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Abstract

Story generation, namely, generating a rea-

sonable story from a leading context, is an im-

portant but challenging task. In spite of the

success in modeling fluency and local coher-

ence, existing neural language generation

models (e.g., GPT-2) still suffer from repe-

tition, logic conflicts, and lack of long-range

coherence in generated stories. We conjecture

that this is because of the difficulty of asso-

ciating relevant commonsense knowledge,

understanding the causal relationships, and

planning entities and events with proper tem-

poral order. In this paper, we devise a

knowledge-enhanced pretraining model for

commonsense story generation. We propose to

utilize commonsense knowledge from exter-

nal knowledge bases to generate reasonable

stories. To further capture the causal and tem-

poral dependencies between the sentences in a

reasonable story, we use multi-task learning,

which combines a discriminative objective

to distinguish true and fake stories during

fine-tuning. Automatic and manual evalua-

tion shows that our model can generate more

reasonable stories than state-of-the-art base-

lines, particularly in terms of logic and global

coherence.

1 Introduction

Story generation is a strong indicator of machine

understanding of natural language. It is often

approached as selecting a sequence of events to

form a story with a reasonable logic or plot.

Although existing generative models (Roemmele,

2016; Fan et al., 2018; Fan et al., 2019) can

generate stories with good local coherence, they

∗Corresponding author: Minlie Huang.

are still struggling to plan a coherent plot and

maintain a reasonable event sequence throughout

the story, or they are often biased towards

generating a limited set of stories with generic

plots (See et al., 2019) (e.g., I have a great

time), even when using the powerful generative

model OpenAI’s GPT-2 (Radford et al., 2019), as

shown in Table 1.

Pretrained GPT-2 has been shown to cap-

ture useful semantic and syntactic features (Alt

et al., 2019), as demonstrated by state-of-the-

art performance on some generation tasks such

as machine translation and text summarization

(Radford et al., 2019). However, compared with

such tasks whose source inputs have contained

sufficient information to generate desired tar-

get texts, story generation is a typical open-

ended generation task, where only very limited

information is given in the input. As shown in

this paper, we observe some severe issues when

applying GPT-2 to generate reasonable stories,

particularly commonsense stories from a limited

beginning. These issues include repetition, logic

conflicts, and lack of long-range coherence (See

et al., 2019; Holtzman et al., 2019), as exemplified

in Table 1. Specifically, although GPT-2 performs

reasonably well at generating some related

concepts to bus (e.g., driver, and the probable

destinations home or party), it completely

ignores the other key entity accident in

the leading context, which could be caused by

its lower frequency in GPT-2’s initial training

corpus (less than 7% of bus). Besides, even

though the concepts are relevant, they are usually

generic, and used repeatedly and illogically in

the generated stories. Therefore, given limited

information as input, it is extremely challenging

for the subsequent generation without any external

guidance—for instance, commonsense knowl-

edge. And the difficulties lie in associating inter
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Context:

The first time I saw the results of an accident, I was

in a bus.

Golden Continuation by Human:

We were stopped and a friend pointed out the

accident on the road. A man was under a car after

having been run over. People tried to move the car

off him but only made it worse. After seeing that, I

am much more careful when crossing the street.

pretrained GPT-2:

She was trying to get home but the other

passengers would not let her go. He thought she

was going to die because of her weight. She was

trying to get home but the other passengers would

not let her go. The bus driver would not let her go.

Fine-tuned GPT-2:

I was on my way to a party. I was on my way

to a party and I ’d gotten out of my seat, and

started driving. I got a flat tire, so I stopped driving.

I drove to the party and had a great time.

Table 1: Story examples generated by human and

GPT-2 models. The stories written by the pre-

trained GPT-2 and fine-tuned GPT-2 (post-trained

on ROCStories [Mostafazadeh et al., 2016b])

suffer from repetition (in italic), bad inter-sentence

coherence to the context (e.g., ignoring key entities

such asaccident in bold), as well as conflicting

logic (underlined, e.g., firststopped driving

and then drove to the party), in spite of

their good fluency and intra-sentence coherence.

dependent commonsense knowledge for expand-

ing a reasonable story, handling the causal rela-

tionships, as well as deciding the temporal orders

between entities and events in context.

Explicitly introducing external commonsense

knowledge has been shown helpful to improve

language understanding and long-range coher-

ence of generated texts (Zhou et al., 2018; Guan

et al., 2019; Yang et al., 2019b). For example,

for the entities in the given context of Table 1,

many potentially related concepts (e.g., run

over, cross street) can be inferred and

predicted based on external commonsense knowl-

edge bases such as ConceptNet (Speer and Havasi,

2012) and ATOMIC (Sap et al., 2019). These

knowledge bases contain abundant semantic

knowledge of concepts and inferential knowledge

for commonsense reasoning. We enhance GPT-2

with such knowledge by post-training the model

on the knowledge examples constructed from

these knowledge bases, which can provide addi-

tional crucial information for story generation.

Empirical experiments demonstrate that training

with millions of such examples helps improve

the coherence and logicality of generated sto-

ries. Meanwhile, we adopt multi-task learning to

address the problem of handling causal and tem-

poral dependencies. We combine the generation

objective with an auxiliary multi-label classifica-

tion objective, which requires distinguishing true

stories from fake stories that are constructed by

randomly shuffling the sentences, replacing a sen-

tence with a negatively sampled one, or repeating

a sentence in an original story. The additional

classification task empowers our model to better

capture the logicality in a story implicitly, namely,

modeling the causal and temporal dependencies,

inter-sentence coherence, and avoiding repetition.

