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Abstract

For many NLP applications, such as question

answering and summarization, the goal is to

select the best solution from a large space of

candidates to meet a particular user’s needs.

To address the lack of user or task-specific

training data, we propose an interactive text

ranking approach that actively selects pairs of

candidates, from which the user selects the

best. Unlike previous strategies, which attempt

to learn a ranking across the whole candidate

space, our method uses Bayesian optimization

to focus the user’s labeling effort on high

quality candidates and integrate prior knowl-

edge to cope better with small data scenarios.

We apply our method to community question

answering (cQA) and extractive multidocu-

ment summarization, finding that it significantly

outperforms existing interactive approaches.

We also show that the ranking function learned

by our method is an effective reward func-

tion for reinforcement learning, which im-

proves the state of the art for interactive

summarization.

1 Introduction

Many text ranking tasks are highly specific to an

individual user’s topic of interest, which presents

a challenge for NLP systems that have not been

trained to solve that user’s problem. Consider

ranking summaries or answers to non-factoid

questions: A good solution requires understanding

the topic and the user’s information needs (Liu and

Agichtein, 2008; López et al., 1999). We address

this by proposing an interactive text ranking

approach that efficiently gathers user feedback

and combines it with predictions from pretrained,

generic models.

To minimize the amount of effort the user must

expend to train a ranker, we learn from pairwise

preference labels, in which the user compares two

candidates and labels the best one. Pairwise pref-

erence labels can often be provided faster than

ratings or class labels (Yang and Chen, 2011;

Kingsley and Brown, 2010; Kendall, 1948), can

be used to rank candidates using learning-to-rank

(Joachims, 2002), preference learning (Thurstone,

1927), or best–worst scaling (Flynn and Marley,

2014), or to train a reinforcement learning (RL)

agent to find the optimal solution (Wirth et al.,

2017).

To reduce the number of labels a user must

provide, a common solution is active learning

(AL). AL learns a model by iteratively acquiring

labels: At each iteration, it trains a model on the

labels collected so far, then uses an acquisition

function to quantify the value of querying the user

about a particular pair of candidates. The system

then chooses the pairs with the highest values, and

instructs the user to label them. The acquisition

function implements one of many different strat-

egies to minimize the number of interaction

rounds, such as reducing uncertainty (Settles,

2012) by choosing informative labels that help

learn the model more quickly.

Many active learning strategies, such as the

pairwise preference learning method of Gao et al.

(2018), aim to learn a good ranking model for all

candidates, for example, by querying the annotator

about candidates whose rank is most uncertain.

However, we often need to find and rank only a

small set of good candidates to present to the user.

For instance, in question answering, irrelevant

answers should not be shown to the user, so their

precise ordering is unimportant and users should

not waste time ranking them. Therefore, by reducing
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uncertainty for all candidates, uncertainty-based

AL strategies may waste labels on sorting poor

candidates.

Here, we propose an interactive method for

ranking texts that replaces the standard uncertainty-

based acquisition functions with acquisition func-

tions for Bayesian optimization (BO) (Močkus,

1975; Brochu et al., 2010). In general, BO aims

to find the maximum of a function while mini-

mizing the number of queries to an oracle. Here,

we use BO to maximize a ranking function that

maps text documents to scores, treating the user

as a noisy oracle. Our BO active learning strategy

minimizes the number of labels needed to find the

best candidate, in contrast to uncertainty-based

strategies that attempt to learn the entire ranking

function. This makes BO better suited to tasks

such as question answering, summarization, or

translation, where the aim is to find the best can-

didate and those with low quality can simply be

disregarded rather than ranked precisely. In this

paper, we define two BO acquisition functions for

interactive text ranking.

While our approach is designed to adapt a model

to a highly specialized task, generic models can

provide hints to help us avoid low-quality candi-

dates. Therefore, we learn the ranking function

itself using a Bayesian approach, which integrates

prior predictions from a generic model that is

not tailored to the user. Previous interactive text

ranking methods either do not exploit prior inform-

ation (Baldridge and Osborne, 2004; P.V.S and

Meyer, 2017; Lin and Parikh, 2017; Siddhant

and Lipton, 2018), combine heuristics with user

feedback after active learning is complete (Gao

et al., 2018), or require expensive re-training of

a non-Bayesian method (Peris and Casacuberta,

2018). Here, we show how BO can use prior in-

formation to expedite interactive text ranking.

The interactive learning process is shown in

Algorithm 1 and examples of our system outputs

are shown in Figures 1 and 2.

Our contributions are (1) a Bayesian optimiza-

tion methodology for interactive text ranking that

integrates prior predictions with user feedback, (2)

acquisition functions for Bayesian optimization

with pairwise labels, and (3) empirical evaluations

on community question answering (cQA) and

extractive multidocument summarization, which

show that our method brings substantial improve-

ments in ranking and summarization performance

Input: candidate texts x with feature vectors

φ(x)
1 Initialize ranking model m;

2 Set the training data D = ∅;

while |D| < max interactions do

3 For each pair of texts (xa, xb) in x,

compute

v = acquisition(φ(xa), φ(xb),D,m);
4 Set P i to be the set of batch size pairs

with the highest values of v;

5 Obtain labels yi from user for pairs P i ;

6 Add yi and P i to D ;

7 Train model m on the training set D ;

end

Output: Return the trained model m and/or

its final ranked list of candidate

texts in x.

Algorithm 1: Interactive text ranking process

with preference learning.

Figure 1: Example from the Stack Exchange Cooking

topic. Candidate answer A1 selected without user

interaction by COALA (Rücklé et al., 2019); A2

chosen by our system (GPPL with IMP) after 10 user

interaction. A2 answers the question (boldfaced texts)

but A1 fails.

