
The Return of Lexical Dependencies:

Neural Lexicalized PCFGs

Hao Zhu, Yonatan Bisk, Graham Neubig

Language Technologies Institute, Carnegie Mellon University

zhuhao@cmu.edu, {ybisk, gneubig}@cs.cmu.edu

Abstract

In this paper we demonstrate that context free

grammar (CFG) based methods for grammar

induction benefit from modeling lexical depen-

dencies. This contrasts to the most popular

current methods for grammar induction, which

focus on discovering either constituents or

dependencies. Previous approaches to marry

these two disparate syntactic formalisms (e.g.,

lexicalized PCFGs) have been plagued by

sparsity, making them unsuitable for unsu-

pervised grammar induction. However, in this

work, we present novel neural models of lex-

icalized PCFGs that allow us to overcome

sparsity problems and effectively induce both

constituents and dependencies within a sin-

gle model. Experiments demonstrate that this

unified framework results in stronger results

on both representations than achieved when

modeling either formalism alone.1

1 Introduction

Unsupervised grammar induction aims at building

a formal device for discovering syntactic structure

from natural language corpora. Within the scope

of grammar induction, there are two main direc-

tions of research: unsupervised constituency pars-

ing, which attempts to discover the underlying

structure of phrases, and unsupervised depen-

dency parsing, which attempts to discover the

underlying relations between words. Early work

on induction of syntactic structure focused on

learning phrase structure and generally used some

variant of probabilistic context-free grammars

(PCFGs; Lari and Young, 1990; Charniak,

1996; Clark, 2001). In recent years, dependency

grammars have gained favor as an alternative

1Code is available at https://github.com

/neulab/neural-lpcfg.

syntactic formulation (Yuret, 1998; Carroll and

Charniak, 1992; Paskin, 2002). Specifically, thede-

pendency model with valence (DMV) (Klein and

Manning, 2004) forms the basis for many mod-

ern approaches in dependency induction. Most

recent models for grammar induction, be they for

PCFGs, DMVs, or other formulations, have gen-

erally coupled these models with some variety of

neural model to use embeddings to capture word

similarities, improve the flexibility of model para-

meterization, or both (He et al., 2018; Jin et al.,

2019; Kim et al., 2019; Han et al., 2019).

Notably, the two different syntactic formalisms

capture very different views of syntax. Phrase

structure takes advantage of an abstracted recur-

sive view of language, while the dependency struc-

ture more concretely focuses on the propensity of

particular words in a sentence to relate to each

other syntactically. However, few attempts at un-

supervised grammar induction have been made to

marry the two and let both benefit each other. This

is precisely the issue we attempt to tackle in this

paper.

As a specific formalism that allows us to model

both formalisms at once, we turn to lexicalized

probabilistic context-free grammars (L-PCFGs;

Collins, 2003). L-PCFGs borrow the underlying

machinery from PCFGs but expand the grammar

by allowing rules to include information about

the lexical heads of each phrase, an example of

which is shown in Figure 1. The head annotation

in the L-PCFG provides lexical dependencies that

can be informative in estimating the probabilities

of generation rules. For example, the probability

of VP[CHASING]→ VBZ[IS] VP[CHASING] is much

higher than VP→VBZ VP, because ‘‘chasing’’ is

a present participle. Historically, these grammars

have been mostly used for supervised parsing,

combined with traditional count-based estimators

of rule probabilities (Collins, 2003). Within this

context, lexicalized grammar rules are powerful,

647

Transactions of the Association for Computational Linguistics, vol. 8, pp. 647–661, 2020. https://doi.org/10.1162/tacl a 00337
Action Editor: Slav Petrov. Submission batch: 3/2020; Revision batch: 6/2020; Published 10/2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:zhuhao@cmu.edu
mailto:ybisk@cs.cmu.edu
mailto:gneubig@cs.cmu.edu
https://github.com/neulab/neural-lpcfg
https://github.com/neulab/neural-lpcfg
https://doi.org/10.1162/tacl_a_00337

Figure 1: Lexicalized phrase structure tree for ‘‘the

dog is chasing the cat.’’ The head word of each

constituent is indicated with parentheses.

but the counts available are sparse, and thus re-

quired extensive smoothing to achieve com-

petitive results (Bikel, 2004; Hockenmaier and

Steedman, 2002).