The main contributions of this paper are

summarized as follows:

• We propose a knowledge-enhanced pretrain-

ing model for commonsense story generation

by extending GPT-2 with external common-

sense knowledge. The model is post-trained

on the knowledge examples constructed from

ConceptNet and ATOMIC, thereby improv-

ing long-range coherence of generated stories.

• To generate reasonable stories, we adopt a

classification task to distinguish true stories

from auto-constructed fake stories. The auxil-

iary task makes the model implicitly capture

the causal, temporal dependencies between

sentences and inter-sentence coherence, and

lead to less repetition.

• We conduct extensive experiments with auto-

matic and manual evaluation. Results show

that our model can generate more reasonable

stories than strong baselines, particularly in

terms of logicality and global coherence.1

2 Related Work

2.1 Neural Story Generation

Many existing neural story generation models

generated stories by conditioning upon various

contents such as images (Huang et al., 2016) and

1Our implementation is available at https://

github.com/thu-coai/CommonsenseStoryGen,

and demo is available at http://coai.cs.tsinghua.

edu.cn/static/CommonsenseStoryGen.
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short text descriptions (Jain et al., 2017). Different

from these studies, we consider the setting of

open-ended story generation from only a limited

leading context in this paper. For this task, prior

studies have attempted to build specific sentence

representations by modeling story entities and

events to simplify the dependencies between

sentences (Ji et al., 2017; Clark et al., 2018).

Another line is to decompose story generation

into separate steps (Martin et al., 2018; Fan

et al., 2018; Wang et al., 2016; Xu et al.,

2018; Yao et al., 2019; Fan et al., 2019). These

models usually focused on first planning story

sketches and then generating sentences from the

sketches. However, improving pretrained models

to generate commonsense stories is yet to be well

investigated.

2.2 Pretraining

Recently, large-scale pretraining models have

been widely developed in various NLP tasks.

Some work leveraged pretraining to provide better

language representations at the word level

(Mikolov et al., 2013; Pennington et al., 2014;

Peters et al., 2018) or sentence level (Le and

Mikolov, 2014; Kiros et al., 2015) for various

downstream task-specific architectures. However,

Radford et al. (2018) and Devlin et al. (2018)

suggest that these complex task-specific archi-

tectures are no longer necessary, and it is sufficient

to merely fine-tune pretrained task-independent

transformer language models for downstream

tasks. Mehri et al. (2019) explored different pre-

training methods based on language models for

dialogue context representation learning. Further-

more, Radford et al. (2019) demonstrate pretrained

language models (i.e., GPT-2) can perform down-

stream tasks better than state-of-the-art models

even in a zero-shot setting (i.e., without any fine-

tuning on task-specific data). Wolf et al. (2019)

fine-tuned GPT-2 for personalized conversation

generation, which obtains very competitive results

in the challenge. However, as previous studies

(See et al., 2019; Holtzman et al., 2019) observed,

transferring GPT-2 directly to open-ended text

generation still suffers from several issues such as

repetition or lack of knowledge and inter-sentence

coherence with different decoding algorithms.

Besides, although Song et al. (2019) and Dong

et al. (2019) extended the language model to sup-

port an encoder-decoder framework (Sutskever

et al., 2014), we build our model based on GPT-2

because of its simplicity and broad applicability.

2.3 Commonsense Knowledge

Incorporating commonsense knowledge is neces-

sary and beneficial for language inference (LoBue

and Yates, 2011; Bowman et al., 2015; Rashkin

et al., 2018b), reading comprehension (Mihaylov

and Frank, 2018; Rashkin et al., 2018a), and

particularly for open-ended language generation,

which usually requires external knowledge to

enrich the limited source information. Com-

monsense knowledge has been demonstrated to

significantly improve dialogue generation (Zhou

et al., 2018), story ending generation (Guan et

al., 2019), and essay generation from given top-

ics (Yang et al., 2019b). And recently, some

work also attempted to integrate external com-

monsense knowledge into pretrained models such

as BERT (Devlin et al., 2018) to enhance lan-

guage representation for reading comprehension

(Yang et al., 2019a) and other knowledge-driven

NLP tasks like entity typing and relation classi-

fication (Zhang et al., 2019). Besides, Sun et al.

(2019) improved BERT on Chinese NLP tasks

by multi-stage knowledge masking strategy to

integrate phrase and entity level knowledge into

the language representation. Moreover, Bosselut

et al. (2019) transferred the implicit knowledge

from GPT-2 by fine-tuning the model to gen-

erate an object given the subject and a relation

as input in commonsense knowledge graphs, that

is, automatic knowledge base construction. How-

ever, the low novelty of the generated objects

showed that it could still be difficult for GPT-2 to

generate commonsense texts solely based on its

implicit knowledge. Therefore, we target integrat-

ing external knowledge into GPT-2 for generating

more reasonable commonsense stories.

2.4 Multi-Task Learning

Incorporating other auxiliary task objectives to

complement the primary goal has been shown to

improve the performance in many NLP tasks such

as sentiment classification (Yu and Jiang, 2016)

and conversation generation (Zhao et al., 2017).