(e.g., for cQA, an average 25% increase in answer

selection accuracy over the next-best method with

10 rounds of user interaction). We release the

complete experimental software for future work.1

1https://github.com/UKPLab/tacl2020

-interactive-ranking.
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Figure 2: Example summaries for DUC’04 produced by RL (see Section 5.4) with a reward function learnt from

100 user interactions using (a) the BT, UNC method of Gao et al. (2018) and (b) our GPPL, IMP method. (c) is

a model summary written by an expert. Each color indicates a particular news event or topic, showing where it

occurs in each summary. Compared to (a), summary (b) covers more of the events discussed in the reference, (c).

2 Related Work

Interactive Learning in NLP. Previous work

has applied active learning to tasks involving

ranking or optimising generated text, including

summarization (P.V.S and Meyer, 2017), visual

question answering (Lin and Parikh, 2017), and

translation (Peris and Casacuberta, 2018). For

summarization, Sokolov et al. (2016), Lawrence

and Riezler (2018) and Singh et al. (2019),

train reinforcement learners by querying the user

directly for rewards, which requires in the order

of 105 interactions. Gao et al. (2018) dramatically

reduce the number of user interactions to the order

of to 102 by using active learning to learn a reward

function for RL, an approach proposed by Lopes

et al. (2009). These previous works use uncertainty

sampling strategies, which query the user about

the candidates with the most uncertain rankings

to try to learn all candidates’ rankings with a

high degree of confidence. We instead propose

to find good candidates using an optimization

strategy. Siddhant and Lipton (2018) carried out a

large empirical study of uncertainty sampling for

sentence classification, semantic role labeling and

named entity recognition, finding that exploiting

model uncertainty estimates provided by Bayesian

neural networks improved performance. Our

approach also exploits Bayesian uncertainty

estimates.

BO for Preference Learning. Bayesian ap-

proaches using Gaussian processes (GPs) have

previously been used to reduce errors in NLP tasks

involving sparse or noisy labels (Cohn and Specia,

2013; Beck et al., 2014), making them well-suited

to learning from user feedback. Gaussian process

preference learning (GPPL) (Chu and Ghahramani

2005) enables GP inference with pairwise prefer-

ence labels. Simpson and Gurevych (2018) intro-

duced scalable inference for GPPL using stochastic

variational inference (SVI) (Hoffman et al., 2013),

which outperformed SVM and LSTM methods

at ranking arguments by convincingness. They

included a study on active learning with pairwise

labels, but tested GPPL only with uncertainty

sampling, not BO. Here, we adapt GPPL to

summarization and cQA, show how to integrate

prior predictions, and propose a BO framework

for GPPL that facilitates interactive text ranking.

Brochu et al. (2008) proposed a BO approach

for pairwise comparisons but applied the approach

only to a material design use case with a very

simple feature space. González et al. (2017)

proposed alternative BO strategies for pairwise

preferences, but their approach requires expensive

sampling to estimate the utilities, which is too slow

for an interactive setting. Yang and Klabjan (2018)

also propose BO with pairwise preferences, but

again, inference is expensive, the method is only

tested with fewer than ten features, and it uses an
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inferior probability of improvement strategy (see

Snoek et al., 2012). Our GPPL-based framework

permits much faster inference even when the input

vector has more than 200 features, and hence

allows rapid selection of new pairs when querying

users.

Ruder and Plank (2017) use BO to select

training data for transfer learning in NLP tasks

such as sentiment analysis, POS tagging, and

parsing. However, unlike our interactive text

ranking approach, their work does not involve

pairwise comparisons and is not interactive, as

the optimizer learns by training and evaluating a

model on the selected data. In summary, previous

work has not yet devised BO strategies for GPPL

or suitable alternatives for interactive text ranking.

3 Background on Preference Learning

Popular preference learning models assume that

users choose a candidate from a pair with prob-

ability p, where p is a function of the candidates’

utilities (Thurstone, 1927). Utility is defined as the

value of a candidate to the user, that is, it quantifies

how well that instance meets their needs. When

candidates have similar utilities, the user’s choice

is close to random, while pairs with very different

utilities are labeled consistently. Such models

include the Bradley–Terry model (BT) (Bradley

and Terry, 1952; Luce, 1959; Plackett, 1975), and

the Thurstone–Mosteller model (Thurstone, 1927;

Mosteller, 1951).

BT defines the probability that candidate a is

preferred to candidate b as follows:

p(ya,b)=
(

1+exp
(

wTφ(a)−wTφ(b)
))−1

(1)

where ya,b = a ≻ b is a binary preference label,

φ(a) is the feature vector of a and wT is a

weight parameter that must be learned. To learn

the weights, we treat each pairwise label as two

data points: The first point has input features

x = φ(a)−φ(b) and label y, and the second point

is the reverse pair, with x = φ(b)−φ(a) and label

1−y. Then, we use standard techniques for logistic

regression to find the weights w that minimize the

L2-regularized cross entropy loss. The resulting

linear model can be used to predict labels for any

unseen pairs, or to estimate candidate utilities,

fa = wTφ(a), which can be used for ranking.

Uncertainty (UNC). At each active learning

iteration, the learner requests training labels for

candidates that maximize the acquisition function.

P.V.S and Meyer (2017) proposed an uncertainty

sampling acquisition function for interactive

document summarization, which defines the

uncertainty about a single candidate’s utility, u, as

follows:

u(a|D) =







p(a|D) if p(a|D) ≤ 0.5

1−p(a|D) if p(a|D) > 0.5,
(2)

where p(a|D) = (1 + exp(−fa))
−1 is the

probability that a is a good candidate and w

is the set of BT model weights trained on the

data collected so far, D, which consists of pairs

of candidate texts and pairwise preference labels.

