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Abstract

Recent success of pre-trained language models

(LMs) has spurred widespread interest in the

language capabilities that they possess. How-

ever, efforts to understand whether LM repre-

sentations are useful for symbolic reasoning

tasks have been limited and scattered. In this

work, we propose eight reasoning tasks, which

conceptually require operations such as com-

parison, conjunction, and composition. A fun-

damental challenge is to understand whether

the performance of a LM on a task should

be attributed to the pre-trained representations

or to the process of fine-tuning on the task

data. To address this, we propose an eval-

uation protocol that includes both zero-shot

evaluation (no fine-tuning), as well as com-

paring the learning curve of a fine-tuned LM

to the learning curve of multiple controls,

which paints a rich picture of the LM capabil-

ities. Our main findings are that: (a) different

LMs exhibit qualitatively different reasoning

abilities, e.g., ROBERTA succeeds in reason-

ing tasks where BERT fails completely; (b)

LMs do not reason in an abstract manner and

are context-dependent, e.g., while ROBERTA

can compare ages, it can do so only when the

ages are in the typical range of human ages;

(c) On half of our reasoning tasks all models

fail completely. Our findings and infrastruc-

ture can help future work on designing new

datasets, models, and objective functions for

pre-training.

1 Introduction

Large pre-trained language models (LMs) have

revolutionized the field of natural language pro-

cessing in the last few years (Dai and Le, 2015;

Peters et al., 2018a; Yang et al., 2019; Radford

et al., 2019; Devlin et al., 2019). This has insti-

gated research exploring what is captured by the

contextualized representations that these LMs

compute, revealing that they encode substantial

amounts of syntax and semantics (Linzen et al.,

2016b; Tenney et al., 2019b, a; Shwartz and

Dagan, 2019; Lin et al., 2019; Coenen et al.,

2019).
Despite these efforts, it remains unclear what

symbolic reasoning capabilities are difficult to

learn from an LM objective only. In this paper, we

propose a diverse set of probing tasks for types of

symbolic reasoning that are potentially difficult to

capture using a LM objective (see Table 1). Our

intuition is that because a LM objective focuses

on word co-occurrence, it will struggle with tasks

that are considered to involve symbolic reasoning

such as determining whether a conjunction of

properties is held by an object, and comparing

the sizes of different objects. Understanding what

is missing from current LMs may help design

datasets and objectives that will endow models

with the missing capabilities.

However, how does one verify whether pre-

trained representations hold information that is

useful for a particular task? Past work mostly

resorted to fixing the representations and fine-

tuning a simple, often linear, randomly initialized

probe, to determine whether the representations

hold relevant information (Ettinger et al., 2016;

Adi et al., 2016; Belinkov and Glass, 2019;

Hewitt and Manning, 2019; Wallace et al.,

2019; Rozen et al., 2019; Peters et al., 2018b;

Warstadt et al., 2019). However, it is difficult to

determine whether success is due to the pre-trained

representations or due to fine-tuning itself (Hewitt

and Liang, 2019). To handle this challenge, we

include multiple controls that improve our under-

standing of the results.

Our ‘‘purest’’ setup is zero-shot: We cast tasks

in the masked LM format, and use a pre-trained

LM without any fine-tuning. For example, given
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Figure 1: Overview of our experimental design. Two

probes are evaluated using learning curves (including

zero-shot). ROBERTA-L’s (red squares, upper text in

black) accuracy is compared with a NO LANGUAGE

(NO LANG.) control (red circles, lower text in black),

and MLM-BASELINE, which is not pre-trained (green

triangles). Here, we conclude that the LM representa-

tions are well-suited for task A, whereas in task B the

model is adapting to the task during fine-tuning.

the statement ‘‘A cat is [MASK] than a mouse’’,

an LM can decide if the probability of ‘‘larger’’ is

higher than ‘‘smaller’’ for the a masked word

(Figure 1). If a model succeeds without pre-

training over many pairs of objects, then its

representations are useful for this task. However,

if it fails, it could be due to a mismatch between

the language it was pre-trained on and the

language of the probing task (which might be

automatically generated, containing grammatical

errors). Thus, we also compute the learning curve

(Figure 1), by fine-tuning with increasing amounts

of data on the already pre-trained masked language

modeling (MLM) output ‘‘head’’, a 1-hidden

layer multilayer perceptron (MLP) on top of the

model’s contextualized representations. A model

that adapts from fewer examples arguably has

better representations for it.

Moreover, to diagnose whether model perfor-

mance is related to pre-training or fine-tuning, we

add controls to every experiment (Figures 1, 2).

First, we add a control that makes minimal use

of language tokens, that is, ‘‘cat [MASK] mouse’’

(NO LANG. in Figure 1). If a model succeeds given

minimal use of language, the performance can

be mostly attributed to fine-tuning rather than to

the pre-trained language representations. Similar

logic is used to compare against baselines that

are not pre-trained (except for non-contextualized

word embeddings). Overall, our setup provides a

rich picture of whether LM representations help

in solving a wide range of tasks.

We introduce eight tasks that test different types

of reasoning, as shown in Table 1.1 We run

experiments using several pre-trained LMs, based

on BERT (Devlin et al., 2019) and ROBERTA

(Liu et al., 2019). We find that there are clear

qualitative differences between different LMs

with similar architecture. For example, ROBERTA-

LARGE (ROBERTA-L) can perfectly solve some

reasoning tasks, such as comparing numbers,

even in a zero-shot setup, whereas other models’

performance is close to random. However, good

performance is highly context-dependent. Specifi-

cally, we repeatedly observe that even when a

model solves a task, small changes to the input

quickly derail it to low performance. For example,

ROBERTA-L can almost perfectly compare peo-

ple’s ages, when the numeric values are in the

expected range (15–105), but miserably fails if

the values are outside this range. Interestingly, it

is able to reliably answer when ages are specified

through the birth year in the range 1920–2000.

This highlights that the LMs’ ability to solve

this task is strongly tied to the specific values

and linguistic context and does not generalize to

arbitrary scenarios. Last, we find that in four out

of eight tasks, all LMs perform poorly compared

with the controls.

