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Abstract

We propose a joint deep contextualized word
representation for dependency parsing. Our
joint representation consists of five compo-
nents: word representations from ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al.,
2019) language models for Vietnamese (Che
et al., 2018; Nguyen and Nguyen, 2020),
Word2Vec (Mikolov et al., 2013) embeddings
trained on baomoi dataset (Xuan-Son Vu,
2019), character embeddings (Kim, 2014), and
part-of-speech tag embeddings. When using
the joint representation with a deep biaffine de-
pendency parser (Dozat and Manning, 2016),
our model ranks 2nd in Vietnamese Univer-
sal Dependency Parsing Shared-Task at VLSP
2020 (Linh et al., 2020).

1 Introduction

Dependency parsing is the task of automatically
identifying binary grammatical relations between
tokens in a sentence. There are two common
approaches to dependency parsing: transition-
based (Nivre, 2003; McDonald and Pereira, 2006),
and graph-based (Eisner, 1996; McDonald et al.,
2005a).

Recently, there has been a surge in the use
of deep learning approaches to dependency pars-
ing (Chen and Manning, 2014; Dyer et al., 2015;
Kiperwasser and Goldberg, 2016; Dozat and Man-
ning, 2016; Ma et al., 2018; Fernández-González
and Gómez-Rodrı́guez, 2019; Zhang et al., 2020),
which help alleviate the need for hand-crafted fea-
tures, take advantage of the vast amount of raw
data through word embeddings, and achieve state-
of-the-art results.

Contextualized word representations, such as
ELMo and BERT, have shown to be extremely help-
ful in a variety of NLP tasks. The contextualized
model is used as a feature extractor, which is able

to encode semantic and syntactic information of
the input into a vector.

In this work, we further improve dependency
parsing performance by making good use of exter-
nal contextualized word representations.

2 Related works

Che et al. (2018) incorporated ELMo into both
dependency parser and ensemble parser training
with different initialization. Their system achieved
the best result in CoNLL 2018 shared task.

Li et al. (2019) captured contextual information
by combining the power of both BiLSTM and self-
attention via model ensembles. The results led to a
new state-of-the-art parsing performance.

Nguyen and Nguyen (2020) replaced the pre-
trained word embedding of each word in an in-
put sentence by corresponding contextualized em-
bedding computed for the first subword token of
the word. They achieve the state-of-the-art per-
formance on VnDT dependency treebank v1.1
(Nguyen et al., 2014).

3 Methodology

In our model, an input sentence of n words w =
w1, w2, ..., wn is fed to each of the component net-
works to learn separate token embeddings. We
describe the learning process below.

3.1 Graph-based Dependency Parsing
Graph-based Dependency Parsing follows the com-
mon structured prediction paradigm (McDonald
et al., 2005a; Taskar et al., 2005):

predict(w) = argmax
y∈Y(w)

scoreglobal(w, y) (1)

scoreglobal(w, y) =
∑

part∈y
scorelocal(w, part)

(2)



Given an input sentence w (and the corresponding
sequence of the vectors w1:n), we look the highest-
score parse tree y in the space Y(w) of valid de-
pendency trees over w. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

3.2 Word Embedding
The input layer maps each input word wi into a
dense vector representation xi. We use word2vec
(Mikolov et al., 2013) embeddings trained on
baomoi dataset (Xuan-Son Vu, 2019) embword

wi
,

a CNN-encoder character representation (Kim,
2014) embcharŵi

, and POS-tag embedding is created
randomize to enrich each word’s representation
embtagti

further.

xi = embword
wi
⊕ embcharŵi

⊕ embtagti
(3)

3.3 Deep Contextualized Word
Representations

3.3.1 ELMO
ELMO uses an LSTM (Hochreiter and Schmidhu-
ber, 1997) network to encode words in a sentence
and training the LSTM network with language mod-
eling objective on large-scale raw text. ELMoi
calculates the hidden representation h(LM)

i as

h
(LM)
i = BiLSTM (LM)(h

(LM)
0 , (ŵ1, ..., ŵn))i

(4)
where ŵi is the output of a CNN over characters.
ELMo representational power is computed by a
linear combination of BiLSTM layers:

ELMoi = γ

L∑
j=0

sjh
(LM)
i,j (5)

where sj is a softmax-normalized task-specific pa-
rameter and γ is a task-specific scalar. We use the
Vietnamese ELMo model released by Che et al.
(2018).

3.3.2 BERT
BERT introduced an alternative language modeling
objective to be used during training of the model.
Instead of predicting the next token, the model is
expected to guess a masked token. BERT is based
on the Transformer architecture (Vaswani et al.,
2017), which carries the benefit of learning po-
tential dependencies between words directly. For
use in downstream tasks, BERT extract the Trans-
former’s encoding of each token at the last layer,
which effectively produces BERTi.

PhoBERT (Nguyen and Nguyen, 2020) was in-
troduced for the Vietnamese NLP community as a
Roberta-based model (Liu et al., 2019). PhoBERT
achieves the state-of-the-art in Vietnamese POS-
tag and Named Entity Recognition. Therefore, we
use PhoBERT to produce BERTi.

After gettingELMoi andBERTi, we use them
as an additional word embedding. The calculation
of xi becomes:

xi = embword
wi
⊕ embcharŵi

⊕ embtagti

⊕ELMoi ⊕BERTi
(6)

The BiLSTM is used to capture the context infor-
mation of each word. Finally, the encoder outputs
a sequence of hidden states si.