For pairwise labels, Gao et al. (2018) define an

acquisition function, which we refer to here as

UNC, which selects the pair of candidates (a, b)
with the two highest values ofu(a|D) andu(b|D).

UNC is intended to focus labeling effort on

candidates whose utilities are uncertain. If the

learner is uncertain about whether candidate a is

a good candidate, p(a|D) will be close to 0.5,

so a will have a higher chance of being selected.

Unfortunately, it is also possible for p(a|D) to

be close to 0.5 even if a has been labeled many

times if a is a candidate of intermediate utility.

Therefore, when using UNC, labeling effort may

be wasted re-labeling mediocre candidates.

The problem is that BT cannot distinguish

two types of uncertainty. The first is aleatoric

uncertainty due to the inherent unpredictability of

the phenomenon we wish to model (Senge et al.,

2014). For example, when predicting the outcome

of a coin toss, we model the outcome as random.

Similarly, given two equally preferable items, we

assume that the user assigns a preference label

randomly. It does not matter how much training

data we observe: if the items are equally good, we

are uncertain which one the user will choose.

The second type is epistemic uncertainty due

to our lack of knowledge, which can be reduced

by acquiring more training data, as this helps

us to learn the model’s parameters with higher

confidence. BT does not quantify aleatoric and

epistemic uncertainty separately, unlike Bayesian

approaches (Jaynes, 2003), so we may repeatedly

select items with similar utilities that do not

require more labels. To rectify this shortcoming,

we replace BT with a Bayesian model that both

estimates the utility of a candidate and quantifies

the epistemic uncertainty in that estimate.
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Learner BT BT GPPL GPPL GPPL GPPL GPPL

Strategy random UNC random UNPA EIG IMP TP

Considers epistemic uncertainty N Y N Y Y Y Y

Ignores aleatoric uncertainty N N N N Y Y Y

Supports warm-start N N Y Y Y Y Y

Focus on finding best candidate N N N N N Y (greedy) Y (balanced)

Table 1: Characteristics of active preference learning strategies. TP balances finding best candidate with

exploration.

Gaussian Process Preference Learning

Because BT does not quantify epistemic uncer-

tainty in the utilities, we turn to a Bayesian ap-

proach, GPPL. GPPL uses a GP to provide a

nonlinear mapping from document feature vectors

to utilities, and assumes a Thurstone–Mosteller

model for the pairwise preference labels. Whereas

BT simply estimates a scalar value of fa for each

candidate, a, GPPL outputs a posterior distribu-

tion over the utilities, f , of all candidate texts, x:

p(f |φ(x),D) = N (f̂ ,C), (3)

where f̂ is a vector of posterior mean utilities and

C is the posterior covariance matrix of the utilities.

The entries of f̂ are predictions of fa for each

candidate given D, and the diagonal entries of C

represent posterior variance, which can be used

to quantify uncertainty in the predictions. Thus,

GPPL provides a way to separate candidates with

uncertain utility from those with middling utility

but many pairwise labels. In this paper, we infer

the posterior distribution over the utilities using

the scalable SVI method detailed by Simpson and

Gurevych (2020).

4 Interactive Learning with GPPL

We now define four acquisition functions for

GPPL that take advantage of the posterior covari-

ance, C, to account for uncertainty in the utilities.

Table 1 summarises these acquisition functions.

Pairwise Uncertainty (UNPA). Here we pro-

pose a new adaptation of uncertainty sampling to

pairwise labeling with the GPPL model. Rather

than evaluating each candidate individually, as

in UNC, we select the pair whose label is most

uncertain. UNPA selects the pair with label prob-

ability p(ya,b) closest to 0.5, where, for GPPL:

p(ya,b) = Φ

(

f̂a − f̂b√
1 + v

)

, (4)

v = Ca,a +Cb,b − 2Ca,b, (5)

where Φ is the probit likelihood and f̂a is the

posterior mean utility for candidate a. Through

C, this function accounts for correlations between

candidates’ utilities and epistemic uncertainty in

the utilities. However, for two items with similar

expected utilities, f̂a and f̂b, the p(ya,b) is close

to 0.5, that is, it has high aleatoric uncertainty.

Therefore, whereas UNPA will favor candidates

with uncertain utilities, it may still waste labeling

effort on pairs with similar utilities but low

uncertainty.

Expected Information Gain (EIG). We now

define a second acquisition function for active

learning with GPPL, which has previously been

adapted to GPPL by Houlsby et al. (2011) from an

earlier information-theoretic strategy (MacKay,

1992). EIG greedily reduces the epistemic un-

certainty in the GPPL model by choosing pairs

that maximize information gain, which quantifies

the information a pairwise label provides about the

utilities, f . Unlike UNPA, this function avoids

pairs that only have high aleatoric uncertainty.

The information gain for a pairwise label, ya,b,

is the reduction in entropy of the distribution over

the utilities, f , given ya,b. Houlsby et al. (2011)

note that this can be more easily computed if it

is reversed using a method known as Bayesian

active learning by disagreement (BALD), which

computes the reduction in entropy of the label’s

distribution given f . Because we do not know the

value of f , we take the expected information gain

I with respect to f :

I(ya,b,f ;D) = H(ya,b|D)− Ef |D[H(ya,b|f)],
(6)

where H is Shannon entropy. Unlike the related

pure exploration strategy (González et al., 2017),

Equation 6 can be computed in closed form, so

does not need expensive sampling.
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Expected Improvement (IMP). The previous

acquisition functions for AL are uncertainty-

based, and spread labeling effort across all items

whose utilities are uncertain. However, for tasks

such as summarization or cQA, the goal is to

find the best candidates. While it is important to

distinguish between good and optimal candidates,

it is wasted effort to compare candidates that we

are already confident are not the best, even if

their utilities are still uncertain. We propose to

address this using an acquisition function for BO

that estimates the expected improvement (Močkus,

1975) of a candidate, a, over our current estimated

best solution, b, given current pairwise labels, D.