Our contributions are summarized as follows:

• A set of probes that test whether specific

reasoning skills are captured by pre-trained

LMs.

• An evaluation protocol for understanding

whether a capability is encoded in pre-trained

representations or is learned during fine-

tuning.

• An analysis of skills that current LMs

possess. We find that LMs with similar

architectures are qualitatively different, that

their success is context-dependent, and that

often all LMs fail.

• Code and infrastructure for designing and

testing new probes on a large set of pre-

trained LMs. The code and models are avail-

able at http://github.com/alontalmor

/oLMpics.

1Average human accuracy was evaluated by two of the

authors. Overall inter-annotator agreement accuracy was

92%.
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Probe name Setup Example Human1

ALWAYS-NEVER MC-MLM A chicken [MASK] has horns. A. never B. rarely C. sometimes D. often E. always 91%

AGE COMPARISON MC-MLM A 21 year old person is [MASK] than me in age, If I am a 35 year old person. A. younger B. older 100%

OBJECTS COMPARISON MC-MLM The size of a airplane is [MASK] than the size of a house . A. larger B. smaller 100%

ANTONYM NEGATION MC-MLM It was [MASK] hot, it was really cold . A. not B. really 90%

PROPERTY CONJUNCTION MC-QA What is usually located at hand and used for writing? A. pen B. spoon C. computer 92%

TAXONOMY CONJUNCTION MC-MLM A ferry and a floatplane are both a type of [MASK]. A. vehicle B. airplane C. boat 85%

ENCYC. COMPOSITION MC-QA When did the band where Junior Cony played first form? A. 1978 B. 1977 C. 1980 85%

MULTI-HOP COMPOSITION MC-MLM When comparing a 23, a 38 and a 31 year old, the [MASK] is oldest A. second B. first C. third 100%

Table 1: Examples for our reasoning probes. We use two types of experimental setups, explained in

§2. A. is the correct answer.

2 Models

We now turn to the architectures and loss functions

used throughout the different probing tasks.

2.1 Pre-trained Language Models

All models in this paper take a sequence of tokens

x = (x1, . . . ,xn), and compute contextualized

representations with a pre-trained LM, that is,

h = ENCODE(x) = (h1, . . . ,hn). Specifically,

we consider: (a) BERT (Devlin et al., 2019), a pre-

trained LM built using the Transformer (Vaswani

et al., 2017) architecture, which consists of a

stack of Transformer layers, where each layer

includes a multi-head attention sublayer and a

feed-forward sub-layer. BERT is trained on large

corpora using the MLM, that is, the model is

trained to predict words that are masked from

the input; including BERT-WHOLE-WORD-MASKING

(BERT-WWM), which was trained using whole-

word-masking; (b) ROBERTA (Liu et al., 2019),

which has the same architecture as BERT, but was

trained on 10x more data and optimized carefully.

2.2 Probing Setups

We probe the pre-trained LMs using two setups:

multichoice MLM (MC-MLM) and multichoice

question answering (MC-QA). The default setup

is MC-MLM, used for tasks where the answer set

is small, consistent across the different questions,

and each answer appears as a single item in the

word-piece vocabulary.2 The MC-QA setup is

used when the answer set substantially varies

between questions, and many of the answers have

more than one word piece.

2Vocabularies of LMs such as BERT and ROBERTA

contain word-pieces, which are sub-word units that are

frequent in the training corpus. For details see Sennrich

et al. (2016).

MC-MLM Here, we convert the MLM setup

to a multichoice setup (MC-MLM). Specifi-

cally, the input to the LM is the sequence x =
([CLS], . . . ,xi−1,[MASK],xi+1, . . . ,[SEP]),
where a single token xi is masked. Then, the con-

textualized representation hi is passed through a

MC-MLM head where V is the vocabulary, and

FFMLM is a 1-hidden layer MLP:

l = FFMLM(hi) ∈ R
|V|, p = softmax(m⊕ l),

where ⊕ is element-wise addition and m ∈
{0,−∞}|V| is a mask that guarantees that the

support of the probability distribution will be

over exactly K ∈ {2, 3, 4, 5} candidate tokens:

the correct one and K − 1 distractors. Training

minimizes cross-entropy loss given the gold

masked token. An input, e.g., ‘‘[CLS] Cats

[MASK] drink coffee [SEP]’’, is passed through

the model, the contextualized representation of

the masked token is passed through the MC-

MLM head, and the final distribution is over the

vocabulary words ‘‘always’’, ‘‘sometimes’’, and

‘‘never’’, where the gold token is ‘‘never’’, in this

case.

A compelling advantage of this setup, is that

reasonable performance can be obtained without

training, using the original LM representations

and the already pre-trained MLM head weights

(Petroni et al., 2019).

MC-QA Constructing a MC-MLM probe limits

the answer candidates to a single token from the

word-piece vocabulary. To relax this we use in two

tasks the standard setup for answering multichoice

questions with pre-trained LMs (Talmor et al.,

2019; Mihaylov et al., 2018). Given a question q

and candidate answers a1, . . . ,aK , we compute

for each candidate answer ak representations h(k)

from the input tokens ‘‘[CLS] q [SEP] ak

[SEP]’’. Then the probability over answers is

obtained using the multichoice QA head:

l(k) = FFQA(h
(k)
1 ), p = softmax(l(1), . . . , l(K)),
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where FFQA is a 1-hidden layer MLP that is

run over the [CLS] (first) token of an answer

candidate and outputs a single logit. Note that

in this setup that parameters of FFQA cannot be

initialized using the original pre-trained LM.

2.3 Baseline Models

To provide a lower bound on the performance

of pre-trained LMs, we introduce two baseline

models with only non-contextualized representa-

tions.

MLM-BASELINE This serves as a lower-bound

for the MC-MLM setup. The input to FFMLM(·)
is the hidden representation h ∈ R

1024 (for large

models). To obtain a similar architecture with non-

contextualized representations, we concatenate

the first 20 tokens of each example, representing

each token with a 50-dimensional GLOVE vector

(Pennington et al., 2014), and pass this 1000-

dimensional representation of the input through

FFMLM, exactly like in MC-MLM. In all probes,

phrases are limited to 20 tokens. If there are less

than 20 tokens in the input, we zero-pad the input.

