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Abstract

This paper describes the system designed by the Baidu PGL Team which achieved the first place
in the TextGraphs 2020 Shared Task. The task focuses on generating explanations for elementary
science questions. Given a question and its corresponding correct answer, we are asked to select
the facts that can explain why the answer is correct for that question and answering (QA) from a
large knowledge base. To address this problem, we use a pre-trained language model to recall the
top-K relevant explanations for each question. Then, we adopt a re-ranking approach based on a
pre-trained language model to rank the candidate explanations. To further improve the rankings,
we also develop an architecture consisting both powerful pre-trained transformers and GNNs
to tackle the multi-hop inference problem. The official evaluation shows that, our system can
outperform the second best system by 1.91 points.

1 Introduction

The TextGraphs 2020 Shared Task on Explanation Regeneration (Jansen and Ustalov, 2020) asks partici-
pants to develop methods to reconstruct gold explanations for elementary science questions. Concretely,
given an elementary science question and its corresponding correct answer, the system need to perform
the multi-hop inference and rank a set of explanatory facts that are expected to explain why the answer
is correct from a large knowledge base.

Multi-hop inference is the task of combining more than one piece of information to solve a reasoning
task, such as question answering. Multi-hop inference or information aggregation has been shown to be
extremely challenging (Jansen, 2018), especially for the case here, where current estimates suggest that
an average of 4 to 6 sentences are required to answer and explain a given question. An example is shown
in Figure 1.

Q: Which of the following best describes the mass of a solid block of ice?

E1: mass is a measure of the amount of matter in an object

E2: measuring is used for describing an object

A: the amount of matter in the block

E3: a block is a kind of object

Figure 1: A subgraph of explanation sentences that explains why the answer is correct for the question.

In the TextGraphs 2020 Shared Task, we not only need to consider extracting the semantic information
between the question and each explanation, but also need to take the structural relationship between the
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explanations into account. Therefore, we adopt a pipeline architecture to address the problem. First,
we use a pre-trained language model to recall the top-K relevant explanations for each question. Then,
we adopt a re-ranking approach based on another pre-trained language model to rank the candidate
explanations. Finally, to further improve the rankings, we also develop an architecture utilizing the
power of pre-trained transformers (Vaswani et al., 2017) and graph neural networks (GNNs) (Kipf and
Welling, 2016) to tackle the multi-hop inference problem. We also adopt a Virtual Adversarial Training
(Takeru et al., 2018) method to train our model and got a slight improvement.

The rest of the paper is organized as follows. In Section 2, we will briefly describe the task, the dataset
and the evaluation metrics of the task. Section 3 shows the details of our approach. Our experiments will
be shown in Section 4.

2 Task

Task. As described in Section 1, the TextGraphs 2020 Shared Task focuses on selecting a set of ex-
planation sentences that can explain the answer of a question, which can be regarded as a ranking task.
Concretely, given an elementary science question, its corresponding correct answer and a set of explana-
tion sentences, the goal is to determine whether an explanation sentence is the reason for the QA.

Corpus. The data used in this shared task comes from the WorldTree V2 corpus (Xie et al., 2020). The
dataset includes approximately 4400 standardized elementary and middle school science exam questions
(3rd through 9th grade). Each example in the WorldTree V2 corpus contains detailed annotation stating
whether a fact is a part of the explanation for that question. For each explanation, the WorldTree V2
corpus also includes annotation for how important each fact is towards the explanation.

Evaluation. Explanation reconstruction performance is evaluated in terms of mean average precision
(MAP) by comparing the ranked list of facts with the gold explanation. Therefore, it is intuitive for us to
regard the task as a ranking problem.

3 Approach

Our system consists of two major components. The first part is an information retrieval (IR) system
based on the pre-trained language model to retrieve the top-K relevant explanation sentences from the
whole knowledge base. The second part consists of two modules, including a pointwise ranking module
to rank candidate facts and a graph-based module to counter the problem of multi-hop inference.

3.1 Retrieval

Recently, pre-trained language models (Devlin et al., 2018; Liu et al., 2019; Lan et al., 2019; Sun et
al., 2020) have achieved state-of-the-art results in various language understanding tasks such as question
answering (Rajpurkar et al., 2016; Khashabi et al., 2018). For our IR system, we use ERNIE 2.0 (Sun
et al., 2020), the world’s first model to score over 90 in terms of the macro-average score on GLUE
benchmark (Wang et al., 2018), as our retriever. We concatenate the question, the correct answer and
the explanation sentence as input of the retriever which will return a score to determine whether an
explanation sentence is relevant to that question. Then for each question, we can get the top-K ranked
facts from the corpus. Although a simple tf-idf based retriever can obtain the top-K ranked facts in a
shorter time, its result is not very effective compared with the pre-trained model, as shown in Table 1.
Since the pre-trained model already has strong semantic representation capabilities, it can achieve an
excellent result on 5000 steps fine-tuning within two hours. Details can be found in Section 4.1.