Here, we provide the first closed-form acquisition

function that uses expected improvement for

pairwise preference learning.

We define improvement as the quantity

max{0, fa − fb}, where b is our current best item

and a is our new candidate. Because the values of

fa and fb are uncertain, we compute the expected

improvement as follows. First, we estimate the

posterior distribution over the candidates’ utilities,

N (f̂ ,C), then find the current best utility: f̂b =
maxi{f̂i}. For any candidate a, the difference

fa − fb is Gaussian-distributed as it is a sum

of Gaussians. The probability that this is larger

than zero is given by the cumulative density

function, Φ(z), where z = f̂a−f̂b√
v

. We use this

to derive expected improvement, which results in

the following closed form equation:

Imp(a;D) =
√
vzΦ(z) +

√
vN (z; 0, 1), (7)

This weights the probability of finding a better

solution, Φ(z), by the amount of improvement,√
vz. Both terms account for how close f̂a is to f̂b

through z, as a larger distance causes z to be more

negative, which decreases both the probability

Φ(z) and the density N (z; 0, 1). Expected

improvement also accounts for the uncertainty

in both utilities through the posterior standard

deviation,
√
v, which scales both terms. All

candidates have positive expected improvement,

as there is a non-zero probability that labeling

them will lead to a new best item; otherwise, the

current best candidate remains, and improvement

is zero.

To select pairs of items, the IMP strategy

greedily chooses the current best item and the item

with the greatest expected improvement. Through

the consideration of posterior uncertainty, IMP

trades off exploration of unknown candidates with

exploitation of promising candidates. In contrast,

uncertainty-based strategies are pure exploration.

Thompson Sampling with Pairwise Labels

(TP). Expected improvement is known to over-

exploit in some cases (Qin et al., 2017): It chooses

where to sample based on the current distribution,

so if this distribution underestimates the mean and

variance of the optimum, it may never be sampled.

To increase exploration, we propose a strategy

that uses Thompson sampling (Thompson,

1933). Unlike IMP, which is deterministic, TP

introduces random exploration through sampling.

TP is similar to dueling-Thompson sampling for

continuous input domains (González et al., 2017),

but uses an information gain step (described

below) and samples from a pool of discrete

candidates.

We select an item using Thompson sampling

as follows: First draw a sample of candidate

utilities from their posterior distribution, f thom ∼
N (f̂ ,C), then choose the item b with the highest

score in the sample. This sampling step depends

on a Bayesian approach to provide a posterior

distribution from which to sample. Sampling

means that while candidates with high expected

utilities have higher values of fthom in most

samples, other candidates may also have the

highest score in some samples. As the number of

samples→ ∞, the number of times each candidate

is chosen is proportional to the probability that it

is the best candidate.

To create a pair of items for preference learning,

the TP strategy computes the expected information

gain for all pairs that include candidate b, and

chooses the pair with the maximum. This strategy

is less greedy than IMP as it allows more learning

about uncertain items through both the Thompson

sampling step and the information gain step.

However, compared to EIG, the first step focuses

effort more on items with potentially high scores.

Using Priors to Address Cold Start. In

previous work on summarization (Gao et al.,

2018), the BT model was trained from a cold start,

namely, with no prior knowledge or pretraining.

Then, after active learning was complete, the

predictions from the trained model were combined

with prior predictions based on heuristics by

taking an average of the normalized scores from

both methods. We propose to use such prior
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predictions to determine an informative prior for

GPPL, enabling the active learner to make more

informed choices of candidates to label at the start

of the active learning process, thereby alleviating

the cold-start problem.

We integrate pre-computed predictions as

follows. Given a set of prior predictions, µ,

from a heuristic or pre-trained model, we set the

prior mean of the Gaussian process to µ before

collecting any data, so that the candidate utilities

have the prior p(f |φ(x)) = N (µ,K), where K

is a hyper-parameter. Given this setup, AL can

now take the prior predictions into account when

choosing pairs of candidates for labeling.

5 Experiments

We perform experiments on three tasks to test our

interactive text ranking approach: (1) Community

question answering (cQA)–identify the best an-

swer to a given question from a pool of candidate

answers; (2) Rating extractive multidocument

summaries according to a user’s preferences; (3)

Generating an extractive multidocument summary

by training a reinforcement learner with the rank-

ing function from 2 as a reward function. Using

interactive learning to learn the reward function

rather than the policy reduces the number of user

interactions from many thousands to 100 or less.

These tasks involve highly specialized questions

or topics where generic models could be improved

with user feedback. For the first two tasks, we

simulate the interactive process in Algorithm 1.

The final task uses the results of this process.

Datasets. Both the cQA and multidocument

summarization datasets were chosen because the

answers and candidate summaries in these datasets

are multisentence documents that take longer for

users to read compared to tasks such as factoid

question-answering. We expect our methods to

have the greatest impact in this type of long-

answer scenario by minimizing user interaction

time.

For cQA, we use datasets consisting of

questions posted on StackExchange in the

communities Apple, Cooking, and Travel, along

with their accepted answers and candidate answers

taken from related questions (Rücklé et al., 2019).

Each accepted answer was marked by the user who

posted the question, so reflects that user’s own

opinion. Dataset statistics are shown in Table 2.

cQA Topics #questions #accepted #candidate

answers answers

Apple 1,250 1,250 125,000

Cooking 792 792 79,200

Travel 766 766 76,600

Summarization #topics #model #docs

Datasets summaries

DUC 2001 30 90 300

DUC 2002 59 177 567

DUC 2004 50 150 500

Table 2: Dataset statistics for summarization and

cQA.