In this paper, we contend that with recent

advances in neural modeling, it is time to return

to modeling lexical dependencies, specifically

in the context of unsupervised constituent-based

grammar induction. We propose neural L-PCFGs

as a parameter-sharing method to alleviate the

sparsity problem of lexicalized PCFGs. Figure 2

illustrates the generation procedure of a neural

L-PCFG. Different from traditional lexicalized

PCFGs, the probabilities of production rules

are not independently parameterized, but rather

conditioned on the representations of non-

terminals, preterminals, and lexical items (§3).

Apart from devising lexicalized production rules

(§2.3) and their corresponding scoring function,

we also follow Kim et al.’s (2019) compound

PCFG model for (non-lexicalized) constituency

parsing with compound variables (§3.2), enabling

modeling of a continuous mixture of grammar

rules.2 We define how to efficiently train (§4.1)

and perform inference (§4.2) in this model using

dynamic programming and variational inference.

Put together, we expect this to result in a model

that both is effective, and simultaneously induces

both phrase structure and lexical dependencies,3

whereas previous work has focused on only

one. Our empirical evaluation examines this

hypothesis, asking the following question:

2In other words, we do not induce a single PCFG, but a

distribution over a family of PCFGs.
3Note that by ‘‘lexical dependencies’’ we are referring

to unilexical dependencies between the head word and child

non-terminals, as opposed to bilexical dependencies between

two words (as are modeled in many dependency parsing

models).

Figure 2: Model diagram of lexicalized com-

pound PCFG. Black lines indicate production

rules, and red dashed lines indicate that the

compound variable and parameters participating

in productions.

In neural grammar induction models,

is it possible to jointly and effectively

learn both phrase structure and lexical

dependencies? Is using both in concert

better at the respective tasks than spe-

cialized methods that model only one at

a time?

Our experiments (§5.3) answer in the affir-

mative, with better performance than baselines

designed specially for either dependency or

constituency parsing under multiple settings.

Importantly, our detailed ablations show that

methods of factorization play an important role

in the performance of neural L-PCFGs (§5.3.2).

Finally, qualitatively (§5.4), we find that latent

labels induced by our model align with annotated

gold non-terminals in PTB.

2 Motivation and Definitions

In this section, we will first provide the back-

ground of constituency grammars and dependency

grammars, and then formally define the general

L-PCFG, illustrating how both dependencies and

phrase structures can be induced from L-PCFGs.

2.1 Phrase Structures and CFGs

648

The phrase structure of a sentence is formed

by recursively splitting constituents. In the parse

above: The sentence is split into a noun phrase

(NP) and a verb phrase (VP), which can them-

selves be further split into smaller constituents;

for example, the NP comprises a determiner (DT)

‘‘the’’ and a normal noun (NN) ‘‘dog.’’

Such phrase structures are represented as a

context-free grammar4 (CFG), which can generate

an infinite set of sentences via the repeated

application of a finite setR of rules:

S → A, A ∈ N

A→ BC, A ∈ N , B,C ∈ N ∪ P

T → α, T ∈ P

S denotes a start symbol, N is a finite set of

non-terminals, P is a finite set of preterminals,

and Σ is a set of terminal symbols (i.e., words and

punctuation).

2.2 Dependency Structures and Grammars

The dog is chasing the cat

ROOT

det

nsubj

aux

nobj

det

In a dependency tree of a sentence, the syntactic

nodes are the words in the sentence. Here the

root is the root word of the sentence, and

the children of each word are its dependents.

Above, the root word is chasing, which has three

dependents, its subject (nsubj) dog, auxiliary verb

(aux) is, and object (nobj) cat. A dependency

grammar5 specifies the possible head-dependent

pairsD = {(αi, βi)} ∈ (V∪{ROOT})×V , where

the set V denotes the vocabulary.