MC-QA Baseline This serves as a lower-bound

for MC-QA. We use the ESIM architecture over

GLOVE representations, which is known to provide

a strong model when the input is a pair of

text fragments (Chen et al., 2017). We adapt

the architecture to the multichoice setup using

the procedure proposed by Zellers et al. (2018).

Each phrase and candidate answer are passed

as a list of token ‘[CLS] phrase [SEP]

answer [SEP]’ to the LM. The contextualized

representation of the [CLS] token is linearly

projected to a single logit. The logits for candidate

answers are passed through a softmax layer to

obtain probabilities, and the argmax is selected as

the model prediction.

3 Controlled Experiments

We now describe the experimental design and

controls used to interpret the results. We use the

AGE-COMPARE task as a running example, where

models need to compare the numeric value of

ages.

3.1 Zero-shot Experiments with MC-MLM

Fine-tuning pre-trained LMs makes it hard to

disentangle what is captured by the original rep-

resentations and what was learned during fine-

tuning. Thus, ideally, one should test LMs using

the pre-trainedweights without fine-tuning (Linzen

et al., 2016a; Goldberg, 2019). The MC-MLM set-

up, which uses a pre-trained MLM head, achieves

exactly that. One only needs to design the task

as a statement with a single masked token and

K possible output tokens. For example, in AGE-

COMPARE, we chose the phrasing ‘‘A AGE-1 year

old person is [MASK] than me in age, If I am

a AGE-2 year old person.’’, where AGE-1 and

AGE-2 are replaced with different integers, and

possible answers are ‘‘younger’’ and ‘‘older’’.

Otherwise, no training is needed, and the original

representations are tested.

Figure 2A provides an example of such zero-

shot evaluation. Different values are assigned to

AGE-1 and AGE-2, and the pixel is colored

when the model predicts ‘‘younger’’. Accuracy

(acc.) is measured as the proportion of cases when

the model output is correct. The performance

of BERT-WWM, is on the left (blue), and of

ROBERTA-L on the right (green). The results in

Figure 2A and Table 2 show that ROBERTA-L

compares numbers correctly (98% acc.), BERT-

WWM achieves higher than random acc. (70%

acc.), while BERT-L is random (50% acc.). The

performance of MLM-BASELINE is also random, as

the MLPMLM weights are randomly initialized.

We note that picking the statement for each

task was done through manual experimentation.

We tried multiple phrasings (Jiang et al., 2019)

and chose the one that achieves highest average

zero-shot accuracy across all tested LMs.

A case in point ...

Thus, if a model performs well, one can infer

that it has the tested reasoning skill. However,

failure does not entail that the reasoning skill is

missing, as it is possible that there is a problem

with the lexical-syntactic construction we picked.

3.2 Learning Curves

Despite the advantages of zero-shot evaluation,

performance of a model might be adversely

affected by mismatches between the language the

pre-trained LM was trained on and the language

of the examples in our tasks (Jiang et al., 2019).

To tackle this, we fine-tune models with a

small number of examples. We assume that if the

LM representations are useful for a task, it will

require few examples to overcome the language
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Figure 2: An illustration of our evaluation protocol.

We compare ROBERTA-L (green) and BERT-WWM

(blue), controls are in dashed lines and markers are

described in the legends. Zero-shot evaluation on the

top left, AGE-1 is ‘‘younger’’ (in color) vs. ‘‘older’’

(in white) than AGE-2.

mismatch and achieve high performance. In most

cases, we train with N ∈ {62, 125, 250, 500, 1K,

2K, 4K} examples. To account for optimization

instabilities, we fine-tune several times with

different seeds, and report average accuracy across

seeds. The representationsh are fixed during fine-

tuning, and we only fine-tune the parameters of

MLPMLM.

Evaluation and Learning-curve Metrics

Learning curves are informative, but inspecting

many learning curves can be difficult. Thus, we

summarize them using two aggregate statistics.

We report: (a) MAX, that is, the maximal accuracy

on the learning curve, used to estimate how well

the model can handle the task given the limited

amount of examples. (b) The metric WS, which

is a weighted average of accuracies across the

learning curve, where higher weights are given to

points where N is small.3 WS is related to the area

under the accuracy curve, and to the online code

metric, proposed by Yogatama et al. (2019) and

Blier and Ollivier (2018). The linearly decreasing

weights emphasizes our focus on performance

given little training data, as it highlights what was

encoded by the model before fine-tuning.

3We use the decreasing weights W = (0.23, 0.2, 0.17,
0.14, 0.11,0.08, 0.07).

Model Zero MLPMLM LINEAR LANGSENSE

shot WS MAX WS MAX pert nolang

RoBERTa-L 98 98 100 97 100 31 51

BERT-WWM 70 82 100 69 85 13 15

BERT-L 50 52 57 50 51 1 0

RoBERTa-B 68 75 91 69 84 24 25

BERT-B 49 49 50 50 50 0 0

Baseline 49 58 79 - - 0 0

Table 2: AGE-COMPARE results. Accuracy over two

answer candidates (random is 50%). LANGSENSE

are the Language Sensitivity controls, pert is

PERTURBED LANG. and nolang is NO LANG. The

baseline row is MLM-BASELINE.

For AGE-COMPARE, the solid lines in Figure 2B

illustrate the learning curves of ROBERTA-L and

BERT-WWM, and Table 2 shows the aggregate

statistics. We fine-tune the model by replacing

AGE-1 and AGE-2 with values between 43 and

120, but test with values between 15 and 38, to

guarantee that the model generalizes to values

unseen at training time. Again, we see that

the representations learned by ROBERTA-L are

already equipped with the knowledge necessary

for solving this task.

3.3 Controls

Comparing learning curves tells us which model

learns from fewer examples. However, because

highly parameterized MLPs, as used in LMs,

can approximate a wide range of functions, it

is difficult to determine whether performance is

tied to the knowledge acquired at pre-training

time, or to the process of fine-tuning itself. We

present controls that attempt to disentangle these

two factors.