For summarization, we use the DUC datasets,2

which contain model summaries written by experts

for collections of documents related to a narrow

topic. Each topic has three model summaries, each

written by a different expert and therefore re-

flecting different opinions about what constitutes

a good summary. Compared with single-document

summarization, the challenging multidocument

case is an ideal testbed for interactive approaches,

because the diversity of themes within a collection

of documents makes it difficult to identify a single,

concise summary suitable for all users.

Priors and Input Vectors. We use our

interactive approach to improve a set of prior

predictions provided by a pretrained method. For

cQA, we first choose the previous state-of-the-art

for long answer selection, COALA (Rücklé et al.,

2019),which estimates the relevance of answers to

a question by extracting aspects (e.g., n-grams or

syntactic structures) from the question and answer

texts using CNNs, then matching and aggregating

the aspects. For each topic, we train an instance of

COALA on the training split given by Rücklé et al.

(2019), then run the interactive process on the test

set, that is, the dataset in Table 2, to simulate

a user interactively refining the answers selected

for their question. As inputs for the BT and GPPL

models, we use the COALA feature vectors: For

each question, COALA extracts aspects from

the question and its candidate answers; each

dimension of an answer’s 50-dimensional feature

vector encodes how well the answer covers one of

the extracted aspects.

2http://duc.nist.gov/.
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Next we apply our interactive approach to refine

predictions from the current state of the art (Xu

et al., 2019), which we refer to as BERT-cQA. This

method places two dense layers with 100 and 10

hidden units on top of BERT (Devlin et al., 2019).

As inputs to BERT, we concatenate the question

and candidate answer and pad sequences to 512

tokens (4% QA pairs are over-length and are

truncated). The whole model is fine-tuned on the

StackExchange training sets, the same as COALA.

In our simulations, we use the fine-tuned, final-

layer [CLS] embeddings with 768 dimensions as

inputs to BT and GPPL for each question-answer

pair.

As prior predictions for summary ratings we

first evaluate REAPER, a heuristic evaluation

function described by Ryang and Abekawa (2012).

We obtain bigram+ feature vectors for candi-

date summaries by augmenting bag-of-bigram

embeddings with additional features proposed

by Rioux et al. (2014). The first 200 dimen-

sions of the feature vector have binary values

to indicate the presence of each of the 200

most common bigrams in each topic after tok-

enizing, stemming and applying a stop-list. The

last 5 dimensions contain the following: the frac-

tion of the 200 most common bigrams that are

present in the document (coverage ratio); the frac-

tion of the 200 most common bigrams that occur

more than once in the document (redundancy

ratio); document length divided by 100 (length

ratio); the sum over all extracted sentences of the

reciprocal of the position of the extracted sentence

in its source document (extracted sentence posi-

tion feature); a single bit to indicate if document

length exceeds the length limit of 100 tokens. The

same features are used for both tasks (2) learning

summary ratings and (3) reinforcement learning.

We also test prior predictions from a state-of-

the-art summary scoring method, SUPERT (Gao

et al., 2020), which uses a variant of BERT that

has been fine-tuned on news articles to obtain

1024-dimensional contextualized embeddings of a

summary. To score a summary, SUPERT extracts

a pseudo-reference summary from the source

documents, then compares its embedding with that

of the test summary. With the SUPERT priors we

compare bigram+ feature vectors and the SUPERT

embeddings as input to BT and GPPL for task (2).

Interactive Methods. As baselines, we test BT

as our preference learner with random selection

and the UNC active learning strategy, and GPPL

as the learner with random selection. We also

combine GPPL with the acquisition functions

described in Section 4, UNPA, EIG, IMP, and TP.

For random sampling, we repeat each experiment

ten times.

Simulated Users. In tasks (1) and (2), we

simulate a user’s preferences with a noisy

oracle based on the user-response models of

Viappiani and Boutilier (2010). Given gold

standard scores for two documents, ga and gb, the

noisy oracle prefers document a with probability

p(ya,b|ga, gb) = (1 + exp(gb−ga
t

))−1, where t

is a parameter that controls the noise level.

Both datasets contain model summaries or gold

answers, but no gold standard scores. We therefore

estimate gold scores by computing a ROUGE

score of the candidate summary or answer, a,

against the model summary or gold answer,m. For

cQA, we take the ROUGE-L score as a gold score,

as it is a well-established metric for evaluating

question answering systems (e.g., Nguyen et al.,

2016; Bauer et al., 2018; Indurthi et al., 2018) and

set t = 0.3, which results in annotation accuracy

of 83% (the fraction of times the pairwise label

corresponds to the gold ranking).

For summarization, we use t = 1, which gives

noisier annotations with 66% accuracy, reflecting

the greater difficulty of choosing between two

summaries. This corresponds to accuracies of

annotators found by Gao et al. (2019) when

comparing summaries from the same datasets.

As gold for summarization, we combine ROUGE

scores using the following formula, previously

found to correlate well with human preferences

on a comparable summarization task (P.V.S and

Meyer, 2017):

ga ≈ Rcomb =
ROUGE1(a,m)

0.47
+

ROUGE2(a,m)

0.22
+

ROUGESU4(a,m)

0.18
. (8)

Following Gao et al. (2019), we normalize the

gold scores ga to the range [0, 10].

