.39%), and thus allow us to be ranked 2nd for the
country-level subtask, and 1st in the province-level subtask.

1 Introduction

Language identification is considered an important task in Natural Language Processing (NLP), as it
helps personalizing applications, automatically detecting the source variety of a given text or speech
segment, and collecting/tagging the data (Anshul and Arpit, 2012). In the case of Arabic language, the
official language of over 20 countries, and with more than 360 million native speakers, this task becomes
very challenging due to the different language variations (Dialectal Arabic), and the complex taxonomy
of Arabic language (Zaidan and Callison-Burch, 2014).

In this paper, we consider the Arabic dialect identification task from two perspectives: country-level
dialect identification and province-level dialect identification. In the case of the previous Multi Arabic
Dialect Applications and Resources (MADAR) Shared Task (Bouamor et al., 2019) , several approaches
have been proposed (Abbas et al., 2019). Zhang and Abdul-Mageed (2019) developed country-level
identification models based on Bidirectional Encoder Representations from Transformers (BERT) (De-
vlin et al., 2018), and Gated Recurrent Units (Chung et al., 2014). They ranked 1st in the subtask aiming
at classifying tweets with 71.70% macro F1-score and 77.40% accuracy. Talafha et al. (2019) investi-
gated various feature extraction methods, such as term frequency–inverse document frequency (TF-IDF)
and word embedding, in order to improve the model performances. The best results, 69.86% F1-score
and 76.20% accuracy, were obtained using a simple Linear Support Vector Classification (LinearSVC)
classifier with a user voting mechanism.

The main contribution of this paper is the introduction of a novel approach based on a pipeline of state-
of-the-art models for both sub-tasks of NADI Shared Task (Abdul-Mageed et al., 2020). For country-
level identification, we build a system based on raw tweets. The core of this system is an ensemble model
that applies a weighted voting technique on two classifiers, namely M_NGRAM and M_BERT (will be
used as labels for our models on the rest of this paper, theM stands for model). M_NGRAM uses TF-IDF
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with word and character n-grams to represent tweets. A stochastic gradient descent (SGD) classifier is
then trained to optimize the Huber loss (Zhang, 2004). M_BERT fine-tunes AraBERT weights (Antoun
et al., 2020) with a softmax classifier trained to optimize the multi-class entropy loss. For province-level
identification, we build a hierarchical classification, by first performing the country-level identification,
and then fine-tuning for each identified country a M_BERT model to predict its provinces. Figure 1
illustrates the overall architecture of the proposed solution. The proposed system generates F1-scores of
25.99% and 6.39% for the country-level identification and province-level identification, respectively.

The rest of this paper is organized as follows. Section 2 describes the Nadi Shared Task dataset.
Section 3 describes the proposed approaches, models and our data preparation. Section 4 presents exper-
imental results, error analysis and discussion. Finally, the conclusion is given in Section 5.

Figure 1: Global overview of the proposed system

2 Dataset presentation

The Nuanced Arabic Dialect Identification (NADI) shared task is the first task focusing on naturally-
occurring fine-grained dialect. It has been divided into two subtasks: 1) the country-level identification
subtask and 2) the province-level identification subtask. The organizers of the shared task provide four
sets of collected tweets: the train set (21K), the development set (4,957), the test set (5,000), and the
unlabeled tweets set (10M). As we can see in Figure 2, the NADI task is quite challenging due to the
unbalanced distribution of tweets (as example a very low frequency of tweets for Djibouti (DJ) and
Bahrain (BH) while the number of Egypt (EG) tweets is very high) and the nuance between Arabic
dialects.

3 Methods

In this section, we review the data preparation pipeline and the proposed models, namely M_NGRAM
and M_BERT, used to build our ensemble model.

3.1 Data preparation

As the final system is based on models that rely on different pre-processing steps, below we describe the
data preparation pipeline for each model.

3.1.1 M_BERT data preparation
For tweet preprocessing, we applied the approach of Hamza et al. (2020) to handle the pretrain-fine-tune
discrepancy challenge. The latter can be explained by the fact that the special tokens such as [MASK]
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Figure 2: Label distribution of the training set. Country code following the ISO 3166-1 alpha-2
(Wikipedia, 2020)

used by AraBERT during pretraining are absent from specific datasets at fine-tuning step. As a tweet
may contain words and emojis, the preprocessing pipeline is composed of the following steps:

1. Detecting emojis: the position and the meaning of each emoji is extracted within a tweet.

2. Substituting emojis: each emoji is replaced with the special token [MASK] and its meaning is trans-
lated from English to Arabic. This allows our model to overcome the pretrain-fine-tune discrepancy.

3. Concatenating emoji-free tweets with their respective emojis Arabic meanings: the special token
[CLS] is added to the head of each sentence, while the special token [SEP] was added to delimit the
tweet and the emojis Arabic meanings.