Recently, multi-task learning was also used to

pretrain language models to capture dependencies

in context (Devlin et al., 2018; Mehri et al.,

2019) and further improve pretrained models’

representation power during fine-tuning (Wolf

et al., 2019).
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3 Methodology

The task in this work can be defined as follows:

Given a one-sentence story beginning X as the

leading context, the model should continue to

complete a K-sentence story Y with a reasonable

plot. The sentences in a generated story should

have reasonable logical connections, causal

relationships, and temporal dependencies with

each other and with the given beginning. To this

end, we devise a novel framework to leverage

knowledge and handle the causal and temporal

dependencies, as Figure 1 shows.

3.1 Pretrained Transformer Language

Model

The transformer architecture is a general model

used in language modeling (Vaswani et al.,

2017), which consists of multiple transformer

blocks of multi-head self-attention followed by

layer-normalization and fully connected layers.

Radford et al. (2019) used a 12-layer decoder-only

transformer (GPT-2) (i.e., a left-to-right language

model) with masked self-attention heads which are

constrained in that every token can only attend to

its left context. Formally, the objective in this stage

is to minimize the following negative likelihood:

LGPT = −

|u|∑

t=1

logP (ut|u<t), (1)

P (ut|u<t) = softmax(HL
t W + b), (2)

Hl
t = block(Hl−1

<t ), l ∈ [1, L], (3)

H0
t = Et + Pt, (4)

where u is an utterance with |u| tokens in total

from the training corpus, ut is the t-th tokens in

u, Hl
t is the l-th layer’s output at the t-th position

computed through the transformer block with the

masked self attention mechanism, and H
0
t is a

summation of token embedding Et and positional

embedding Pt for the t-th token.

GPT-2 network is pretrained on a large-scale

corpus but still suffers from many issues such as

lack of necessary knowledge for commonsense

story generation as aforementioned. Therefore, in

this work we improve GPT-2 for generating more

reasonable stories with external commonsense

knowledge.

3.2 Training with Commonsense Knowledge

Commonsense knowledge can facilitate language

comprehension and generation, as reported in a

Figure 1: Transformer block architecture (left) and

training framework (right). We divide the whole

training framework into the following three stages.

Train the language model (a) with a large-scale corpus,

in which stage we directly inherit the pretrained

model parameters from Radford et al. (2019), (b) with

commonsense knowledge from external knowledge

bases, and (c) with true and auto-constructed fake

stories by multi-task learning for story generation

and classification. LGPT , LKG, LLM , and LCLS are

the corresponding loss functions in different stages,

respectively.

notable work for dialog generation (Zhou et al.,

2018). To leverage commonsense knowledge in

pretrained language models, we resort to existing

large-scale knowledge bases ConceptNet (Li et al.,

2016b) and ATOMIC (Sap et al., 2019).

The ConceptNet dataset2 consists of triples

obtained from the Open Mind Common Sense

entries in ConceptNet 5 (Speer and Havasi, 2012).

It contains 34 relations in total and represents

each knowledge triple by R = (h, r, t), meaning

that head concept h has the relation r with

tail concept t for example, (cross street,

Causes, accident). And the ATOMIC

dataset3 is an atlas of everyday common-

sense reasoning containing a mass of textual

description of inferential knowledge orga-

nized as typed if-then triples. For example,

a typical if-then triple is (PersonX pays

PersonY a compliment, xIntent, to

be nice), where xIntent is the relation

between the head and tail events standing for

2http://www.conceptnet.io/.
3https://homes.cs.washington.edu/

∼msap/atomic/.
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Knowledge Original Triples Examples of Transformed Sentences
Bases

ConceptNet (eiffel tower, AtLocation, paris) eiffel tower is at paris.
(telephone, UsedFor, communication) telephone is used for communication.

ATOMIC (PersonX dates for years, oEffect, continue dating) PersonX dates for years. PersonY will continue dating.
(PersonX cooks spaghetti, xIntent, to eat) PersonX cooks spaghetti. PersonX wants to eat.

Table 2: Examples of template-based transformation of triples in knowledge bases. Phrases in bold

represent the original and transformed relations.

If-Event-Then-Mental-State. We implicitly intro-

duce the knowledge to the pretrained language

model by post-training on knowledge-augmented

data. Some work has attempted to explicitly

incorporate commonsense knowledge into lan-

guage generation (Zhou et al., 2018; Guan et al.,

2019; Yang et al., 2019b). However, all these

works assume that there is an alignment between

the training data and the knowledge bases. There-

fore, they suffer from the following issues: (1) It

is difficult to match the events extracted from the

training data with those stored in KB. (2) Learn-

ing and utilizing multi-hop triples in knowledge

graphs is costly in time because of the large-scale

size. (3) Most of KB triples do not appear in the

task-specific training data, so that those absent

triples are not fully utilized in existing models.

Fortunately, our model is trained on the knowl-

edge bases directly, which can effectively ease

these limitations.

We transform the commonsense triples in

ConceptNet and ATOMIC into readable natural

language sentences using a template-based

method (Levy et al., 2017), as illustrated in

Table 2. We do not use roughly concatenated

triples in order to avoid introducing additional

special tokens (e.g., UsedFor in ConceptNet and

oEffect in ATOMIC), or break the syntactic

features contained in the pretrained language

model (Alt et al., 2019), which are essential for

following story generation. And then the language

model is post-trained on the transformed sentences

to learn commonsense knowledge between entities

and events by minimizing the negative likelihood

of predicting the next token:

LKG = −

|r|∑

t=1

logP (rt|r<t), (5)

where r is a transformed sentence with |r| tokens

in total, and rt is the t-th token in r. In this way,

we can incorporate commonsense knowledge into

GPT-2 implicitly.