2.3 Lexicalized CFGs

Although both the constituency and dependency

grammars capture some aspects of syntax, we

aim to leverage their relative strengths in a single

unified formalism. In a unified grammar, these

two types of structure can benefit each other. For

example, in The dog is chasing the cat of my

neighbor’s, while the phrase of my neighbor’s

might be incorrectly marked as the adverbial

phrase of chasing in a dependency model, the

4Note ǫ /∈ T and Σ ∩ T = ∅, so this formulation does

not capture the structure of sentences of length zero or one.
5This work assumes a projective tree.

constituency parser can provide the constraint that

the cat of my neighbor’s is a constituent, thereby

requiring chasing to be the head of the phrase.

Lexicalized CFGs are based on a backbone

similar to standard CFGs but parameterized to

be sensitive to lexical dependencies such as

those used in dependency grammars. Similarly

to CFGs, L-CFGs are defined as a five-tuple

T = (S,N ,P ,Σ,R). The differences lie in the

formulation of rulesR:

1 S → A[α], A ∈ N

2l A[α] → B[α]C[β], A ∈ N , B,C ∈ N ∪ P

2r A[α] → B[β]C[α], A ∈ N , B,C ∈ N ∪ P

3 T [α]→ α, T ∈ P

where α, β ∈ Σ are words, and mark the head of

constituent when they appear in ‘‘[·]’’.6 Branching

rules 2l and 2r encode the dependencies

(α, β).7

In a lexicalized CFG, a sentence x can be gen-

erated by iterative binary splitting and emission,

forming a parse tree t = [r1, r2, . . . , r2|x|], where

rules ri are sorted from top to bottom and from

left to right. We will denote the set of parse trees

that generate x within grammar T as Tx.

2.4 Grammar Induction with L-PCFGs

In this subsection, we will introduce L-PCFGs,

the probabilistic formulation for L-CFGs. The

task of grammar induction is to ask, given a

corpus C ⊂ Σ+, how can we obtain the

probabilistic generative grammar that maximizes

its likelihood. With the induced grammar, we are

also interested in how to obtain the trees that

are most likely given an individual sentence—in

other words, syntactic parsing according to this

grammar.

We begin by defining the probability distribu-

tion over sentences x, by marginalizing over all

parse trees that may have generated x:

pz(x) =
∑
t∈Tx

pz(t) =
1

Z(T ,z)

∑
t∈Tx

p̃z(t) (1)

where p̃z(t) is an unnormalized probability of

a parse tree (which we will refer to as an

6Without loss of generality, we only consider binary

branching in T .

7Note that root seeking rule 1 encodes (ROOT, α).

649

energy function), Z(T , z) =
∑

t∈T p̃z(t) is the

normalizing constant, and z is a compound

variable (§3.2) that allows for more complex and

expressive generative grammars (Robbins et al.,

1951).

We define the energy function of a parse tree

by exponentiating a score Gθ(t,z)

p̃z(t) ∝ expGθ(t,z) (2)

where θ is the parameter of function Gθ .

Theoretically, Gθ(t) could be an arbitrary scoring

function, but in this paper, as with most previous

work, we consider a context-free scoring function,

where the score of each rule ri is independent of

the other rules in the parse tree t:

Gθ(t,z) =

k∑
i=1

gθ(ri,z), (3)

where gθ(r,z) : R× R
n → R is the rule-scoring

function which maps the rule and latent variable

z ∈ R
n to real space, assigning a log likelihood

to each rule. This formulation allows for efficient

calculation using dynamic programming. We also

include a restriction that the energies must be top-

down locally-normalized, under which the par-

tition function should automatically equate to 1

Z(T , z) =
∑
t∈T

expGθ(t,z) = 1 (4)

To train an L-PCFG, we maximize the log

likelihood of the corpus (the latent variable is

marginalized out):

θ∗ = argmax
θ

∑
x∈C

logEzpz(x) (5)

And obtain the most likely parse tree of a sen-

tence by maximizing the posterior probability:

t∗ = argmax
t∈Tx

Ez expGθ∗(t,z) (6)