4. Tokenizing the output sentence: all words except special tokens are segmented by Farasa (Abdelali
et al., 2016) and then tokenized with AraBERT tokenizer. The latter is based on WordPiece (Schus-
ter and Nakajima, 2012) algorithm that is an unsupervised model and follows a sub-words units
approach.

3.1.2 M_NGRAM data preparation
The data preparation for M_NGRAM model can be summarized as follows:

• Data augmentation: for subtask 1, we construct for each country a list of keywords used to extract
tweets from the unlabeled 10 million tweets. The list contains flag emoji, country name, city names
and jargon.

• Data cleaning: as Arabic dialects are not considered as official languages, it is hard to get rules and
standards for each of them. This makes the pre-processing of the provided data for this task hard
and limited. For the M_NGRAM model, the pre-processing of tweets is done by removing special
characters, nomalizing some Arabic characters and words, nomalizing specific links using regular
expressions, and removing Tatweel (characters elongation) and non-Arabic characters.

• Feature extraction: TF–IDF features are extracted from the pre-processed data in two levels:

– Word-level n-grams: N-gram words are extracted, then vectorized using TF-IDF scores. Uni-
grams have been found to give the best performances.



271

– Character-level n-grams: as the task is nuanced Arabic dialect identification, dialects of many
countries cannot be differentiated based on words. Moreover, Arabic dialects have no standard
writing. This raises the problem of Out-of-vocabulary (OOV) words in the validation phase.
To tackle this problem, we use character-level n-grams that treat subwords as features. TD-IDF
vectorization is then performed on character-level n-grams. After several experiments, (3,5)
range shows the best performance on the character-level n-grams.

3.2 Country-level Identification
3.2.1 Building the M_BERT model
The M_BERT model aims to classify a tweet in a predefined country. Thus, the following steps are taken
in order to build the model:

1. The tokens obtained from M_BERT data preparation step (section 3.1.1) are grouped into two seg-
ments. The first one contains tweet’s tokens, while the second segment contains the tokens of the
Arabic meanings of detected emojis.

2. The token embeddings or representations are computed by feeding their indices and segments to
AraBERT model (Antoun et al., 2020).

3. The tweet representation is then the output of a global max pooling function applied on AraBERT
token representation.

4. The probability that a tweet belongs to a country is computed by a softmax function that takes the
tweet representation as input.

5. The model is trained to minimize the multi-class cross entropy loss.

We should mention that AraBERT model has the same configuration as BERT-base model (Devlin et
al., 2019). It is composed of 12 encoder blocks, 768 hidden dimensions, 12 attention heads, 512 maxi-
mum sequence lengths, and a total of about 110M parameters. The model is trained on two objectives:

• Masked Language Model where the model is trained to predict a masked token.

• Next Sentence Prediction in which the model is optimized to predict if the second sentence follows
the first one.

AraBERT is pre-trained on 70 million Arabic sentences, corresponding to ∼24GB of text. The authors
consider a vocabulary that contains 64k tokens. Another key point to mention here is that during training,
AraBERT parameters are fine-tuned on this specific task: Arabic Country-level Dialect Identification.

3.2.2 Building the M_NGRAM model
Since the training data is noisy and Arabic dialects are etymologically close with each other (Habash et
al., 2012) , dialect identification gets harder for many tweets. Moreover, the followed data augmenta-
tion pipeline is not accurate since the augmentation criterion is chosen based on heuristics. Therefore,
we decided to train our M_NGRAM model using stochastic gradient descent (SGD) with the following
points:

• Weighting of samples: the size of the augmented data is 10 times larger than the original data. This
makes the classification model more biased towards the augmented samples rather than the original
ones. To address this issue, we weight respectively the original samples and the augmented samples
with 1 and 0.25, respectively.

• A loss function sensitive to outliers: we use the Modified Huber Loss (Zhang, 2004) as a loss
function for the SGD classifier. This loss showed to be less sensitive to outliers.

The SGD classifier is trained on the concatenation of TF-IDF vectors of the word-level n-grams and
character-level n-grams extracted in section 3.1.2. We use Scikit-learn (Pedregosa et al., 2011) imple-
mentation for training our M_NGRAM model.
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3.3 Province-level identification

We propose a hierarchical classifier to detect the province of a given tweet. We begin by grouping the
dataset by countries. Then for each group (hence country), an AraBERT-based classifier is trained to
predict the province label. All the province classifiers follow the same process described in section 3.2.1.
To predict a tweet province, the tweet is first is prepossessed by the M_BERT data preparation step.
Next, we identify the tweet’s country with our Arabic country-level identifier. After that, the province-
level classifier is chosen according to the identified country. Finally, the preprocessed tweet is fed to its
province-level classifier to predict the province.