5.1 Warm-start Using Prior Information

We compare two approaches to integrate the prior

predictions of utilities computed before acquiring

user feedback. As a baseline, sum applies a

weighted mean to combine the prior predictions

with posterior predictions learned using GPPL or

BT. Based on preliminary experiments, we weight
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Strategy Prior Datasets

Accuracy for cQA with COALA priors

#interactions=10 Apple Cooking Travel

random sum .245 .341 .393

random prior .352 .489 .556

UNPA sum .293 .451 .423

UNPA prior .290 .392 .476

IMP sum .373 .469 .466

IMP prior .615 .750 .784

NDCG@1% for summarization with REAPER priors

#interactions=20 DUC’01 DUC’02 DUC’04

random sum .595 .623 .652

random prior .562 .590 .600

UNPA sum .590 .628 .650

UNPA prior .592 .635 .648

IMP sum .618 .648 .683

IMP prior .654 .694 .702

Table 3: The effect of integrating pre-computed

predictions as Bayesian priors vs. taking a

weighted mean of pre-computed and posterior

predictions.

the prior and posterior predictions equally. Prior

sets the prior mean of GPPL to the value of

the prior predictions, as described in Section 4.

Our hypothesis is that prior will provide more

information at the start of the interactive learning

process and help the learner to select more

informative pairs.
Table 3 presents results of a comparison on a

subset of strategies, showing that prior results in

higher performance in many cases. Based on the

results of these experiments, we apply prior to all

further uses of GPPL.

5.2 Community Question Answering

We hypothesize that the prior ranking given by

COALA can be improved by incorporating a small

amount of user feedback for each question. Our

interactive process aims to find the best answer to

a specific question, rather than learning a model

that transfers to new questions, hence preferences

are sampled for questions in the test splits.

To evaluate the top-ranked answers from each

method, we compute accuracy as the fraction of

top answers that match the gold answers. We

also compare the five highest-ranked solutions

to the gold answers using normalized discounted

cumulative gain (NDCG@5) with ROUGE-L as

the relevance score. NDCG@k evaluates the rele-

vance of the top k ranked items, putting more

Learner Strategy Apple Cooking Travel

acc N5 acc N5 acc N5

COALA .318 .631 .478 .696 .533 .717

COALA prior, #interactions=10

BT random .272 .589 .368 .614 .410 .644

BT UNC .233 .573 .308 .597 .347 .619

GPPL random .352 .642 .489 .699 .556 .722

GPPL UNPA .290 .591 .392 .631 .476 .656

GPPL EIG .302 .628 .372 .671 .469 .692

GPPL TP .274 .592 .353 .636 .414 .675

GPPL IMP .615 .714 .750 .753 .784 .774

BERT-cQA .401 .580 .503 .625 .620 .689

BERT-cQA prior, #interactions=10

BT random .170 .626 .228 .637 .315 .676

BT UNC .129 .580 .181 .583 .326 .618

GPPL random .407 .593 .510 .594 .631 .657

GPPL EIG .080 .559 .140 .552 .095 .526

GPPL IMP .614 .715 .722 .731 .792 .744

Table 4: Interactive text ranking for cQA.

N5=NDCG@5, acc=accuracy.

weight on higher-ranked items (Järvelin and

Kekäläinen, 2002).

The results in the top half of Table 4 show that

with only 10 user interactions, most methods are

unable to improve performance over pre-trained

COALA. UNC, UNPA, EIG, and TP are out-

performed by random selection and IMP (p ≪ .01
using a two-tailed Wilcoxon signed-rank test).

To see whether the methods improve given

more feedback, Figure 3 plots NDCG@5 against

number of interactions. Whereas IMP perfor-

mance increases substantially, random selection

improves only very slowly. Early interactions

cause a performance drop with UNPA, EIG, and

TP. This is unlikely to be caused by noise in the

cQA data, because preference labels are gener-

ated using ROUGE-L scores computed against

the gold answer. The drop is because uncertainty-

based methods initially sample many low-quality

candidates with high uncertainty. This increases

the predicted utility of the preferred candidate in

each pair, sometimes exceeding better candidates

that were ranked higher by the prior, pushing

them out of the top five. Performance rises once

the uncertainty of mediocre candidates has been

reduced and stronger candidates are selected. Both

BT methods start from a worse initial position but

improve consistently, as their initial samples are

not biased by the prior predictions, although UNC

remains worse than random.
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Figure 3: NDCG@5 with increasing interactions,

COALA prior, mean across 3 cQA topics.

The bottom half of Table 4 and Figure 4 show

results for key methods with BERT-cQA priors

and embeddings. The initial predictions by BERT-

cQA have higher accuracy than COALA but

lower NDCG@5. BERT-based models better

account for question and answer semantics, lead-

ing to higher accuracy, but place less emphasis on

lexical similarity, which reduces the ROUGE-L

scores of top-ranked answers and consequently,

NDCG@5. While IMP remains the most success-

ful method, the end result is not a clear improve-

ment over COALA, with a collapse in accuracy for

the uncertainty-based EIG and both BT methods.

As with COALA, these uncertainty-based meth-

ods focus initially on middling candidates, but due

to the sparsity of the data with high-dimensional

BERT-cQA embeddings, more samples are

required to reduce their uncertainty before these

methods start to sample strong candidates. The

flexibility of the GP model means that it is

particularly affected by data sparsity, hence the

poor performance of EIG.

5.3 Interactive Summary Rating

We apply interactive learning to refine a ranking

over candidate summaries given prior information.

For each topic, we create 10,000 candidate

summaries with fewer than 100 words each,

which are constructed by uniformly selecting

sentences at random from the input documents.

To determine whether some strategies benefit

from more samples, we test each active learning

method with between 10 and 100 user interactions

with noisy simulated users. The method is fast

Figure 4: NDCG@5 with increasing number of

interactions. BERT-cQA prior. Mean across 3 cQA

topics.

enough for interactive scenarios: on a standard

Intel desktop workstation with a quad-core CPU

and no GPU, updates to GPPL at each iteration

require around one second.