3 Neural Lexicalized PCFGs

As noted, one advantage of L-PCFGs is that the

obtained t∗ encodes both dependencies and phrase

structures, allowing both to be induced simulta-

neously. We also expect this to improve perfor-

mance, because different information is capture

by each of these two structures. However, this

expressivity comes at a price: more complex

rules. In contrast to the traditional PCFG, which

has O(|N |(|N |+ |P|)2) production rules, the L-

PCFG requiresO(|V ||N |(|N |+|P|)2) production

rules. Because traditionally rules of L-PCFGs

have been parameterized independently by scalars,

namely, gθ(ri, z) = θi (Collins, 2003), these

parameters were hard to estimate because of data

sparsity.

We propose an alternate parameterization, the

neural L-PCFG, which ameliorates these sparsity

problems through parameter sharing, and the

compound L-PCFG, which allows a more flexible

sentence-by-sentence parameterization of the

model. Below, we explain the neural L-PCFG

factorization that we found performed best but

include ablations of our decisions in Section 5.3.2.

3.1 Neural L-PCFG Factorization

The score of an individual rule is calculated as the

combination of several component probabilities:

root to non-terminal probability pz(S → A):
Probability that the start symbol produces a

non-terminal A.8

word emission probability pz(A→ α):
Probability that the head word of a constituent

is α conditioned on that the non-terminal of

the constituent is A.

head non-terminal probability

pz(B,x| A,α) or pz(C,y| A, α):
Probability of the headedness direction and

head-inheriting child9 conditioned on the

parent non-terminal and head words.

non-inheriting child probability

pz(C | A,B,α,x) or pz(B | A,C, α,y):
Probability of the non-inheriting child

conditioned on the headedness direc-

tion, and parent and head-inheriting child

non-terminals.

The score of root-seeking rule 1 is factorized

as the product of the root to non-terminal score and

word emission scores, as shown in Equation (7).

gθ(S → A[α], z) = log pz(S → A) + log pz(A→ α)
(7)

The scores of branching rules 2l and 2r

are factorized as the sum of a binary non-

terminal score, a head non-terminal score, and

8that is, A is the non-terminal of the whole sentence
9Child non-terminals that inherit the parent’s head word.

650

a word emission score. Equation (8) describes the

factorization of the score of rule 2l and 2r :

gθ(A[α]→ B[α]C[β], z)

= log pz(B,x|A,α)+ log pz(C |A,B,α,x)

+ log pz(C → β)

gθ(A[α]→ B[β]C[α], z)

= log pz(C,y|A,α)+log pz(B |A,C,α,y)

+ log pz(B → β)
(8)

Because the head of preterminals is already

specified upon generation of one of the ancestor

non-terminals, the score of emission rule 3

is 0.

The component probabilities are all similarly

parameterized, vectors corresponding to compo-

nent non-terminals or terminals are fed through

a multi-layer perceptron denoted f(·), and a dot

product is taken with another vector correspond-

ing to a component non-terminal or terminal. Spe-

cifically, the root to non-terminal probability is

pz(S → A) = expπz(S → A)/Z(z)

πz(S → A) = f (1)([uS ; z])
TvA

(9)

where ; denotes concatenation and the word emis-

sion probability is

pz(A→ α) = expπz(A→ α)/Z(A, z)

πz(A→ α) = f (2)([uA; z])
Tvα

(10)

with partition functions Z(z) such that
∑

A∈N pz
(S → A) = 1 and Z(A,z) s.t.

∑
α∈Σ pz(A →

α) = 1.

The non-inheriting child probabilities for left-

and right-headed dependencies are

pz(C | A,B,α,x) =
expπz(A[α]

x

→ B[α]C)

Z(A,B,α,x,z)

pz(B | A,C, α,y) =
expπz(A[α]

y

→ BC[α])

Z(A,C, α,x, z)

πz(A[α]
x

→ B[α]C) = [wx

A ;wx

α ; z]TvBC

πz(A[α]
y

→ BC[α]) = [wy

A ;wy

α ; z]TvBC

(11)

where partition functions satisfy
∑

C pz(C |
A,B,α,x) and

∑
B pz(B | A,C, α,y) = 1.