4 Experimental results, error analysis and discussion

In this section, we conduct experiments to evaluate the performance of the proposed models M_BERT,
M_NGRAM, and ensemble model on the development set. Table 1 shows the obtained results in terms of
macro precision, macro recall, macro F1-score, and accuracy. As we can see, for subtask 1 the ensemble
model achieves the best results: 40.95% for the accuracy and 27.24% for the F1-score. We can notice
that the M_NGRAM achieves 25.02% macro F1-score while the M_BERT scored only 22.42% macro
F1-score. Thus, when applying weighted soft voting, the scores obtained by M_NGRAM must contribute
more than M_BERT scores. Figure 3 confirms that 0.7 for M_NGRAM and 0.3 for M_BERT are the
weights to reach the best F1-score. Our final models (the ensemble model and the hierarchical model)
show to perform well on the test set too (Table 1). It is worth to be mentioned that our systems ranked
2nd and 1st for country-level identification and province-level identification, respectively.

Subtask DEV/TEST Model Precision Recall F1 Accuracy

Subtask 1
DEV Set

M_NGRAM 31.85% 24.03% 25.02% 37.72%
M_BERT 28.11% 21.86% 22.42% 37.32%
Ensemble Model 33.75% 25.70% 27.24% 40.95%

TEST Set Ensemble Model 30.25% 24.85% 25.99% 39.66%

Subtask 2
DEV Set

Hierarchical classifier
26.57% 26.02% 23.55% 26.24%

Test Set 7.84% 6.54% 6.39% 6.50%

Table 1: Subtask 1 and subtask 2 performances evaluation of used classifiers on dev and test sets.

Figure 3: Performance of the weighted soft voting ensemble model with respect to the weights of
M_NGRAM and M_BERT for the country-level identification.

In order to help future research in the field of automatic Arabic dialect identification, we discuss below
some challenges that our ensemble model faced during the country-level identification:

1. Extremely imbalanced dataset challenge: Some countries like Egypt and Iraq present 21.30% and
12.17% of the training set (Figure 2) while other countries such as Djibouti or Bahrain present
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Figure 4: F1 scores of the ensemble model for the 21 countries dialects for the subtask 1. Country code
following the ISO 3166-1 alpha-2 (Wikipedia, 2020)

only 1% of the training set. This led to a large gap between the F1-scores (Figure 4) of the well
represented countries and the under represented countries, e.g., the F1-score of Egypt is about 68%
compared to ∼ 8% (respectively 0%) for Djibouti (respectively Bahrain).

2. Etymological challenge: All tweets within the dataset have Arabic as their root language. Thus,
many expressions are shared between many dialects such as ¢l�A� ¯� w� ¯ ¤ �w� ¯ ("There
is no power but from God" /"lA Hwl w lA qw~ AlA bAllh"), ¢l�� ºAJ  � ("God willing" / "Ǎn
šA’ Allh") or �y�r�� �m�r�� ¢l�� �s� ("In the name of Allah the Merciful" / "bsm Allh AlrHmn
AlrHym"). One can notice that for each Arabic example we include its English translation and its
Buckwalter-Habash-Soudi transliterations (Habash et al., 2007).

3. Unstructured and noisy nature of tweets challenge: Some model predictions are biased by the pres-
ence of some dialect-specific words or tokens within tweets. For instance, the expected label of the
tweet T�A� �� �m`y� H� T�A� �� L� w¡ ("It is not everything, but does everything" / "hw
mš kl HAj~ bs byζml kl HAj~") is United Arab Emirates, yet the model has predicted Egypt as the
country label. The words ¨l¡±� ("AlÂhly"), ¢�A� ("HAjh") and L� ("mš") exist more likely in
tweets labeled as Egypt, therefore, the model will attribute the highest probability to Egypt label.

4. Topic-biased challenge: The predominance of one or more topics in a set of tweets that belong to
the same country. Taking the class label Djibouti as example, we notice clearly that the majority of
tweets are about soccer topic. As consequence, the model predict the majority of tweets related to
the soccer topic as Djibouti tweets.

5 Conclusion

In this paper, we described our submission to the NADI Shared Task. We built a system composed of two
classifiers: Ensemble model for country-level identification, and a Hierarchical classifier for province-
level identification. The quote “alone we are strong, together we are stronger.” has been verified: our
ensemble model in subtask 1 increased significantly our F1-score to 27.24% on development set and
25.99% on the test set, allowing us to rank second in the competition. In subtask 2 the hierarchical
classifier achieved 6.39% F1-score and ranked 1st. This work has shown that the combination of neural
network-based features (BERT) with statistical features (TF-IDF) might increase the performance in
other NLP tasks.
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