Retriever MAP@top100 Oracle MAP@top100
TF-IDF 25.49% 50.78%

Ours 48.80% 92.03%

Table 1: The recall result of different retrievers on the development set. The Oracle MAP@top100 is
the upper bound MAP score where all the relevant facts in these 100 candidate facts are ranked first.
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3.2 Ranking
Our re-ranking component consists of two modules. Since we only fine-tune the retriever for 5000 steps,
it can be still improved by the pre-trained model. Therefore, we use another pre-trained model based
on ERNIE 2.0 (Sun et al., 2020) to re-rank the candidate explanation sentences from the retrieval stage.
We significantly improve the performance on the task, outperforming the retriever by more than 10%
of MAP. However, we found that there are many facts that have lexical overlap with the question, but
they are not the reason for the QA. On the contrary, some key facts that have no lexical overlap with the
question are ranked low. This kind of key facts are usually the explanation of other relevant facts, rather
than the direct explanation of the question. Since each sample is only composed of a question, a correct
answer and an explanation sentence, it is difficult for the retriever to learn the correlation between the
candidate facts.

To address this problem, we utilize the graph neural networks (GNNs) to learn the correlation between
the candidate facts. Graph neural networks (GNNs) are recursive neural networks for modeling the graph
structure. Concretely, the graph structure here is the correlation between the candidate facts. As shown
in Figure 1, E1 explains the word mass for the question directly. E2 explains the word measure for the
E1. Therefore, E2 can be regarded as a second order neighbor of the question, and we want to learn
such relation with help of GNNs. Modern GNNs follow a neighborhood aggregation strategy, where
we iteratively update the representation of a node by aggregating representations of its neighbors. In an
attempt to integrate the powerful language understanding ability into graph learning, we present a graph
aggregator with pre-trained transformers. Figure 2 shows the details of the architecture.
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Figure 2: The overview of the architecture that integrates the powerful language understanding ability
into graph learning.

As GraphSAGE-like (Hamilton et al., 2017) aggregation function only aggregate neighbors using
simple operators, such as sum, mean or max. There’s no direct interaction between the center node and
each neighbor. In a text graph, node (sentence) interaction should not be limited in node-level (sentence-
level) embedding. It should take the token-level (word-level) interaction between two nodes into account.
In an attempt to make token-level interaction possible, we apply ERNIE on the edges of the graph by
concatenating raw text tokens of the node pairs on the sampled edges (PGL, 2020). As shown in Figure
2, instead of obtaining the neigh feature directly from the neighbor sentence, we get the neighbor features
by the interaction between the center tokens and the neighbor tokens. Then, the [CLS] embedding will
be taken as the neigh feature.

To train the model we described above, we need to construct the edges between explanation facts. The
K candidate explanation sentences for a question and a answer are regarded as nodes to form a graph.
Here, edges can be a result of lexical overlap between explanation sentences. But we find that using
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this method will result in a very dense graph, and hence, each node in the graph is linked with many
neighbors and most of them are irrelevant to the QA.

To alleviate this problem, we adopt a pairwise binary classification system, to score the explanation
fact pairs in the candidate set for each question. We use the pre-trained language model to judge whether
the explanation fact pair is relevant to the question and the answer. If both the two explanation sentences
are relevant to the question and the answer, the label is 1, otherwise the label is 0. Then we rank all
the explanation fact pairs by the score and select the top-M pairs as the edges of the text graph for
each question. We then feed them to the text graph model we described above, and regard it as a node
classification task.

4 Experiments

4.1 Model Configuration
In this work, the pre-trained language model we used to encode the text is ERNIE 2.0 (Sun et al., 2020),
which is considered to be an expressive powerful model. For all experiments, the learning rate of the
ERNIE encoder was initialized to 1e−4, batch size is 64 and the maximum sequence length is 128. We
used the Adam optimizer with linear learning rate decay. In the retrieval phase, we fine-tuned the model
for 5000 steps on a NVIDIA Tesla V100 (32GB GPU) machine. In the ranking phase, the pre-trained
model was fine-tuned for 1 epoch with virtual adversarial training. To generate the edges for applying
GNNs with the pre-trained language model to tackle multi-hop inference problem, we fine-tuned the
ERNIE model for 5000 steps and selected the top 20 explanation sentence pairs as the edges for each
question.

For evaluation, we select the top 100 ranked facts from the retrieval phase, and we found that the
oracle MAP score can reach 92.03% with top 100 ranked facts, as shown in Table 1. We concatenate the
correct answer choice with the question, because we found that adding the wrong options can mislead
the model and leads to a lower MAP score. It is intuitive since the wrong options are not necessary to
answer the question.

4.2 Experiment Results
We report the tf-idf based ranking scores as the baseline. From the Table 2 we can see that, though the tf-
idf method can quickly score all the facts, its MAP score is very low compared with the ERNIE retriever.
The ERNIE Re-ranker can significantly improve the performance on the task, which outperforms the
retriever for more than 10% points of MAP score. The ERNIE graphsage model can also improve the
performance of the Re-ranker. To further improve the performance on the leaderboard, we run our ERNIE
Re-ranker model for three times and then ensemble them to get a better performance.

The performance of hidden test set of our final model is shown in Table 3. Our submission achieved
the first place in TextGraphs 2020 Shared Task.

Model MAP@top50 MAP@top100
TF-IDF 25.16% 25.49%
ERNIE Retriever 48.17% 48.80%
ERNIE Re-ranker 58.73% 59.16%
+ ERNIE Graphsage 59.53% 59.99%
ensemble ranking 61.58% 61.98%

Table 2: MAP score on the development set.

Model/participant MAP
Our model 60.33%
alvysinger 58.43%
aisys 52.33%

Table 3: MAP score on the test set.

5 Conclusion

We proposed our approach to the shared task on “Multi-hop Inference Explanation Regeneration”. Our
system consists of a pre-trained model-based retriever and a graph-based pre-trained model for the re-
ranking phase, and achieved the first place in TextGraphs 2020 Shared Task.
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