The respective head non-terminal scores are

pz(B,x| A,α) =
expπz(A[α]

x

→ B[α])

Z(A,α, z)

pz(C,y| A,α) =
expπz(A[α]

y

→ B[α])

Z(A,α, z)

πz(A[α]
x

→ B[α]) = f (3)([uA;uα; z])
TvBx

πz(A[α]
y

→ B[α]) = f (3)([uA;uα; z])
TvBy

(12)

where the partition function satisfies
∑

B pz(B,
x| A, α) +

∑
C pz(C,y| A, α) = 1.

Here vectors u,v,w ∈ R
d represent the

embeddings of non-terminals, preterminals and

words. f (i), i = 1, 2, 3 are multilayer perceptrons

with different set of parameters, where we use

residual connections10 (He et al., 2016) between

layers to facilitate training of deeper models.

3.2 Compound Grammar

Among various existing grammar induction mod-

els, the compound PCFG model of Kim et al.

(2019) both shows highly competitive results and

follows a PCFG-based formalism similar to

ours, and thus we build upon this method. The

compound in compound PCFG refers to the fact

that it uses a compound probability distribution

(Robbins et al., 1951) in modeling and estimation

of its parameters. A compound probability distri-

bution enables continuous variants of grammars,

allowing the probabilities of the grammar to

change based on the unique characteristics of the

sentence. In general, compound variables can be

devised in any way that may inform the spec-

ification of the rule probabilities (e.g., a structured

variable to provide frame semantics or the social

context in which the sentence is situated). In this

way, compound grammar increases the capacity

of the original PCFG.

In this paper, we use a latent compound variable

z that is sampled from a standard spherical

Gaussian distribution.

z ∼ N (0, I) (13)

We denote the probability of latent variable z

as pN (0,I)(z). By marginalizing out the compound

variable, we obtain the log likelihood of a

sentence:

log p(x) = log

∫
z

pz(x)pN (0,I)(z) dz (14)

651

Algorithm 1 Generative Procedure of Neural

L-PCFGs: Sentences Are Generated from Start

SymbolS and Compound Variable z Recursively.

Require: N ,T , P1, P2

function RECURSIVE(N,α, z)

N1, N2, d, β ∼ P2(N1, N2, d, β | N,α, z)
if d =y then

α, β ← β, α
end if

if N1 ∈ N then

Sl ← RECURSIVE(N1, α, z)

else

Sl ← [α]
end if

if N2 ∈ N then

Sr ← RECURSIVE(N2, β, z)

else

Sr ← [β]
end if

return CONCATENATE(Sl, Sr)

end function

z ∼ N (0, I)
N,α ∼ P1(N,α | S, z)
return RECURSIVE(N,α, z)

Algorithm 1 shows the procedure to generate

a sentence recursively from a random compound

variable and a distribution over the production

rules in a pre-order traversal manner, where P1

and P2 are defined using gθ from Equations (7)

and (8), respectively:

P1(N,α | S, z) = exp(gθ(S → A[α], z))

P2(N1, N2,x, β | N,α, z)

= exp(gθ(A[α]→ B[α]C[β], z))

P2(N1, N2,y, β | N,α, z)

= exp(gθ(A[α]→ B[β]C[α], z))
(15)

4 Training and Inference

4.1 Training

It is intractable to obtain either the exact log

likelihood by integration over z, and estimation

by Monte Carlo sampling would be hopelessly

inefficient. However, we can optimize the evi-

dence lower bound (ELBo):

L(x) = Eqφ(z|x) log pz(x)

− KL[qφ(z | x)‖pN (0,I)(z)]

≤ EpN (0,I)(z)pz(x)

(16)

10f(x) = σ(W2(σ(W1x+ b1)) + b) + x.

where qφ(z | x) is the proposal probability

parameterized by an inference network, similar

to those used in variantial autoencoders (Kingma

and Welling, 2014). The ELBo can be estimated

by Monte Carlo sampling:

L(x) =
1

L

L∑
i=1

log pzi
(x)

−KL[qφ(z | x)‖pN (0,I)(z)]

