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Abstract

Entity Resolution (ER) identifies records that refer to the same real-world entity. Deep learning
approaches improved the generalization ability of entity matching models, but hardly overcame
the impact of noisy or incomplete data sources. In real scenes, an entity usually consists of mul-
tiple semantic facets, called aspects. In this paper, we focus on entity augmentation, namely
retrieving the values of missing aspects. The relationship between aspects is naturally suitable
to be represented by a knowledge graph, where entity augmentation can be modeled as a link
prediction problem. Our paper proposes a novel graph-based approach to solve entity augmenta-
tion. Specifically, we apply a dedicated random walk algorithm, which uses node types to limit
the traversal length, and encodes graph structure into low-dimensional embeddings. Thus, the
missing aspects could be retrieved by a link prediction model. Furthermore, the augmented as-
pects with fixed orders are served as the input of a deep Siamese BiLSTM network for entity
matching. We compared our method with state-of-the-art methods through extensive experi-
ments on downstream ER tasks. According to the experiment results, our model outperforms
other methods on evaluation metrics (accuracy, precision, recall, and f1-score) to a large extent,
which demonstrates the effectiveness of our method.

1 Introduction

Entity resolution has a tremendous impact on applications and research, such as deduplication, record
linkage and canonicalization. It is a common challenge in various domains including digital libraries, E-
commerce, natural language understanding, etc. Applying deep learning methods to solve ER problems
has become a current research hotspot. These kinds of approaches have good generalization capability to
improve the accuracy of prediction values on unseen data. One of the remaining challenges in tackling
ER tasks is the poor quality of data, such as missing values and ambiguity. This makes pairwise distance
measures approaches less effective with noisy content and context. In real-world applications, different
types of aspects often interact with each other to form heterogeneous relations (Shi et al., 2018) in almost
all networks. Another challenge of ER lies in how to express the relationships between the heterogeneous
nature of aspects by proper data structure.

Advanced Graph Representation Learning (GRL), also called graph embedding, aiming to learn low-
dimensional representations of nodes in networks, has attracted considerable attention in many real
applications of networks (Perozzi et al., 2014). The universal pattern of these learning approaches is
employing various types of random walk to generate node sequences and applying language models to
map nodes into the same semantic vector space. In Knowledge Graph (KG), several related nodes often
jointly represent a structural identity. An example of graph embedding in an aspect-based KG is shown
in Figure 1.
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Figure 1: Schema of graph embedding in an aspect-based KG. The edges between aspects represent their
co-occurrence in entities. Node colors in the graph represent different aspects types, and the thickness of
the edge represents its weight. This method learns a latent space representation of aspects, which can be
applied by downstream machine learning tasks.

An entity is composed of a set of aspects, and the relationship of aspects is easy to be represented in
the form of graphs. In this paper, GRL is introduced to resolve entity augmentation in ER problems.
We apply a heuristic feedback mechanism to the GRL field, which has long been proven successful in
handling combinatorial optimization problems. This mechanism can significantly reduce the aggregation
phenomenon caused by the long tail distribution of aspects, and generate more diverse and reasonable
traversal sequences. We develop an algorithm (ASPECT2VEC) that learns the latent representation of
aspects in a KG, by modeling a stream of random walks. ASPECT2VEC applies neural language models
to process a special language composed of a set of heuristically-generated walks. The latent space
representation of aspects would capture neighborhood similarity.

We apply ASPECT2VEC to resolve entity augmentation. In the first place, link prediction in KG is
implemented and used to estimate the likelihood of linkages between aspects. This step can retrieve miss-
ing aspects of entities. Then, deep Siamese networks are constructed to generate high-quality hash codes
based on semantic-preserving vectors of aspect sequences. Finally, the hashing method is employed to
evaluate the performance of pairwise matching in ER.

Our main contributions are as follows:

* ASPECT2VEC. We propose a flexible aspect representation learning framework. The framework
adopts a novel heuristic feedback method to generate reasonable subgraphs in an aspect-based KG,
while preventing long tails phenomenon due to high-frequency aspects. Moreover, we encode as-
pects into a continuous vector space while preserving the semantic associations. These enrich the
connotation of representation learning.