Figure 2: An example of fake story construction. The

shuffled sentences are indicated by dashed lines, the

replaced sentence is underlined, and the repeated one

is in italic.

3.3 Multi-Task Learning

In order to encourage our model to generate

reasonable stories in logic, we add an auxiliary

classification task to the generation task during

fine-tuning on the ROCStories corpus. The task

requires distinguishing true stories from fake

stories. We first construct three additional sets of

fake stories by shuffling the sentences, replacing

a sentence with a negatively sampled one, and

randomly repeating a sentence in an original story.

Notably, these operations are performed only on

the following K sentences of a story (i.e., not

including the leading context [the beginning]).

For simplicity, we denote the true story set and

three manually constructed fake story sets with

D1, D2, D3, and D4 respectively, as illustrated in

Figure 2.
Our main finding is that training a language

model to distinguish the reasonable stories from

those with disordered logic, unrelated topics,

or repeated plots is helpful to generate more

reasonable stories in terms of logic and coherence.

We add an additional classification layer at the

last layer of the transformer language model in

a multi-task setting. The classifier takes as input

the hidden states of the last transformer block and
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Figure 3: Multi-task learning diagram. D1 is the true

story dataset, while D2,D3, and D4 are the auto-

constructed fake stories transformed from D1. Note

that the language modeling loss is optimized only on

the true stories, but the classification loss on both true

and fake ones.

computes a score through a softmax layer over

D1, D2, D3, and D4, formally as follows:

P (ls|s) = softmax(
1

|s|

|s|∑

t=1

HL
t WL + bL), (6)

where s is a true or fake story and contains

|s| tokens, HL
t is the hidden state of the L-th

block layer (i.e., the last layer) of the transformer

language model when encoding the story, ls
is predicted to indicate which dataset (Di) the

story (s) belongs to, and WL and bL are the

trainable parameters of the additional classifier.

As illustrated in Figure 3, the loss function LST

of the full model is computed as follows:

LST = LLM + λLCLS , (7)

LLM = −

|s|∑

t=1

logP (st|s<t), s ∈ D1, (8)

LCLS = − logP (ls = l̃s|s), s ∈ D1, D2, D3, D4,
(9)

where s is a story containing |s| tokens, st is the

t-th token of s,LLM is the language modeling loss,

LCLS is the classification loss, and l̃s indicates the

correct Di which the story s is sampled from. λ is

an adjustable scale factor.

4 Experiments

4.1 Dataset

We evaluated our model on the ROCStories corpus

(Mostafazadeh et al., 2016a). The corpus contains

98,162 five-sentence stories for evaluating story

understanding. The original task is designed to

select a correct story ending from two candidates,

Dataset Training Validation Test

ROCStories 88,344 4,908 4,909

ConceptNet 600,000 2,400 2,400

ATOMIC 574,267 70,683 64,456

Table 3: Statistics of datasets and knowledge

bases.

whereas our task is to generate a reasonable story

given the first sentence of a story (i.e.,K, namely,

the number of generated sentences, is four in

our setting). Following Radford et al. (2019), the

stories are tokenized using byte pair encoding

(BPE) with a vocabulary of 50,257 items. The

average number of tokens in X/Y (i.e., the

beginning/the following K sentences in a story)

is 13.39/50.00 with BPE, while the model uses

pretrained positional embeddings with a maximal

sequence length of 1024 tokens.

As for the knowledge bases, we used the 605k

version of ConceptNet. The second KB we used

contains 709k records from the 877k tuples

of ATOMIC after transformation and deduplica-

tion. We randomly selected stories and knowledge

sentences for training/validation/test respectively,

as shown in Table 3. Because the ROCStories data-

set is rather small for generation, we made delex-

ilization by replacing all the names in stories with

special placeholders ‘‘[MALE]’’, ‘‘[FEMALE]’’,

and ‘‘[NEUTRAL]’’ formale, female,and unknown

names, respectively. Additionally ‘‘PersonX’’

and ‘‘PersonY’’ in ATOMIC are replaced by

‘‘[MALE]’’ and ‘‘[FEMALE]’’ as well.

4.2 Baselines

We compared our models with the following

state-of-the-art baselines:

Convolutional Seq2Seq (ConvS2S): It directly

generates a story conditioned upon the beginning

based on a convolutional seq2seq model (Gehring

et al., 2017) with decoder self-attention.

Fusion Convolutional Seq2Seq Model (Fusion):

It generates a story by first pretraining a con-

volutional seq2seq model, and then fixing the

model and providing it to the second clone model

with fusion mechanism (Fan et al., 2018).

Plan&Write: It first generates a sequence of

keywords as planning, conditioned upon the input;

and then generates a story based on the planned

keywords (Yao et al., 2019). During training, one
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keyword is extracted from each sentence with

RAKE algorithm (Rose et al., 2010).

Skeleton-based Model with Reinforcement

Learning (SKRL): The model first generates

a compressed story including the most critical

phrases, called skeleton, and then generates a

story conditioned upon the skeleton. The skeleton

is automatically learned by reinforcement learning

(Xu et al., 2018).

Decomposed Model with Semantic Role

Labeling (DSRL): It first generates a predicate-

argument structure conditioned upon the begin-

ning and then generates a story by surface

realization on top of the structure. The structures

are identified by semantic role labelling (Fan et al.,

2019).

We also made comparisons with GPT-2 in

different settings as follows:

GPT-2 (Scratch): The network architecture is

the same as GPT-2, but the model is only trained

on ROCStories without any pretrained parameters.