Are LMs sensitive to the language input?

We are interested in whether pre-trained repre-

sentations reason over language examples. Thus,

a natural control is to present the reasoning task

without language and inspect performance. If the

learning curve of a model does not change when

the input is perturbed or even mostly deleted, then

the model shows low language sensitivity and

the pre-trained representations do not explain the

probe performance. This approach is related to

work by Hewitt and Liang (2019), who proposed

a control task, where the learning curve of a model

is compared to a learning curve when words are
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associated with random behavior. We propose

two control tasks:

NO LANGUAGE control We remove all input

tokens, except for [MASK] and the arguments

of the task, namely, the tokens that are necessary

for computing the output. In AGE-COMPARE, an

example is reduced to the phrase ‘‘24 [MASK]

55’’, where the candidate answers are the words

‘‘blah’’, for ‘‘older’’, and ‘‘ya’’, for ‘‘younger’’.

If the learning curve is similar to when the full

example is given (low language sensitivity), then

the LM is not strongly using the language input.

The dashed lines in Figure 2B illustrate the

learning curves in NO LANG.: ROBERTA-L (green)

shows high language sensitivity, while BERT-

WWM (blue) has lower language sensitivity. This

suggests it handles this task partially during fine-

tuning. Table 2 paints a similar picture, where

the metric we use is identical to WS, except

that instead of averaging accuracies, we average

the difference in accuracies between the standard

model and NO LANG. (rounding negative numbers

to zero). For ROBERTA-L the value is 51, because

ROBERTA-L gets almost100% acc. in the presence

of language, and is random (50% acc.) without

language.

PERTURBED LANGUAGE control A more targeted

language control, is to replace words that are

central for the reasoning task with nonsense words.

Specifically, we pick key words in each probe

template, and replace these words by randomly

sampling from a list of 10 words that carry

relatively limited meaning.4 For example, in

PROPERTY CONJUNCTION, we can replace the word

‘‘and’’ with the word ‘‘blah’’ to get the example

‘‘What is located at hand blah used for writing?’’.

If the learning curve of PERTURBED LANG. is similar

to the original example, then the model does not

utilize the pre-trained representation of ‘‘and’’ to

solve the task, and may not capture its effect on

the semantics of the statement.

Targeted words change from probe to probe.

For example, in AGE-COMPARE, the targeted words

are ‘‘age’’ and ‘‘than’’, resulting in examples like

‘‘A AGE-1 year old person is [MASK] blah me in

da, If i am a AGE-2 year old person.’’ Figure 2C

shows the learning curves for ROBERTA-L and

BERT-WWM, where solid lines corresponds to

the original examples and dashed lines are the

4The list of substitutions is: ‘‘blah’’, ‘‘ya’’, ‘‘foo’’,

‘‘snap’’, ‘‘woo’’, ‘‘boo’’, ‘‘da’’, ‘‘wee’’, ‘‘foe’’ and ‘‘fee’’.

PERTURBED LANG. control. Despite this minor

perturbation, the performance of ROBERTA-L

substantially decreases, implying that the model

needs the input. Conversely, BERT-WWM perfor-

mance decreases only moderately.

Does a linear transformation suffice? In MC-

MLM, the representations h are fixed, and only

the pre-trained parameters of MLPMLM are fine-

tuned. As a proxy for measuring ‘‘how far" the

representations are from solving a task, we fix

the weights of the first layer of MLPMLM, and

only train the final layer. Succeeding in this setup

means that only a linear transformation of h is

required. Table 2 shows the performance of this

setup (LINEAR), compared with MLPMLM.

Why is MC-MLM preferred over MC-QA?

Figure 2D compares the learning curves of MC-

MLM and MC-QA in AGE-COMPARE. Because in

MC-QA, the network MLPQA cannot be initialized

by pre-trained weights, zero-shot evaluation is

not meaningful, and more training examples are

needed to train MLPQA. Still, the trends observed

in MC-MLM remain, with ROBERTA-L achieving

best performance with the fewest examples.

4 The oLMpic Games

We now move to describe the research questions

and various probes used to answer these questions.

For each task we describe how it was constructed,

show results via a table as described in the controls

section, and present an analysis.

Our probes are mostly targeted towards

symbolic reasoning skills (Table 1). We examine

the ability of language models to compare

numbers, to understand whether an object has

a conjunction of properties, to perform multi-hop

composition of facts, among others. However,

since we generate examples automatically from

existing resources, some probes also require

background knowledge, such as sizes of objects.

Moreover, as explained in §3.1, we test models

on a manually-picked phrasing that might interact

with the language abilities of the model. Thus,

when a model succeeds this is evidence that

it has the necessary skill, but failure could be

attributed to issues with background knowledge

and linguistic abilities as well. In each probe,

we will explicitly mention what knowledge and

language abilities are necessary.
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4.1 Can LMs perform robust comparison?

Comparing two numeric values requires repre-

senting the values and performing the comparison

operations. In §3 we saw the AGE-COMPARE task,

in which ages of two people were compared. We

found that ROBERTA-L and to some extent BERT-

WWM were able to handle this task, performing

well under the controls. We expand on this to

related comparison tasks and perturbations that

assess the sensitivity of LMs to the particular

context and to the numerical value.

Is ROBERTA-L comparing numbers or ages?

ROBERTA-L obtained zero-shot acc. of 98% in

AGE-COMPARE. But is it robust? We test this using

perturbations to the task and present the results in

Figure 3. Figure 3A corresponds to the experiment

from §3, where we observed that ROBERTA-L

predicts ‘‘younger’’ (blue pixels) and ‘‘older’’

(white pixels) almost perfectly.

To test whether ROBERTA-L can compare ages

given the birth year rather than the age, we use the

statement ‘‘A person born in YEAR-1 is [MASK]

than me in age, If i was born in YEAR-2.’’

Figure 3B shows that it correctly flips ‘‘younger’’

to ‘‘older’’ (76% acc.), reasoning that a person

born in 1980 is older than one born in 2000.