* Novel Problem Modeling. We model entity augmentation in ER as a link prediction task in KG.
Normally KG is constructed from the observed interactions between aspects, which may be incom-
plete or inaccurate. Thus the challenge of data augmentation lies in measuring the likelihood of
links between aspects.

* Evaluation. Here, we evaluate the quality of our aspect representations on downstream pairwise
matching problems. The method shows significant improvements over several state-of-the-art
methodologies on real public E-commerce data sets. This starts new directions for exploring data
quality problems in the E-commerce field.
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(a) ASPECT2VEC

(b) Deep Semantic Hashing

Figure 2: ASPECT2VEC (2a) employs a dedicated random walk algorithm to generate reasonable as-
pect sequences. Then SkipGram and Hierarchical Softmax are applied to convert the aspects into low-
dimensional vector space for downstream tasks. In (2b), Link Prediction (LP) helps retrieve missing
aspects for entity augmentation. Deep semantic hashing uses attention-based BiLSTM networks and
vector quantization to generate discriminative hash codes, therefore similar pairs could be easily distin-
guished from dissimilar ones.

2 Proposed Approach

2.1 Problem Formulation

Given a set of entities U and a set of aspects A, each ui ∈ U corresponds to a series of
{a1, a2, · · · , am} ⊂ A. In this paper, entity resolution is scaled to a pairwise matching problem. The
target of ER is employing aspects to generate discriminative hash codes so that similar pairs could be
easily distinguished from dissimilar ones.

Let G = (V,E,W ) denote a weighted undirected graph, where V , E and W represent nodes set,
edges set and weights set respectively. Each node v ∈ V refers to an aspect, and edges refer to the
co-occurrence of aspects in entities. Each weight w ∈ W represents the co-occurrence times of aspects.
A pairwise labeled dataset T is created with triples{(ui, uj , y)}, where ui, uj ∈ U are the combinations
of entities and y is a boolean label representing whether the pair of entities are matching or not.

2.2 Aspect Representation Learning

Aspect representation learning encodes aspects into a continuous vector space while preserving the se-
mantic associations in the graph. To dig deep into the problem, we propose ASPECT2VEC, which lever-
ages dedicated random walk to learn latent representations of nodes in the aspect-based KG. Figure 2
(a) shows a schematic diagram of ASPECT2VEC. Considering that aspects often have fixed types, the
dedicated random walk helps generate reasonable sequences of aspects and avoid exhaustive search. This
method lays the foundation for downstream entity augmentation.
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2.2.1 Dedicated Walk
Swarm intelligence like ant colony optimization (ACO) (Dorigo and Stützle, 2019) algorithm has excel-
lent performance in solving combination optimization problems. Artificial ants in ACO communicate
with each other via pheromone, leading to a heuristic positive feedback mechanism. Inspired by this
idea, we propose a novel traversal approach, which applies a heuristic feedback mechanism and tabu
search to generate reasonable subgraphs. A walk ω = 〈v0, . . . , vn〉 is defined as a sequence of nodes
where (vi, vi+1) ∈ E. Specifically, the k-th walk moves from node vi to node vj with probability pki,j , as
defined in equation 1:

pki,j =
ταi,j · η

β
i,j∑

r∈Γ(i) τ
α
i,r · η

β
i,r

(1)

where τi,j represents degree of freshness of the hop from node vi to node vj . α ≥ 0 is a parameter to
control the influence of τi,j . Freshness is initiated with a constant τ0, and indicates the visited frequency
of edge (vi, vj) during traversal. ηi,j describes the attractiveness of the hop from vi to vj , which is
typically set to wi,j . β ≥ 1 is a parameter to control the influence of ηi,j . Γ(i) is the 1-hop neighbors of
vi.

Degrees of freshness are updated when a walk is completed, decreasing the value corresponding to its
moves. An example of a global freshness updating rule is

τi,j ←

{
(1− ρ)τi,j if (vi,vj) belongs to the k-th walk
τi,j otherwise

(2)

where ρ is the freshness decay coefficient. The value of ρ depends on
∑

k d
k
i,j , which is the total length

of k-th walk. di,j = 1/wi,j is the shortest distance between vi and vj .