GPT-2 (Pretrain): This model directly used

the public checkpoint of pretrained parameters4

for story generation. Following Radford et al.

(2019), stories are generated in a zero-shot setting.

To induce story generation behavior, we condi-

tioned the language model on a context of example

stories, and then sample sentences from the model

after a final prompt of story beginning. We used

the first K generated sentences as the generated

story.

GPT-2 (Fine-tuning): This model is fine-tuned

on the ROCStories corpus from the public check-

point of pretrained parameters.

Furthermore, we also conducted ablation

tests by removing the proposed components

respectively to investigate the influence of each

component with the same network structure.

4.3 Experiment Settings

We set the parameters by following the small

version of Radford et al. (2019)’s design: The

language model is equipped with 12 layers, 768-

dimensional hidden states, and 12 attention heads.

The batch size is 10 during training on the

ROCStories corpus using Adam optimizer with

an initial learning rate of 1e-4. The scale factor λ

4The pretrained model is available at https://

github.com/openai/gpt-2.

is set to 0.05. And we generated stories using a top-

k sampling scheme (Fan et al., 2018) with k = 40
and a softmax temperature of 0.7 (Goodfellow

et al., 2016) to balance the trade-off between

diversity and fluency. We applied these settings

to all the baselines.

4.4 Automatic Evaluation

Evaluation Metrics We adopted the follow-

ing automatic metrics to evaluate the generation

performance in the entire test set. (1) Perplex-

ity (PPL). Smaller perplexity scores indicate bet-

ter fluency in general. (2) BLEU. BLEU (Papineni

et al., 2002) evaluates n-gram overlap between

a generated story and a human-written story.

However, BLEU is usually inappropriate for open-

ended text generation (Fan et al., 2018) because

there are multiple plausible stories for the same

input but only one story is given in the dataset.

And BLEU scores will become extremely low

for large n. We thus experimented with n = 1,2.

(3) Coverage. To access the effect of incorporat-

ing commonsense knowledge, we calculated the

coverage score as the average number of com-

monsense triples matched in each generated story,

which requires both head and tail entities/events

appears in the same story. (4) Repetition. We

measured the redundancy of stories by computing

repetition-4, the percentage of generated stories

that repeat at least one 4-gram (Shao et al., 2019).

(5) Distinct. To measure the generation diversity,

we adopted distinct-4 (Li et al., 2016a), the ratio

of distinct 4-grams to all the generated 4-grams.

Results The results of automatic evaluation are

shown in Table 4. Note that the perplexity scores

of some baselines are not comparable with ours

because they tokenize stories by words rather

than by byte pair encodings as used in GPT-2.

Thus, we did not provide these scores. Our model

outperforms the variants of GPT-2 in terms of

perplexity, and has higher BLEU scores than all

the baselines, indicating better fluency and more

overlaps with the reference stories. Our model

also has higher knowledge coverage and distinct-4

scores, showing that our model can generate more

diverse stories with more abundant knowledge.

However, we observed that pretraining might

lead to more severe repetition by comparing

three variants of GPT-2. Our model effectively

improves the situation but still performs worse

than the baselines with task-specific architectures,
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Models PPL BLEU-1 BLEU-2 Coverage Repetition-4(%) Distinct-4(%)

ConvS2S N/A 0.312 0.132 13.64 22.87 72.78

Fusion N/A 0.322 0.137 12.02 24.23 72.82

Plan&Write N/A 0.308 0.126 13.38 17.06 67.20

SKRL N/A 0.267 0.088 10.82 18.34 69.42

DSRL N/A 0.293 0.117 10.38 15.36 73.08

GPT-2 (Scratch) 11.82 0.311 0.134 10.76 22.87 73.33

GPT-2 (Pretrain) 33.50 0.257 0.085 8.04 39.22 64.99

GPT-2 (Fine-tune) 7.96 0.322 0.141 12.40 29.41 73.85

Ours 7.85 0.326 0.143 18.48 21.93 78.96

w/o Pretrain 11.04 0.316 0.134 16.33 21.52 77.17

w/o Knowledge 7.70 0.314 0.136 13.95 25.08 73.24

w/o Multi-task 8.04 0.324 0.140 17.19 24.40 79.43

Golden Story N/A N/A N/A 19.28 7.64 89.51

Table 4: Automatic evaluation results. The best performance is highlighted in bold. The results of golden

story are in italic. The perplexity scores marked with N/A are not comparable with ours because the

corresponding models tokenize stories by words rather than by byte pair encodings used in GPT-2.

Grammaticality Logicality

Models Win (%) Lose (%) Tie (%) κ Win (%) Lose (%) Tie (%) κ

Ours vs. Fusion 50.0** 27.0 23.0 0.421 57.0** 28.0 15.0 0.455

Ours vs. DSRL 58.0** 24.0 18.0 0.441 58.0** 29.0 12.0 0.475

Ours vs. GPT-2 (Scratch) 54.0** 24.5 21.5 0.385 54.0** 26.0 20.0 0.304

Ours vs. GPT-2 (Pretrain) 52.0** 31.5 16.5 0.483 56.5** 32.5 11.0 0.493

Ours vs. GPT-2 (Fine-tune) 42.0** 28.0 30.0 0.344 51.0** 27.5 21.5 0.371

Ours vs. Ours w/o Pretrain 51.0** 31.0 18.0 0.378 56.0** 28.0 16.0 0.375

Ours vs. Ours w/o Knowledge 46.0** 23.0 21.0 0.289 48.0** 29.0 23.0 0.314

Ours vs. Ours w/o Multi-task 37.5 31.0 31.5 0.313 48.5** 25.5 26.0 0.297

Table 5: Manual evaluation results. The scores indicate the percentages of Win, Lose, or Tie when

our model is compared with a baseline. κ denotes Fleiss’ kappa (all are fair agreement or moderate

agreement). The scores marked with * mean p-value< 0.05 and ** indicates p-value< 0.01 in sign test.