However, when evaluated on the exact same

statement, but with values corresponding to typical

ages instead of years (Figure 3D), ROBERTA-L

obtains an acc. of 12%, consistently outputting

the opposite prediction. With ages as values and

not years, it seems to disregard the language,

performing the comparison based on the values

only. We will revisit this tendency in §4.4.

Symmetrically, Figure 3C shows results when

numeric values of ages are swapped with typical

years of birth. ROBERTA-L is unable to handle this,

always predicting ‘‘older’’.5 This emphasizes that

the model is sensitive to the argument values.

Can Language Models compare object sizes?

Comparing physical properties of objects requires

knowledge of the numeric value of the property

and the ability to perform comparison. Previous

work has shown that such knowledge can be

extracted from text and images (Bagherinezhad

et al., 2016; Forbes and Choi, 2017; Yang et al.,

2018a; Elazar et al., 2019; Pezzelle and Fernández,

5We observed that in neutral contexts models have a

slight preference for ‘‘older’’ over ‘‘younger’’, which could

potentially explain this result.

Figure 3: AGE COMPARISON perturbations. Left side

graphs are age-comparison, right side graphs are age

comparison by birth-year. In the bottom row, the values

of ages are swapped with birth-years and vice versa.

In blue pixels the model predicts ‘‘older’’, in white

‘‘younger’’. (A) is the correct answer.

2019). Can LMs do the same? Probe Construction

We construct statements of the form ‘‘The size

of a OBJ-1 is usually much [MASK] than the

size of a OBJ-2.’’, where the candidate answers

are ‘‘larger’’ and ‘‘smaller’’. To instantiate the

two objects, we manually sample from a list of

objects from two domains: animals (e.g. ‘‘camel’’)

and general objects (e.g. ‘‘sun’’), and use the

first domain for training and the second for

evaluation. We bucket different objects based on

the numerical value of their size based on their

median value in DOQ (Elazar et al., 2019), and

then manually fix any errors. This probe requires

prior knowledge of object sizes and understanding

of a comparative language construction. Overall,

we collected 127 and 35 objects for training

and development, respectively. We automatically

instantiate object slots using objects that are in the

same bucket.

Results ROBERTA-L excels in this task, starting

from 84% acc. in the zero-shot setup and reaching

MAX of 91% (Table 3). Other models start with

random performance and are roughly on par with

MLM-BASELINE. ROBERTA-L shows sensitivity

to the language, suggesting that the ability to

compare object sizes is encoded in it.

Analysis Table 4 shows results of running

ROBERTA-L in the zero-shot setup over pairs

of objects, where we sampled a single object

from each bucket. Objects are ordered by their
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Model Zero MLPMLM LINEAR LANGSENSE

shot WS MAX WS MAX pert nolang

RoBERTa-L 84 88 91 86 90 22 26

BERT-WWM 55 65 81 63 77 9 9

BERT-L 52 56 66 53 56 5 4

BERT-B 56 55 72 53 56 2 3

RoBERTa-B 50 61 74 57 66 8 0

Baseline 46 57 74 - - 2 1

Table 3: Results for the OBJECTS COMPARISON

probe. Accuracy over two answer candidates

(random is 50%).

nail pen laptop table house airplane city sun

nail - smaller smaller smaller smaller smaller smaller smaller

pen smaller - smaller smaller smaller smaller smaller smaller

laptop larger larger - larger smaller smaller smaller smaller

table larger larger larger - smaller larger smaller larger

house larger larger larger larger - larger smaller larger

airplane larger larger larger larger larger - larger larger

city larger larger larger larger larger larger - larger

sun larger larger larger larger larger larger larger -

Table 4: ROBERTA-L Zero-shot SIZE COMP.

predictions.

size from small to large. Overall, ROBERTA-L

correctly predicts ‘‘larger’’ below the diagonal,

and ‘‘smaller’’ above it. Interestingly, errors are

concentrated around the diagonal, due to the

more fine-grained differences in sizes, and when

we compare objects to ‘‘sun’’, mostly emitting

‘‘larger’’, ignoring the rest of the statement.

4.2 Do LMs know ‘‘always’’ from ‘‘often’’?

Adverbial modifiers such as ‘‘always’’, ‘‘some-

times’’, or ‘‘never’’, tell us about the quantity or

frequency of events (Lewis, 1975; Barwise and

Cooper, 1981). Anecdotally, when ROBERTA-L

predicts a completion for the phrase ‘‘Cats usually

drink [MASK].’’, the top completion is ‘‘coffee’’,

a frequent drink in the literature it was trained on,

rather then ‘‘water’’. However, humans know that

‘‘Cats NEVER drink coffee’’. Prior work explored

retrieving the correct quantifier for a statement

(Herbelot and Vecchi, 2015; Wang et al., 2017).

Here we adapt this task to a masked language

model.

The ‘‘Always-Never’’ task We present state-

ments, such as ‘‘rhinoceros [MASK] have fur’’,

with answer candidates, such as ‘‘never’’ or

‘‘always’’. To succeed, the model must know

the frequency of an event, and map the appropriate

adverbial modifier to that representation. Lin-

guistically, the task tests how well the model

predicts frequency quantifiers (or adverbs) mod-

Model Zero MLPMLM LINEAR LANGSENSE

shot WS MAX WS MAX pert nolang

RoBERTa-L 14 44 55 26 41 3 5

BERT-WWM 10 46 57 32 52 2 3

BERT-L 22 45 55 36 50 3 8

BERT-B 11 44 56 30 52 3 8

RoBERTa-B 15 43 53 25 44 2 6

Baseline 20 46 56 - - 1 2

Table 5: Results for the ALWAYS-NEVER probe.

Accuracy over five answer candidates (random

is 20%).

ifying predicates in different statements (Lepore

and Ludwig, 2007).

Probe Construction We manually craft templates

that contain one slot for a subject and another

for an object, e.g., ‘‘FOOD-TYPE is [MASK]

part of a ANIMAL’s diet.’’ (more examples avail-

able in Table 6). The subject slot is instantiated

with concepts of the correct semantic type,

according to the isA predicate in CONCEPTNET.