ρ =
1

1 +
∑

k d
k
i,j

(3)

2.2.2 Roulette Wheel Selection
To guarantee the stochastic properties of the walk, a roulette wheel selection method is adopted to choose
the next hop in a walk, as shown in Algorithm 1. This method keeps the algorithm from falling into
greedy search.

Algorithm 1: Roulette Wheel Selection
Input: vx: current node; Γ(x): one-hop neighbors of vx; Nk: forbidden nodes in k-th walk;
Output: ϕ: the next hop node;

1 ϕ = −1;
2 µ = random(0.0, 1.0);
3 for each vz ∈ Γ(x) do
4 µ← µ− px,z;
5 if (µ < 0) && (vz 6∈ Nk) then
6 ϕ = vz;
7 break;

8 if (ϕ == −1) then
9 ϕ = random(v ∈ Γ(x));

10 update(Nk);
11 return ϕ;

Aspects that connect to similar others and have the same types in a graph are considered structural
equivalence. Here, each entity only owns one specific value for a certain aspect type. Thus we restrict
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the walk length to the number of aspect types. If an aspect is visited during a walk, then the nodes that
are with the same type as it will be added to the forbidden node set Nk.

Algorithm 2 shows procedures of how a dedicated walk generates total subgraphs. At the start of the
algorithm, all parameters are initialized, including distance matrix and freshness matrix. In this method,
degrees of freshness are the key to achieve heuristics. And the randomness of the algorithm is achieved
through roulette wheel selection.

Algorithm 2: Dedicated Random Walk
Input: V : node set; χ: node type constrains;
Output: λ: all walks;

1 Initialize all parameters;
2 for each v ∈ V do
3 ω = dedicatedRandomWalk(v, χ);
4 updateGlobalFreshness();
5 λ.add(ω);

6 return λ

2.2.3 ASPECT2VEC

SkipGram works as a language model to maximize the co-occurrence probability among the words ap-
pearing within a window. Compared to continuous bag-of-words (CBOW), SkipGram weighs nearby
context words more heavily than distant context words. In ASPECT2VEC, SkipGram is applied to con-
vert the aspects into low-dimensional vector space.

Algorithm 2 generates almost all reasonable aspect sequences. After that, each aspect node will be
encoded to a corresponding representation vector. Moreover, to maximize the appearance probability of
its neighbors in the walk, Hierarchical Softmax is used to approximate the probability distribution.

2.2.4 Entity Augmentation
Entity augmentation is modeled as a link prediction problem, namely predicting whether two nodes in a
graph should have a link. The challenge lies in identifying spurious interactions and predicting missing
links. The original connection information between aspects can be obtained from the KG and utilized to
train a supervised model for LP.

We complete the entity augmentation task with a two-step solution-recall and classification. The
original aspects are mapped into vector space, and the nearest neighbors that belong to the missing
aspect types are recalled as candidates(the default size of the recall set is 10). Then the neighbors that are
most likely to have connections with the query aspects are selected as supplement aspects. We build the
LP model with a Siamese MLP structure. The input of the model is two aspect vectors, and the objective
function is the contrastive loss. Accurate aspect representations facilitate entity augmentation, which
greatly helps resolve downstream ER problems.

2.3 Deep Semantic Hashing

Deep semantic hashing uses deep neural networks to generate discriminative hash codes so that similar
pairs could be easily distinguished from dissimilar ones (Suthee et al., 2018). Our semantic hashing
method is implemented by a deep Siamese network and vector quantization.