We evaluate the quality of the 100 highest-

ranked summaries using NDCG@1%, and

compute the Pearson correlation, r, between

the predicted utilities for all candidates and

the combined ROUGE scores (Eq. (8)). Unlike

NDCG@1%, r does not focus on higher-ranked

candidates but considers the utilities for all

candidates. Hence we do not expect that IMP or

TP, which optimize the highest-ranked candidates,

will have the highest r.

With REAPER priors, bigram+ features and 20

interactions, the top part of Table 5 shows a clear

advantage to IMP in terms of NDCG@1%, which

outperforms the previous state of the art, BT-UNC

(significant with p ≪ .01 on all datasets). In terms

of r, IMP is out-performed by TP (significant

with p ≪ .01 on all datasets), which appears

more balanced between finding the best candidate

and learning the ratings for all candidates. UNPA

improves slightly over random sampling for both

metrics, while EIG is stronger due to a better focus

on epistemic uncertainty. Unlike IMP, TP does not

always outperform EIG on NDCG@1%.

Figure 5 shows the progress of each method

with increasing numbers of interactions on

DUC’01. The slow progress of the BT baselines

is clear, illustrating the advantage the Bayesian

methods have as a basis for active learning

by incorporating uncertainty estimates and prior

predictions.
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Learner Strategy DUC’01 DUC’02 DUC’04

N1 r N1 r N1 r

REAPER .539 .262 .573 .278 .597 .322

REAPER prior, bigram+ features, #interactions=20

BT rand. .596 .335 .626 .358 .659 .408

BT UNC .609 .340 .641 .365 .674 .415

GPPL rand. .558 .248 .590 .266 .603 .289

GPPL UNPA .592 .307 .635 .370 .648 .397

GPPL EIG .634 .327 .665 .383 .675 .404

GPPL TP .629 .378 .665 .403 .690 .453

GPPL IMP .654 .303 .694 .345 .702 .364

SUPERT .602 .382 .624 .400 .657 .438

SUPERT prior, bigram+ features, #interactions=20

BT rand. .633 .415 .654 .438 .684 .483

BT UNC .550 .277 .561 .287 .588 .334

GPPL rand. .601 .351 .630 .377 .657 .419

GPPL EIG .633 .365 .662 .399 .671 .435

GPPL TP .649 .417 .668 .437 .698 .479

GPPL IMP .653 .322 .696 .374 .717 .407

SUPERT prior, SUPERT embeddings, #interact.=20

GPPL IMP .624 .297 .630 .284 .653 .339

SUPERT prior, bigram+ features, #interactions=100

GPPL IMP .668 .308 .788 .466 .815 .521

SUPERT prior, SUPERT embeddings, #interact.=100

BT rand. .661 .466 .696 .504 .727 .543

BT UNC .634 .420 .656 .453 .678 .495

GPPL rand. .594 .354 .617 .387 .643 .415

GPPL EIG .611 .372 .647 .415 .682 .471

GPPL IMP .728 .376 .752 .407 .769 .447

Table 5: Interactive Summary Rating. N1=

NDCG@1%, r=Pearson’s correlation coefficient.

Bold indicates best result for each prior and number

of interactions.

Figure 5: DUC’01, REAPER prior, bigram+ features,

changes in NDCG@1% with increasing interactions.

Figure 6: DUC’01, SUPERT prior, changes in

NDCG@1% with increasing number of interactions.

The lower part of Table 5 and Figure 6

confirm the superior NDCG@1% scores of IMP

with the stronger SUPERT priors. However,

while pretrained SUPERT outperforms REAPER,

the results after 20 rounds of interaction with

bigram+ features are almost identical, suggesting

that user feedback helps mitigate the weaker

pretrained model. With only 20 interactions,

bigram+ features work better than SUPERT

embeddings as input to our interactive learners,

even with the best-performing method, IMP,

since there are fewer features and the model

can cope better with limited labeled data. With

100 interactions, SUPERT embeddings provide

superior performance as there are sufficient labels

to leverage the richer input embeddings.

5.4 RL for Summarization

We now investigate whether our approach also

improves performance when the ranking function

is used to provide rewards for a reinforcement

learner. Our hypothesis is that it does not matter

whether the rewards assigned to bad candidates

are correct, as long as they are distinguished from

good candidates, as this will prevent the policy

from choosing bad candidates to present to the

user.

To test the hypothesis, we simulate a flat-

bottomed reward function for summarization on

DUC’01: First, for each topic, we set the rewards

for the 10,000 sampled summaries (see § 5.3) to

the gold standard, Rcomb (Eq. (8), normalized to

[0, 10]). Then, we set the rewards for a varying
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Figure 7: Performance of RL on DUC’01 when the

rewards for the bottom x% summaries are flattened to

one. Dashed line=ROUGE-2, solid line=ROUGE-L.

percentage of the lowest-ranked summaries to

1.0 (the flat bottom). We train the reinforcement

learner on the flat-bottomed rewards and plot

ROUGE scores for the proposed summaries in

Figure 7. The performance of the learner actually

increases as candidate values are flattened until

around 90% of the summaries have the same

value. This supports our hypothesis that the

user’s labeling effort should be spent on the top

candidates.

We now use the ranking functions learned in

the previous summary rating task as rewards for

reinforcement learning. As examples, we take

the rankers learned using SUPERT priors with

bigram+ features and 20 interactions and with

SUPERT embeddings and 100 interactions. We

replicate the RL setup of Gao et al. (2018) for

interactive multidocument summarization, which

previously achieved state-of-the-art performance

using the BT learner with UNC. The RL agent

models the summarization process as follows:

there is a current state, represented by the current

draft summary; the agent uses a policy to select

a sentence to be concatenated to the current

draft summary or to terminate the summary

construction. During the learning process, the

agent receives a reward after terminating, which

it uses to update its policy to maximize these

rewards. The model is trained for 5,000 episodes

(i.e., generating 5,000 summaries and receiving

their rewards), then the policy is used to produce a

summary. We compare the produced summary to a

human-generated model summary using ROUGE.