for instance, the planning-based models (e.g.,

DSRL). Fortunately, See et al. (2019) showed that

increasing k for top-k sampling could alleviate

the repetition issue. Additionally compared with

training from scratch, fine-tuned GPT-2 per-

forms much better in fluency (lower perplexity

scores) but suffers from worse repetition, and

only improve slightly in coverage and diversity.

Furthermore, pretrained GPT-2 has the lowest

coverage and distinct-4, which further verifies

our hypothesis that GPT-2 lacks the necessary

knowledge to expand a story plot.

As for the ablation test, our model without

pretraining has significantly higher perplexity,

indicating that pretraining contributes to story

fluency. When removing external knowledge,

coverage and distinct-4 drop while repetition-4

rises substantially, suggesting that post-training

on millions of knowledge sentences can effec-

tively enhance the language model’s ability to gen-

erate stories with more commonsense knowledge,

although we do not explicitly utilize knowledge

during fine-tuning on ROCStories. Removing

multi-task learning also leads to slightly better

distinct-4 but causes much higher repetition-4,

indicating that the classification loss is of great

help for reducing redundancy.

We also provide the performance of our model

on the auxiliary story classification task and

the predicted proportional distribution of the

generated stories by different models on the four

story types with the auxiliary story classifier, as

shown in Table 6. Both metrics are computed

on 1,000 samples from the test set. We can
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Story types D1 D2 D3 D4

F1 score 0.80 0.81 0.88 0.98

Models Proportional Distribution (%)

GPT-2 (Pretrain) 15.83 40.8 39.36 4.01

GPT-2 (Fine-tune) 86.94 9.98 2.93 0.15

Ours 90.12 7.98 1.86 0.04

w/o Knowledge 87.76 9.51 2.67 0.06

w/o Multi-task 88.69 9.07 2.02 0.22

Table 6: Final prediction F1 score of our model

on the auxiliary story classification task in terms

of the four types of story sets respectively, and

the proportional distribution of the predicted

story types of the generated stories by different

models.

Models BR (%) LR (%)

GPT-2 (Pretrain) 59.3 44.8

GPT-2 (Fine-tune) 73.4 69.6

Ours 76.2 72.7

w/o Knowledge 74.9 71.5

w/o Multi-task 75.7 70.4

Table 7: Accuracy of beginning ranking and logic

ranking. Larger scores are better.

observe that it is relatively easier to detect fake

stories with repeated plots (D4) than those with

disordered logic (D2) and unrelated topics (D3).

When using the auxiliary story classifier to

classify the generated stories, pretrained GPT-2

is considered to generate more fake stories, with

only 15.83% stories of type D1, which agrees

with the previous automatic evaluation especially

in terms of repetition. Besides, our model performs

better than baselines, indicating that the external

knowledge and the auxiliary task can encourage

our model to generate more reasonable stories.

Following Fan et al. (2018) and See et al. (2019),

we computed beginning ranking accuracy (BR)

to measure how strongly the output of a model

is coherent with the beginning, and logic ranking

accuracy (LR) to measure the ability of capturing

the causal and temporal dependencies in the

context. For BR, we first sampled 9 negative

beginnings (first sentence) for a true story, and

then calculated the perplexity of the 10 stories.

If the true story has the lowest perplexity by our

model, it is regarded as a correct prediction. As

for LR, since each story in ROCStories consists of

five sentences, we produced four shuffled versions

by switching each pair of adjacent sentences. We

then used our model to score the five stories

with perplexity. A prediction is regarded as

correct if the true story has the lowest score. We

randomly sampled 1,000 human-written stories

from the test set in our evaluation. As shown in

Table 7, the external knowledge and multi-task

learning effectively promote the coherence and

help capture inter-sentence dependencies in the

context.

4.5 Manual Evaluation

To evaluate the fluency and logic of generated

stories, we conducted pairwise comparisons with

two strong baseline models (Fusion and DSRL)

that performed best in automatic evaluation, three

variants of GPT-2, and three ablated models

of ours. For manual evaluation, we randomly

sampled 200 stories from the test set and obtained

1,800 stories from the nine models. For each

pair of stories (one by our model and the other

by a baseline, along with the beginning), three

annotators were hired to give a preference (win,

lose, or tie) in terms of two metrics, respectively.

We resorted to a crowdsourcing service Amazon

Mechanical Turk (AMT) for annotation, and we

adopted majority voting to make final decisions

among the three annotators.

Evaluation Metrics We evaluated the models

from the following two perspectives: grammat-

icality to indicate whether a story is natural and

fluent, and logicality to indicate whether a story

is coherent to the given beginning and reasonable

in terms of causal and temporal dependencies in

the context. Note that the two aspects are inde-

pendently evaluated. We show a screenshot of the

annotation on AMT in Figure 4.