2.3.1 Siamese Network
In the pairwise-preserving hashing method, the Siamese network is applied to explore the inner repre-
sentation of symmetrical objects. We construct a deep bidirectional long short-term memory (BiLSTM)
network with hierarchical attention (Z. et al., 2016) as the base structure. This model takes symmetri-
cal input, as shown in Figure 2 (b). During the training process, the symmetrical parts share the neural
weights of the network. The loss function applied here is contrastive loss (Nicosia and Moschitti, 2017)
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based on Euclidean distance, which can be defined as:

min ` =
1

2N

N∑
n=1

ynε
2
n + (1− yn) max(margin− εn, 0)2

εn = ||an − bn||2

(4)

where yn denotes whether the pair is matching or not, εn is the Euclidean distance between two output
vectors an and bn, and margin is the default threshold. The loss function makes a mapping from high
to low dimensional space which maps similar input vectors to nearby points on the output manifold
and dissimilar vectors to distant points. In the deepest layer of the Siamese network, we apply a fully
connected neural layer with Softsign activation function, which polarizes the activation value and easily
converts it to binary code.

2.3.2 Vector Quantization
Hash codes are widely used in information retrieval for O(1) time complexity and data compression. Vec-
tor quantization works by dividing a large set of vectors into groups, and each group is represented by its
centroid point. Utilizing the output of the last layer of the network, we can get the vectors correspond-
ing to the aspect sequences. We apply k-means clustering to every dimension of the output vectors,
fitting the distribution of binary codes. It means that for each dimension there will be two clusters. For a
multidimensional vector, dimension independent quantization divides values into discrete groups.

3 Experimental Evaluation

Our experiments on ASPECT2VEC consist of two parts, namely link prediction and entity resolution.
Each experiment compares ASPECT2VEC with several state-of-the-art graph embedding methods, in-
cluding DEEPWALK (Perozzi et al., 2014), LINE (Tang et al., 2015), NODE2VEC (Grover and Leskovec,
2016) and STRUC2VEC (Ribeiro et al., 2017) on two E-commerce datasets. The comparison includes
link prediction as well as pairwise matching by hash codes.

3.1 Dataset
We select two public E-commerce datasets with different sizes and sparsity for experiments. The Flipkart
dataseti contains 20000 products, the density of aspect data is 0.08% (32569 nodes, 426202 edges). The
eBay datasetii contains more than 8000 vacuum cleaner items, the density of aspect data is 0.15% (22841
nodes, 401973 edges). More than one hundred thousand entity pairs are constructed from each data set,
where the label is generated from UPC/EANiii in eBay and item title in Flipkart. The ratio of the training
set to test set is controlled at four to one by random sampling.

3.2 Experiment Setting
Each kind of product entities have their main aspect types, so the length and order of the generated
sequences can be determined by restricting the aspect types, which is also utilized in tabu search. For
ASPECT2VEC, α and β are both set to 1, enabling balanced heuristic weight between τi,j and ηi,j . τ0 is
set to 1 to initialize the freshness matrix. For a fair comparison, parameters of neural networks used by
different algorithms are the same. The deep models for link prediction and entity resolution are Siamese
network with dense layers and deep Siamese BiLSTM, respectively. And the bits of hash code is set to
64 in pairwise matching, which is corresponding to the dimensions of the output vector.

3.3 Evaluation Results
Table 1 shows the evaluation result on link prediction between aspects, and ASPECT2VEC obviously
outperforms all other methods on accuracy, precision, recall, and f1-score metrics. In ASPECT2VEC, the
dedicated random walk takes the co-occurrence between aspects as the heuristic factor to choose the next

ihttps://www.kaggle.com/PromptCloudHQ/flipkart-products
iihttps://www.kaggle.com/zhenqizhao/ebay-vacuum-cleaner-products

iiiUPC stands for Universal Product Code and EAN stands for European Article Number, both for product identification.
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Table 1: Comparison of aspect representation methods on link prediction