3.4 Biaffine Attention Mechanism

We use the Biaffine attention mechanism described
in (Dozat and Manning, 2016) for our dependency
parser. The task is posed as a classification prob-
lem, where given a dependent word, the goal is to
predict the head word (or the incoming arc). For-
mally, let si and ht be the BiLSTM output states
for the dependent word and a candidate head word
respectively, the score for the arc between si and
ht is calculated as:

eti = hTt Wsi + UTht + V T si + b (7)

Where W, U, V, b are parameters, denoting the
weight matrix of the bi-linear term, the two weight
vectors of the linear terms, and the bias vector.

Similarly, the dependency label classifier also
uses a biaffine function to score each label, given
the head word vector ht and child vector si as in-
puts.

3.5 Training Loss

The parser defines a local cross-entropy loss for
each position i. Assuming wj is the gold-standard
head of wi, the corresponding loss is

loss(s, i) = −log escore(i←j)∑
0≤k≤n,k 6=i e

score(i←k)
(8)

3.6 Dependency Parsing Decoding

The decoding problem of this parsing model is
solved by using the Maximum Spanning Tree
(MST) algorithm (McDonald et al., 2005b).



4 Experiments

4.1 Dataset

The VLSP organizers released the datasets in two
phases. We split the first dataset into training, de-
velopment, and test data, according to the 7:1:2
ratio. We then merge the second dataset into the
first training data. The final statistics are summa-
rized in Table 1.

Table 1: Statistics of the public dataset

Number of sentences
Train set 6626

Develop set 507
Test set 1010

4.2 Setup

Table 2 summarizes the hyper-parameters that we
use in our experiments. We implement an addi-

Table 2: Hyper-parameters in our experiments

Layer Hyper-Parameter Value

Input
Word
POS
Char

dimension
dimension
dimension

300
50
50

LSTM Encoder
encoder layer
encoder size

6
500

MLP
arc MLP size
label MLP size

512
128

Training

Dropout
optimizer
learning rate
batch size

0.33
Adam
0.001
80

ELMo dimension 1024
BERT dimension 768

tional model that trains on lowercased input data,
since the dataset also includes text from social me-
dia, which contains many word-form errors. We
compare our results with the graph-based Deep Bi-
affine (BiAF) (Dozat and Manning, 2016) parser.
Since the private test set of the VLSP Shared Task
contains raw text only, we use VncoreNLP (Vu
et al., 2018) to segment and POS-tag the raw data.
Parsing performance is measured using UAS met-
ric (Unlabeled Attachment Score) and LAS metric
(Labeled Attachment Score) by comparing the gold
relations of the test set and relations returned by
the system. We use the evaluation script published

at CoNLL 2018 1.

4.3 Main Results

The results on the test set are shown in Table 3.

Table 3: The results (UAS%/LAS%) on the test set

UAS/LAS
BiAF 80.83/69.40

Our model 82.86/71.16
Our lowercase model 83.02/71.05

The raw private test set after segmentation and
POS tagging by VncoreNLP is the input to our
model. The results on the raw private test set are
shown in Table 4.

Table 4: The results (UAS%/LAS%) on each file of the
raw private test set

Our model Our lowercase model
VTB 76.33/67.46 75.68/66.59
vn1 74.79/65.38 72.17/62.61
vn3 74.22/66.73 74.95/67.28
vn7 68.33/61.67 66.11/61.11
vn8 74.81/65.71 74.29/65.97
vn10 80.64/72.46 78.45/69.98
vn14 72.61/62.45 73.36/63.69
Total 76.12/67.32 75.48/66.53

Beside providing the private raw data set, VLSP
organizers also provide the data in CoNLL-U (Gin-
ter et al., 2017) format. The results on the private
CoNLL-U format test set are shown in Table 5.

Table 5: The results (UAS%/LAS%) on each file of the
private CoNLL-U format test set

Our model Our lowercase model
VTB 84.81/76.44 84.58/76.29
vn1 78.98/70.94 77.43/70.17
vn3 85.89/76.97 85.46/77.58
vn7 82.22/75.56 80.00/73.89
vn8 82.49/73.93 81.32/73.8
vn10 85.46/77.53 81.20/72.69
vn14 84.04/75.31 83.54/76.81
Total 84.65/76.27 84.23/76.05

The final result is calculated by averaging UAS
and LAS scores on the raw private data and the
private CoNLL-U format data. The official rank

1https://universaldependencies.org/conll18/conll18 ud eval.py



is based on average the final UAS and LAS score.
The final result of all teams is shown in Table 6.

Table 6: The final results (UAS%/LAS%/Average%) of
all teams

UAS LAS Aver. Rank
Our model 80.39 71.80 76.09 2

DP2 80.89 71.36 76.12 1
DP3 78.58 70.04 74.31 4
DP4 79.28 70.47 74.87 3
DP5 77.28 68.77 73.03 5

Our model ranks 1st in LAS and 2nd in UAS.
Finally, we rank 2nd on average UAS and LAS,
officially.

5 Conclusion

We present joint ELMO and BERT as features for
dependency parsing. In the future, we plan to an-
alyze the effectiveness of our model when ELMO
and/or BERT are excluded. We also plan to im-
prove our model by using the self-attention mecha-
nism as a replacement for the BiLSTM-based en-
coder in our current model.
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