Results The manual evaluation results are

shown in Table 5. To measure the inter-annotator

agreement, we calculated Fleiss’ kappa (Fleiss,

1971) for each pairwise comparison and all the

results show fair agreement (0.2 ≤ κ ≤ 0.4) or

moderate agreement (0.4 ≤ κ ≤ 0.6). We also

conducted a sign test to check the significance

of the differences. The results indicate that our

model performs significantly better than other

baselines in both metrics. More specifically, post-

training on knowledge bases leads to significant

improvements in grammar and logic by offering

more knowledge for expanding the story plots.

And multi-task learning further enhances the
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Figure 4: A screenshot of the annotation on AMT for

manual evaluation.

performance in logic and does not affect fluency

of generated stories.

4.6 Relation Understanding

It is still necessary to further investigate whether

our model really understands the relations between

head and tail entities/events. For example, when

our model learns car accident causes

injury from ConceptNet, it will agree with

car accident leads to injury and

denies car accident is driven by

injury if our model can identify the specific

relation between the head (car accident) and

Comparison Pairs

Models Acc C vs. W T vs. C T vs. W

GPT-2 (Pretrain) 39.28 53.83 44.74 49.87

GPT-2(Fine-tune) 47.48 60.31 39.57 56.01

Ours 67.07 71.91 55.76 79.89

w/o Knowledge 48.07 62.07 42.43 55.64

Table 8: Accuracy (Acc, %) of relation rank-

ing and winning rates (%) of pairwise compar-

isons which require selecting a more reasonable

sentence from two candidates, each from Cor-

rect (C), Wrong (W), or Training (T) templates.

tail (injury). By contrast, the model will not

distinguish the three statements if it only learns

simple relevance (or, co-occurrence) betweencar

accident and injury instead of the specific

causal relation.

Therefore, we constructed two sets of sentences

including correct and wrong knowledge

respectively based on the test set of ConceptNet.

Specifically, the correct sentences are produced

with a synonymous template whose relation

tokens are replaced by synonyms (e.g., causes

can also be translated to leads to), while

the wrong sentences with a random template

whose relation tokens are randomly replaced by

another one. Besides, we use training template

referring to the templates that are used during

post-training on knowledge bases. Then, we

regard the sentence with lower perplexity as more

reasonable. We calculate the accuracy of relation

ranking as the percentage of cases where the

sentence with the wrong template has the highest

perplexity compared with the sentences with

correct and training templates. Furthermore, we

also conducted an automatic pairwise comparison

to distinguish the reasonable sentences from

unreasonable ones based on the perplexity scores

of different models.

As shown in Table 8, the external knowledge

can help our language model distinguish

false sentences from true ones with higher

accuracy than GPT-2 (Random chance scores

33.3%). Furthermore, our model prefers the

correct template compared with the wrong one

(winning rate of 71.91%), and has a close

preference between the training and correct

templates (winning rate of 55.76%). By contrast,

GPT-2 without any external knowledge relies

more on frequency to score relations, and thus can

hardly tell the differences among different types

102



Context: [MALE] was driving around in the snow.

Golden Story: He needed to get home from work. He was driving slowly to avoid accidents. Unfortunately the

roads were too slick and [MALE] lost control. His tires lost traction and he hit a tree.

ConvS2S: He did n’t feel like driving on his way out of the street. He put on his gloves and drove away.

[MALE] made a lot of paperwork and took a taxi to the mechanic. He gave [MALE] a few

thousand dollars to help him get up.

Fusion: He was driving for a bit but was getting icy. [MALE] ended up driving over a cliff . [MALE] was

in the middle of the road. He was out of the snow by the time he got home.

Plan&write: He noticed a man sitting on the side of the road. He went to the nearest gas station. The man was

n’t sure if he could have the money. The man was left a big deal.

SKRL: A drop of battery stacked in the quarter. [MALE] went to check the phone and turned back. He

finally got a car hit off from his way to play again. [MALE] had forgotten his hair.

DSRL: A man came in a cop. He called for an ambulance. He said he might go to a park. He finally showed

up to post what was wrong.

GPT-2 (Scratch): He noticed a large snow pile. He got out and began driving. Then he sped off and went home.

[MALE] was happy that he had saved his money.

GPT-2 (Pretrain): The doctors took him to a hospital. They told him he was going to be fine. He got all the doctors

and nurses. The [MALE] parents said they have no hope.

GPT-2 (Fine-tune): He noticed a snowglobe blocking his road. [NEUTRAL] he backed up to the car and got a snow

shovel. [MALE] used to shovel the snow and shovel the snow. Now the snow is gone but he has

snow boots and snow gloves.

Ours: Suddenly his car broke down on the side of the road. [MALE] had to call a tow truck. The tow

truck came and took [MALE] home. [MALE] was happy he was able to get home.

w/o Pretrain: He tried to stop to see how he could get out of his car. His car started to sputter down on him.

[MALE] pulled over and kept driving . He was able to make up and the car sped away.

w/o Knowledge: He noticed a young lady running off. He stopped and picked her up. When he checked his id it was

lost. [MALE] realized he had forgotten his id.

w/o Multi-task: He noticed a car in the road . He decided to stop . He got out of his car. He drove for half an hour.

Table 9: Generated stories from different models. Bold words denote the key entities/events in the

story. And italic words denote the improper entities/events in terms of logic and coherence in the

context while the underlined words are the proper ones.

of sentences. The results indicate that our model

can capture not only simple relevance between

head and tail entities/events, but also the specific

causal relations.

4.7 Case Study

We presented some generated examples in

Table 9. Our model can generate more natural

and reasonable stories than baselines.