Datasets Methods accuracy precision recall f1-score

Flipkart

DEEPWALK 0.7964 0.9424 0.6315 0.7562
LINE 0.7831 0.9245 0.6166 0.7398

NODE2VEC 0.6748 0.9373 0.3745 0.5352
STRUC2VEC 0.7225 0.9141 0.4911 0.6390

ASPECT2VEC 0.8183 0.9525 0.6701 0.7867

eBay

DEEPWALK 0.6797 0.9756 0.3596 0.5255
LINE 0.8190 0.9709 0.6524 0.7804

NODE2VEC 0.7012 0.9764 0.4039 0.5714
STRUC2VEC 0.6746 0.9632 0.3536 0.5173

ASPECT2VEC 0.8534 0.9825 0.7155 0.8280

Table 2: Comparison of aspect representation methods on pairwise matching

Datasets Methods accuracy precision recall f1-score

Flipkart

DEEPWALK 0.9151 0.9623 0.4889 0.6484
LINE 0.9472 0.9786 0.6855 0.8062

NODE2VEC 0.9204 0.9694 0.5192 0.6762
STRUC2VEC 0.9107 0.9688 0.4570 0.6210

ASPECT2VEC 0.9608 0.9512 0.7959 0.8667

eBay

DEEPWALK 0.8987 0.9909 0.6232 0.7652
LINE 0.9140 0.9909 0.6815 0.8076

NODE2VEC 0.9124 0.9887 0.6771 0.8038
STRUC2VEC 0.8943 0.9915 0.6063 0.7524

ASPECT2VEC 0.9187 0.9900 0.7001 0.8201

hop, and captures deep potential connections rather than random hopping. Higher accuracy indicates that
the method can not only connect missing links, but also identify spurious or incorrect links. Accurate
link prediction facilitates entity augmentation. Table 2 shows the result of different methods on resolving
pairwise matching. Attention-based BiLSTM can accurately capture the contribution of different aspect
types to the final result, and the pairwise learning method fully understands symmetrical and asymmetric
information between different pairs. Compared to other methods, ASPECT2VEC sacrifices a little preci-
sion but greatly improves the recall rate. The improved accuracy proves the ability to identify different
kinds of entities, and the hashing method enables very fast matching. The experimental result shows the
effectiveness of our method to entity augmentation, and the increase in overall performance on entity
resolution.

4 Related Work

Entity resolution has attracted the interest of a large number of researchers in recent years. With the
development of deep learning (DL), a growing number of DL methods are applied to solve ER problems
(Mudgal et al., 2018). End-to-end deep matching models (Nie et al., 2019; Fu et al., 2020; Zhao and
He, 2019) adopt similarity measures or semantic features of attributes for ER, especially dealing with
heterogeneous entities. DL often requires a lot of labeled data as a training set, which is expensive to
obtain. Therefore, transfer learning methods, based on a pre-trained model, are employed to solve ER
tasks with little or no training data (Zhao and He, 2019). Besides, there have been many unsupervised
methods to solve the data labeling problem, particularly focusing on machine labeling and error label
correction (B. et al., 2019; R. et al., 2020; Chen et al., 2020). Some of the methods mentioned above
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pay attention to overcoming the dirty or heterogeneous data. However, how to deal with incomplete data
and augment data quality in ER still needs further research. The method we proposed applies graph
representation learning to resolve this problem.

Graph representation learning is dedicated to mapping nodes in networks into the same vector space,
while maintaining the semantic association between nodes(Perozzi et al., 2014; Grover and Leskovec,
2016; Ribeiro et al., 2017; Shi et al., 2018; Tang et al., 2015; Wang et al., 2016; Ristoski and Paulheim,
2016). This kind of technique has received significant attention in the last few years with the development
of natural language processing. The quality of the generated vectors is often measured by link prediction
and node classification (Zhang and Chen, 2018; Ying et al., 2018; Trouillon et al., 2016). Previous
researchers focused on the breadth and depth of graph traversal, but few of them take the node type into
consideration during the progress of the random walk. In addition, how to avoid the long tail phenomenon
as well as generating reasonable sequences in the traversal process is also a problem worth exploring.

5 Conclusion

In this paper, we proposed a novel aspect representation learning framework ASPECT2VEC, which re-
solves the entity augmentation problem in ER by modeling it as a link prediction problem in KG. AS-
PECT2VEC collaboratively explores dedicated random walks and captures semantic information between
nodes in a network. Moreover, through extensive experiments on link prediction and deep semantic
hashing, we demonstrated the superiority of the proposed framework to several state-of-the-art methods.
Furthermore, dedicated random walk is flexible and also has great potential capability of parallelism to
be explored in future research.
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