In the example above we will find concepts

that are of type FOOD-TYPE and ANIMAL. The

object slot is then instantiated by forming

masked templates of the form ‘‘meat is part of

a [MASK]’s diet.’’ and ‘‘cats have [MASK].’’ and

letting BERT-L produce the top-20 completions.

We filter out completions that do not have

the correct semantic type according to the isA

predicate. Finally, we crowdsource gold answers

using Amazon Mechanical Turk. Annotators were

presented with an instantiated template (with the

masked token removed), such as ‘‘Chickens have

horns.’’ and chose the correct answer from 5

candidates: ‘‘never’’, ‘‘rarely’’, ‘‘sometimes’’,

‘‘often’’, and ‘‘always’’.6 We collected 1,300

examples with 1,000 used for training and 300

for evaluation.

We note that some examples in this probe are

similar to OBJECTS COMPARISON (line 4 in Table 5).

However, the model must also determine if sizes

can be overlapping, which is the case in 56% of

the examples.

Results Table 5 shows the results, where random

accuracy is 20%, and majority vote accuracy is

35.5%. In the zero-shot setup, acc. is less than

random. In the MLPMLM and LINEAR setup acc.

reaches a maximum of 57% in BERT-L, but

6The class distribution over the answers is ‘‘never’’:

24%, ‘‘rarely’’: 10%, ‘‘sometimes’’: 34%, ‘‘often’’: 7%, and

‘‘always’’: 23%.
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Question Answer Distractor Acc.

A dish with pasta [MASK] contains pork . sometimes sometimes 75

stool is [MASK] placed in the box . never sometimes 68

A lizard [MASK] has a wing . never always 61

A pig is [MASK] smaller than a cat . rarely always 47

meat is [MASK] part of a elephant’s diet . never sometimes 41

A calf is [MASK] larger than a dog . sometimes often 30

Table 6: Error analysis for ALWAYS-NEVER. Model

predictions are in bold, and Acc. shows acc. per

template.

MLM-BASELINE obtains similar acc., implying

that the task was mostly tackled at fine-tuning

time, and the pre-trained representations did not

contribute much. Language controls strengthen

this hypothesis, where performance hardly drops

in the PERTURBED LANG. control and slightly drops

in the NO LANG. control. Figure 1B compares the

learning curve of ROBERTA-Lwith controls. MLM-

BASELINE consistently outperforms ROBERTA-L,

which display only minor language sensitivity,

suggesting that pre-training is not effective for

solving this task.

Analysis We generated predictions from the

best model, BERT-WWM, and show analysis

results in Table 6. For reference, we only selected

examples where human majority vote led to the

correct answer, and thus the majority vote is near

100% on these examples. Although the answers

‘‘often’’ and ‘‘rarely’’ are the gold answer in 19%

of the training data, the LMs predict these answers

in less than 1% of examples. In the template ‘‘A

dish with FOOD-TYPE [MASK] contains FOOD-

TYPE.’’ the LM always predicts ‘‘sometimes’’.

Overall, we find models do not perform well.

Reporting bias (Gordon and Van Durme, 2013)

may play a role in the inability to correctly

determine that ‘‘A rhinoceros NEVER has fur.’’

Interestingly, behavioral research conducted on

blind humans shows they exhibit a similar bias

(Kim et al., 2019).

4.3 Do LMs Capture Negation?

Ideally, the presence of the word ‘‘not’’ should

affect the prediction of a masked token. However,

Several recent works have shown that LMs do

not take into account the presence of negation

in sentences (Ettinger, 2019; Nie et al., 2020;

Kassner and Schütze, 2020). Here, we add to this

literature, by probing whether LMs can properly

use negation in the context of synonyms vs.

antonyms.

Model Zero MLPMLM LINEAR LANGSENSE

shot WS MAX WS MAX pert nolang

RoBERTa-L 75 85 91 77 84 14 21

BERT-WWM 57 70 81 61 73 5 6

BERT-L 51 70 82 58 74 5 9

BERT-B 52 68 81 59 74 2 9

RoBERTa-B 57 74 87 63 78 10 16

Baseline 47 67 80 - - 0 0

Table 7: Results for the ANTONYM NEGATION

probe. Accuracy over two answer candidates

(random is 50%).

Do LMs Capture the Semantics of Antonyms?

In the statement ‘‘He was [MASK] fast, he was

very slow.’’, [MASK] should be replaced with

‘‘not’’, since ‘‘fast’’ and ‘‘slow’’ are antonyms.

Conversely, in ‘‘He was [MASK] fast, he was

very rapid’’, the LM should choose a word like

‘‘very’’ in the presence of the synonyms ‘‘fast’’

and ‘‘rapid’’. An LM that correctly distinguishes

between ‘‘not’’ and ‘‘very’’, demonstrates knowl-

edge of the taxonomic relations as well as the

ability to reason about the usage of negation in

this context.

Probe Construction We sample synonym and

antonym pairs from CONCEPTNET (Speer et al.,

2017) and WORDNET (Fellbaum, 1998), and use

Google Books Corpus to choose pairs that occur

frequently in language. We make use of the state-

ments introduced above. Half of the examples

are synonym pairs and half antonyms, generat-

ing 4,000 training examples and 500 for evalu-

ation. Linguistically, we test whether the model

appropriately predicts a negation vs. intensifica-

tion adverb based on synonymy/antonymy rela-

tions between nouns, adjectives and verbs.

Results ROBERTA-L shows higher than chance

acc. of 75% in the zero-shot setting, as well as high

Language Sensitivity (Table 7). MLM-BASELINE,

equipped with GloVe word embeddings, is able to

reach a comparable WS of 67 and MAX of 80%,

suggesting they do not have a large advantage on

this task.

4.4 Can LMs handle conjunctions of facts?

We present two probes where a model should

understand the reasoning expressed by the word

and.