As illustrated, the baselines (from ConvS2s

to DSRL) predict wrong entities and events

that are irrelevant to the leading context (e.g.,

paperwork), thereby leading to bad overall

coherence in the generated stories. Pretrained

GPT-2 without any fine-tuning generates an

entirely irrelevant, unreasonable story (e.g.,

hospital, doctor) due to the lack of knowl-

edge. GPT-2 trained from scratch and fine-

tuned GPT-2 suffer from conflicting logic (e.g.,

first got out and then began driving, and

backed up to the car when driving),

repetition (e.g., shovel the snow), and poor

coherence with some irrelevant keywords (e.g.,

save money). In comparison, the story by our

model is coherent in logic and fluent in grammar.

Furthermore, without pretraining, our model can

still incorporate external knowledge to generate

a story with an understandable main idea but

not always reasonable locally (e.g., pulled

over and kept driving). When removing

knowledge out of our full model, some confusing

entities (e.g., id) will be generated. Additionally,

removing multi-task learning also significantly

affects the logic of generated stories (e.g., first

got out and then drove ) due to the inability

of capturing the causal and temporal dependencies

in context.

In order to verify the ability of our model to

incorporate external knowledge when generating

stories, we showed the utilized commonsense

knowledge of this example in Figure 5. We can

observe that the external knowledge is useful
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Figure 5: An example illustrating how commonsense knowledge facilitates generating reasonable stories. The right

block demonstrates interrelated knowledge for the generated story, and the corresponding transformed sentences

used in the training. The knowledge is retrieved from ConceptNet and ATOMIC according to the keywords

denoted in bold in the generated story. The underlined words represent the keywords in the leading context, while

the italic words represent the relations.

for expanding a reasonable story plot such as

driving, broke down, call, came and

took home, and get home.

5 Error Analysis

Although the proposed model outperforms the

state-of-the-art baselines, it needs to be noted that

there are still many unreasonable stories losing

to other models in manual evaluation. Therefore,

we analyzed error types by manually checking all

lost stories in pairwise comparisons between our

model and two strong baselines including Fusion

and GPT-2 (Fine-tune) to reveal the factors that

affect the performance. The numbers of stories

which lost to our model in logic are 114/102

of 200/200 in total for Fusion/GPT-2 (Fine-tune)

respectively. And there are 111 stories of 400

generated by our model losing to these two

baselines in logic.

We manually annotated four types of error

from the lost stories: repetition (repeating the

same scenes), unrelated entities or events (with

some wrong keywords but a reasonable main

plot), conflicting logic (wrong causal relation or

temporal order), and chaotic scenes (difficult to

understand). The distribution of different error

types is shown in Table 10. We can observe

that unrelated entities/events and conflicting

orders make up most of the errors for all the

models. Compared with Fusion, GPT-2 (Fine-

tune) reduces chaotic scenes effectively but still

suffers from severe repetition. Equipped with

external knowledge and multi-task learning, our

model can further reduce chaotic logic and

meanwhile avoid repetition. However, the analysis

result illustrates that generating a coherent and

reasonable story is challenging.

Error Type Ours Fusion GPT-2 (Fine-tune)

Repetition (%) 1.75 5.50 6.50

Unrelated (%) 11.25 16.00 15.50

Conflicting (%) 13.75 22.00 24.50

Chaotic (%) 1.00 13.50 4.50

Table 10: Distribution of error types for

different models.

Error Type Cases

Repetition [MALE] made up his mind to join the army. He

was determined to get into the army. He had never

been away from home. He was determined to get

into the army. He was sent out to Afghanistan.

Unrelated [MALE] felt he was getting sick. He had to go to

an emergency room. It was his first major surgery.

He had a terrible stomach ache. He was nervous

about a test in an hour.

Conflicting [FEMALE] swept and mopped the floor. She put

her clothes in the washing machine. She was ready

to go to bed. When she was done, she washed the

clothes. She went to bed.

Chaotic [MALE] was on thin ice with his job. He had a

friend over to help him. [MALE] was able to hold

his breath the entire time. he was so cold that he

froze in his tracks. [MALE] finally felt good about

himself.

Table 11: Typical errors by our model. Bold

sentences are the leading context. Italic words

denote the improper entities/events in terms of

logic and coherence in the context.

We also present some typical cases by our

model for each error type in Table 11. These cases

show that our model still does not completely

prevent logical errors including sentence-level

repetition (get into the army), unrelated

entities to the context (test is obviously

unrelated to surgery and stomach ache),

conflicting events (first done but then washed

the clothes), and chaotic logic (due to lack
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of knowledge about on thin ice). These er-

rors also indicate external knowledge, causal

relationships, and temporal dependencies play a

central role in commonsense story generation.

6 Conclusions and Future Work

We present a knowledge-enhanced pretraining

model with multi-task learning for commonsense

story generation. The proposed framework lever-

ages the implicit knowledge from deep pretrained

language models as well as the explicit knowledge

by post-training on external commonsense knowl-

edge bases, which leads to better performance

for commonsense story generation. Besides, in

order to further capture the causal and temporal

dependencies between the sentences in a story,

we employ an auxiliary classification task to dis-

tinguish true and auto-constructed fake stories.

Extensive experiments show that the proposed

method can outperform strong baselines. Further

analysis demonstrates that the generated stories

are more coherent and reasonable thanks to the

use of commonsense knowledge and multi-task

learning.

As future work, it would be very interesting

to make generative pretraining models have

commonsense knowledge without any fine-

tuning, namely, integrating the knowledge at the

pretraining stage.
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