By improving the reward function, we hypothesize

that the quality of the resulting summary will also

improve.

Table 6 shows that the best-performing method

from the previous tasks, IMP, again produces

a strong improvement over the previous state

of the art, BT with UNC (significant with

p ≪ 0.01 in all cases), as well as GPPL with

EIG. With 20 interactions and bigram+ features,

EIG also outperforms BT-UNC, indicating the

benefits of the Bayesian approach, but this is less

clear with SUPERT embeddings, where the high-

dimensional embedding space may lead to sparsity

problems for the GP. The standard deviation in

performance over multiple runs of RL is <0.004

for all metrics, datasets, and methods, suggesting

that the advantage gained by using IMP is robust

to randomness in the RL algorithm. The results

confirm that gains in NDCG@1% made by BO

over uncertainty-based strategies when learning

the utilities translate to better summaries produced

by reinforcement learning in a downstream task.

5.5 Limitations of User Simulations

By testing our interactive process with simulated

users, we were able to compare numerous me-

thods with a fixed labeling error rate. The user

labels were simulated using data from real indi-

viduals: the gold answers for cQA were chosen

by the user who posed the question, and the three

model summaries for each topic in the DUC data-

sets were each authored by a different individual.

While this work shows the promize of BO, further

work is needed to test specific NLP applications

with real end users. Our experiments illustrate

plausible applications where users compare texts

of up to 100 words and gain substantial perfor-

mance advantages. Other applications require a

broader study of reading and labeling time versus

performance benefits and user satisfaction. It

may also be possible to select chunks of longer

documents for the user to compare, rather than

reading whole documents.

Another dimension to consider is that real users

may make systematic, rather than random errors.

However, in the applications we foresee, it is

accepted that their preference labels will often

diverge from any established gold standard, as

users adapt models to their own information needs.

Future work may therefore apply interactive

approaches to more subjective NLP tasks, such as

adapting a summary to more personal information

needs.
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#inter Learner Features Strat DUC’01 DUC’02 DUC’04

-actions -egy R1 R2 RL RSU4 R1 R2 RL RSU4 R1 R2 RL RSU4

0 SUPERT N/A none .324 .061 .252 .097 .345 .070 .270 .107 .375 .086 .293 .128

20 BT bigrams+ UNC .335 .072 .265 .104 .364 .086 .286 .120 .390 .101 .307 .136

20 GPPL bigrams+ rand. .324 .064 .252 .097 .358 .081 .281 .115 .383 .095 .302 .131

20 GPPL bigrams+ EIG .346 .073 .269 .110 .377 .095 .295 .126 .394 .106 .310 .137

20 GPPL bigrams+ IMP .355 .086 .277 .114 .385 .103 .300 .130 .419 .122 .331 .154

100 BT SUPERT UNC .337 .072 .264 .104 .366 .086 .284 .118 .377 .090 .297 .128

100 GPPL SUPERT rand. .317 .057 .247 .092 .344 071 .270 .107 .372 .087 .292 .124

100 GPPL SUPERT EIG .331 .070 .259 .101 .367 .088 .287 .120 .394 .103 .309 .136

100 GPPL SUPERT IMP .370 .100 .293 .123 .406 .118 .316 .140 .422 .130 .337 .155

Table 6: RL for summarization: ROUGE scores of final summaries, mean over 10 repeats with different

random seeds. Once the rewards are fixed, the performance of RL is stable: standard deviation of each

result is < 0.004.

6 Conclusions

We proposed a novel approach to interactive

text ranking that uses Bayesian optimization

(BO) to identify top-ranked texts by acquiring

pairwise feedback from a user and applying

Gaussian process preference learning (GPPL).

Our experiments showed that BO significantly

improves the accuracy of answers chosen in a cQA

task with small amounts of feedback, and leads

to summaries that better match human-generated

model summaries when used to learn a reward

function for reinforcement learning.

Of two proposed Bayesian optimization strat-

egies, we found that expected improvement (IMP)

outperforms Thompson sampling (TP) if the goal

is to optimize the proposed best solution. TP may

require a larger number of interactions due to its

random sampling step. IMP is effective in both

cQA and summarization tasks, but has the stron-

gest impact on cQA with only 10 interactions. This

may be due to the greater sparsity of candidates

in cQA (100 versus 10,000 for summarization),

which allows them to be more easily discriminated

by the model, given good training examples.

Further evaluation with real users is required

to gauge the quantity of feedback needed in a

particular domain.

When using high-dimensional BERT embed-

dings as inputs, GPPL requires more labels to

achieve substantial improvements. Future work

may therefore investigate recent dimensionality

reduction methods (Raunak et al., 2019). We

found that performance improves when includ-

ing prior predictions as the GPPL prior mean but

it is unclear how best to estimate confidence in

the prior predictions—here we assume equal con-

fidence in all prior predictions. Future work could

address this by adapting the GPPL prior covari-

ance matrix to kick-start BO. The method is also

currently limited to a single set of prior predic-

tions: In future we intend to integrate predictions

from several models.
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Javier González, Zhenwen Dai, Andreas Dami-

anou, and Neil D. Lawrence. 2017. Preferential

Bayesian optimization. In Proceedings of the

34th International Conference on Machine

Learning, pages 1282–1291.

Matthew D. Hoffman, David M. Blei, Chong

Wang, and John William Paisley. 2013.

Stochastic variational inference. Journal of

Machine Learning Research, 14:1303–1347.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani,
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