Property conjunction CONCEPTNET is a

Knowledge-Base that describes the properties of

millions of concepts through its (subject,
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Model LEARNCURVE LANGSENSE

WS MAX pert nolang

RoBERTa-L 49 87 2 4

BERT-WWM 46 80 0 1

BERT-L 48 75 2 5

BERT-B 47 71 2 1

RoBERTa-B 40 57 0 0

Baseline 39 49 0 0

Table 8: Results for the PROPERTY CONJUNCTION

probe. Accuracy over three answer candidates

(random is 33%).

predicate, object) triples. We use

CONCEPNET to test whether LMs can find concepts

for which a conjunction of properties holds. For

example, we will create a question like ‘‘What is

located in a street and is related to octagon?’’,

where the correct answer is ‘‘street sign’’.

Because answers are drawn from CONCEPTNET,

they often consist of more than one word-piece,

thus examples are generated in the MC-QA setup.

Probe Construction To construct an example, we

first choose a concept that has two properties in

CONCEPTNET, where a property is a (predicate,

object) pair. For example, stop sign has

the properties (atLocation,street) and

(relatedTo, octagon). Then, we create two

distractor concepts, for which only one prop-

erty holds: car has the property (atLocation,

street), andmathhas theproperty (relatedTo,

octagon). Given the answer concept, the dis-

tractors and the properties, we can automatically

generate pseudo-langauge questions and answers

by mapping 15 CONCEPTNET predicates to natural

language questions. We split examples such that

concepts in training and evaluation are disjoint.

This linguistic structure tests whether the LM

can answer questions with conjoined predicates,

requiring world knowledge of object and relations.

Results In MC-QA, we fine-tune the entire

network and do not freeze any representations.

Zero-shot cannot be applied because the weights

of MLPQA are untrained. All LMs consistently

improve as the number of examples increases,

reaching a MAX of 57% to 87% (Table 8). The

high MAX results suggest that the LMs generally

have the required pre-existing knowledge. The WS

of most models is slightly higher than the baselines

(49% MAX and 39 WS). Language Sensitivity is

slightly higher than zero in some models. Overall,

results suggest the LMs do have some capability

in this task, but proximity to baseline results, and

low language selectivity make it hard to clearly

determine whether it existed before fine-tuning.

To further validate our findings, we construct a

parallel version of our data, where we replace

the word ‘‘and’’ by the phrase ‘‘but not’’.

In this version, the correct answer is the first

distractor in the original experiment, where one

property holds and the other does not. Overall,

we observe a similar trend (with an increase

in performance across all models): MAX results

are high (79-96%), pointing that the LMs hold

the relevant information, but improvement over

ESIM-Baseline and language sensitivity are low.

For brevity, we omit the detailed numerical results.

Taxonomy conjunction A different operation is

to find properties that are shared by two concepts.

Specifically, we test whether LMs can find the

mutual hypernym of a pair of concepts. For

example, ‘‘A germ and a human are both a type

of [MASK].’’, where the answer is ‘‘organism’’.

Probe Construction We use CONCEPTNET and

WORDNET to find pairs of concepts and their

hypernyms, keeping only pairs that frequently

appear in the GOOGLE BOOK CORPUS. The example

template is ‘‘A ENT-1 and a ENT-2 are both

a type of [MASK].’’, where ENT-1 and ENT-2

are replaced with entities that have a common

hypernym, which is the gold answer. Distractors

are concepts that are hypernyms of ENT-1, but

not ENT-2, or vice versa. For evaluation, we

keep all examples related to food and animal

taxonomies, for example, ‘‘A beer and a ricotta

are both a type of [MASK].’’, where the answer

is ‘‘food’’ and the distractors are ‘‘cheese’’ and

‘‘alcohol’’. This phrasing requires the model to

handle conjoined co-hyponyms in the subject

position, based on lexical relations of hyponymy /

hypernymy between nouns. For training, we use

examples from different taxonomic trees, such

that the concepts in the training and evaluation

sets are disjoint.

Results Table 9 shows that models’ zero-shot

acc. is substantially higher than random (33%),

but overall even after fine-tuning acc. is at most

59%. However, the NO LANG. control shows some

language sensitivity, suggesting that some models

have pre-existing capabilities.
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Model Zero MLPMLM LINEAR LANGSENSE

shot WS MAX WS MAX pert nolang

RoBERTa-L 45 50 56 45 46 0 3

BERT-WWM 46 48 52 46 46 0 7

BERT-L 53 54 57 53 54 0 15

BERT-B 47 48 50 47 47 0 12

RoBERTa-B 46 50 59 47 49 0 18

Baseline 33 33 47 - - 1 2

Table 9: Results for the TAXONOMY CONJUNCTION

probe. Accuracy over three answer candidates

(random is 33%).

Analysis Analyzing the errors of ROBERTA-L, we

found that a typical error is predicting for ‘‘A

crow and a horse are both a type of [MASK].’’

that the answer is ‘‘bird’’, rather than ‘‘animal’’.

Specifically, LMs prefer hypernyms that are closer

in terms of edge distance on the taxonomy tree.

Thus, a crow is first a bird, and then an animal.

We find that when distractors are closer to one of

the entities in the statement than the gold answer,

the models will consistently (80%) choose the

distractor, ignoring the second entity in the phrase.

4.5 Can LMs do multi-hop reasoning?

Questions that require multi-hop reasoning, such

as ‘‘Who is the director of the movie about

a WW2 pacific medic?’’, have recently drawn

attention (Yang et al., 2018b; Welbl et al., 2018;

Talmor and Berant, 2018) as a challenging task

for contemporary models. But do pre-trained LMs

have some internal mechanism to handle such

questions?

To address this question, we create two probes,

one for compositional question answering, and

the other uses a multi-hop setup, building upon

our observation (§3) that some LMs can compare

ages.

Encyclopedic composition We construct ques-

tions such as ‘‘When did the band where John

Lennon played first form?’’. Here answers require

multiple tokens, thus we use the MC-QA setup.

Probe Construction We use the following three

templates: (1) ‘‘when did the band where ENT

played first form?’’, (2) ‘‘who is the spouse of the

actor that played in ENT?’’ and (3) ‘‘where is the

headquarters of the company thatENT established

located?’’. We instantiate ENT using information

from WIKIDATA (Vrandečić and Krőtzsch, 2014),

choosing challenging distractors. For example,

for template 1, the distractor will be a year

Model LEARNCURVE LANGSENSE

WS MAX pert nolang

RoBERTa-L 42 50 0 2

BERT-WWM 47 53 1 4

BERT-L 45 51 1 4

BERT-B 43 48 0 3

RoBERTa-B 41 46 0 0

ESIM-Baseline 49 54 3 0

Table 10: Results for ENCYCLOPEDIC COMPOSITION.

Accuracy over three answer candidates (random

is 33%).

Figure 4: Learning curves in two tasks. For each task,

the best performing LM is shown alongside the NO

LANG. control and baseline model. (A) is the correct

answer.

close to the gold answer, and for template 3,

it will be a city in the same country as the gold

answer city. This linguistic structure introduces

a (restrictive) relative clauses that requires a)

Correctly resolving the reference of the noun

modified by the relative clause, b) Answering

the full question subsequently.

To solve the question, the model must have

knowledge of all single-hop encyclopedic facts

required for answering it. Thus, we first fine-tune

the model on all such facts (e.g., ‘‘What company

did Bill Gates establish? Microsoft’’) from the

training and evaluation set, and then fine-tune on

multi-hop composition.

Results Results are summarized in Table 10. All

models achieve low acc. in this task, and the

baseline performs best with a MAX of 54%. Lan-

guage sensitivity of all models is small, and MLM-

BASELINE performs slightly better (Figure 4B),

suggesting that the LMs are unable to resolve

compositional questions, but also struggle to learn

it with some supervision.

Multi-hop Comparison Multi-hop reasoning

can be found in many common structures in

natural language. In the phrase ‘‘When comparing
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Model Zero MLPMLM LINEAR LANGSENSE

shot WS MAX WS MAX pert nolang

RoBERTa-L 29 36 49 31 41 2 2

BERT-WWM 33 41 65 32 36 6 4

BERT-L 33 32 35 31 34 0 3

BERT-B 32 33 35 33 35 0 2

RoBERTa-B 33 32 40 29 33 0 0

Baseline 34 35 48 - - 1 0

Table 11: Results for COMPOSITIONAL COMPARISON.

Accuracy over three answer candidates (random

is 33%).

a 83 year old, a 63 year old and a 56 year old,

the [MASK] is oldest’’ one must find the oldest

person, then refer to its ordering: first, second, or

third.

Probe Construction We use the template above,

treating the ages as arguments, and ‘‘first’’, ‘‘sec-

ond’’, and ‘‘third’’ as answers. Age arguments

are in the same ranges as in AGE-COMPARE. Linguis-

tically, the task requires predicting the subject of

sentences whose predicate is in a superlative form,

where the relevant information is contained in a

‘‘when’’-clause. The sentence also contains nom-

inal ellipsis, also known as fused-heads (Elazar

and Goldberg, 2019).

Results All three possible answers appear

in ROBERTA-L’s top-10 zero-shot predictions,

indicating that the model sees the answers as viable

choices. Although successful in AGE-COMPARE, the

performance of ROBERTA-L is poor in this probe

(Table 11), With zero-shot acc. that is almost

random, WS slightly above random, MAX lower

than MLM-BASELINE (48%), and close to zero

language sensitivity. All LMs seem to be learning

the task during probing. Although BERT-WWM

was able to partially solve the task with a MAX of

65% when approaching 4,000 training examples,

the models do not appear to show multi-step

capability in this task.

5 Medals

We summarize the results of the oLMpic Games in

Table 12. Generally, the LMs did not demonstrate

strong pre-training capabilities in these symbolic

reasoning tasks. BERT-WWM showed partial

success in a few tasks, whereas ROBERTA-L

showed high performance in ALWAYS-NEVER,

OBJECTS COMPARISON and ANTONYM NEGATION, and

emerges as the most promising LM. However,

RoBERTa BERT BERT RoBERTa BERT

Large WWM Large Base Base

ALWAYS-NEVER

AGE COMPARISON X X

OBJECTS COMPAR. X

ANTONYM NEG. X

PROPERTY CONJ.

TAXONOMY CONJ.

ENCYC. COMP.

MULTI-HOP COMP.

Table 12: The oLMpic games medals, sum-

marizing per-task success. X indicate the LM has

achieved high accuracy considering controls and

baselines, X–indicates partial success.

when perturbed, ROBERTA-L has failed to demon-

strates consistent generalization and abstraction.

Analysis of correlation with pre-training data

A possible hypothesis for why a particular model

is successful in a particular task might be that the

language of a probe is more common in the corpus

it was pre-trained on. To check that, we compute

the unigram distribution over the training corpus

of both BERT and ROBERTA. We then compute

the average log probability of the development set

under these two unigram distributions for each task

(taking into account only content words). Finally,

we compute the correlation between which model

performs better on a probe (ROBERTA-L vs.

BERT-WWM) and which training corpus induces

higher average log probability on that probe. We

find that the Spearman correlation is 0.22, hinting

that the unigram distributions do not fully explain

the difference in performance.

6 Discussion

We presented eight different tasks for evaluating

the reasoning abilities of models, alongside an

evaluation protocol for disentangling pre-training

from fine-tuning. We found that even models that

have identical structure and objective functions

differ not only quantitatively but also qualitatively.

Specifically, ROBERTA-L has shown reasoning

abilities that are absent from other models. Thus,

with appropriate data and optimization, models

can acquire from an LM objective skills that might

be surprising intuitively.

However, when current LMs succeed in a

reasoning task, they do not do so through ab-

straction and composition as humans perceive it.

The abilities are context-dependent, if ages are

compared–then the numbers should be typical

ages. Discrepancies from the training distribution
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lead to large drops in performance. Last, the

performance of LM in many reasoning tasks is

poor.

Our work sheds light on some of the blind spots

of current LMs. We will release our code and

data to help researchers evaluate the reasoning

abilities of models, aid the design of new probes,

and guide future work on pre-training, objective

functions and model design for endowing models

with capabilities they are currently lacking.
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