(17)

where {zi}
L
i=1 are sampled from qφ(z | x). We

model the proposal probability as an orthogonal

Gaussian distribution:

qφ(z | x) = pN (µ,diag(σ))(z) (18)

where (µ, σ) are output by the inference network

µ = fµ(x),σ = fσ(x) (19)

Both fµ and fσ are parameterized as LSTMs

(Hochreiter and Schmidhuber, 1997). Note that

the inference network could be optimized by the

reparameterization trick (Kingma and Welling,

2014):

ẑ ∼ N (0, I),z = µ+ σ ⊙ ẑ (20)

where ⊙ denotes Hadamard operation. The KL

divergence between qφ(z | x) andN (0, I) is

KL[qφ(z | x)‖pN (0,I)(z)]

= −
1

2
(

n∑
i=1

(log σi − σi + 1)− ‖µ‖22)
(21)

Initialization We initialize word embeddings

using GloVe embeddings (Pennington et al.,

2014). We further cluster word embeddings

with k-means (MacQueen, 1967), as shown in

Figure 3, and use the centroids of the clusters to

initialize the embeddings of preterminals. The

k-means algorithm is initialized using the k-

means++ method and trained until convergence.

The intuition therein is that this gives the model a

rough idea of syntactic categories before starting

grammar induction. We also consider the variant

without pretrained word embeddings, where we

initialize word embeddings and preterminals both

by drawing from N (0, I). Other parameters are

initialized by Xavier normal initialization (Glorot

and Bengio, 2010).

652

Figure 3: The clustering Result of GloVe Embed-

dings. Different colors represent cluster class of

each word, and larger black points represent the

initial embeddings of preterminals, i.e., cluster

centroids. The two-dimension visualization is

obtained by TSNE (Maaten and Hinton, 2008).

Curriculum Learning We also apply curricu-

lum learning (Bengio et al., 2009; Spitkovsky

et al., 2010) to learn the grammar gradually. Start-

ing at half of the maximum length in the training

set, we raise the length limit by α% each epoch.

4.2 Inference

We are interested in the induced parse tree for

each sentence in the task of unsupervised parsing,

that is, the most probable tree t̂

t̂ = argmax
t

p(t | x)

= argmax
t∈Tx

∫
z

pz(t)p(z | x) dz
(22)

where p(z | x) is the posterior over compound

variables. However, it is intractable to get the most

probable tree. Hence we use the mean µ = fµ(x)
predicted by the inference network and replace

p(z | x) with a Dirac delta distribution δ(z − µ)
in place of the real distribution to approximate the

integral11

t̂ ≈ argmax
t∈Tx

∫
z

pz(t)δ(z − µ) dz

= argmax
t∈Tx

pµ(t)
(23)

The most probable tree can be obtained via the

CYK algorithm.

11Note that it is also possible to use other methods for

approximation. For example, we can use qφ(z | x) in place

of posterior distribution. However, using it still results in high

prediction variance of the max function. We did not observe

a significant improvement with other methods.

Hyperparameter Value

|N |, |P| 10, 20

n 60

d 300

α 10

#layers of f (1), f (2), f (3) 6, 6, 4

non-linear activation relu

Table 1: Hyper-parameters and values.

5 Experiments

5.1 Data Setup

All models are evaluated using the Penn Treebank

(Marcus et al., 1993) as the test corpus, following

the splits and preprocessing methods, including

removing punctuation, provided by Kim et al.

(2019). To convert the original phrase bracket and

label annotations to dependency annotations, we

use Stanford typed dependency representations

(De Marneffe and Manning, 2008).

We use three standard metrics to measure the

performance of models on the validation and test

sets: directed and undirected attachment score

(DAS and UAS) for dependency parsing, and

unlabeled constituent F1 score for constituency

parsing.

We tune hyperparameters of the model to min-

imize perplexity on the validation set. We choose

perplexity because it requires only plain text and

not annotated parse trees. Specifically, we tuned

the architecture of f (i), i = 1, 2, 3 in the space

of multilayer perceptrons, with the dimension of

each layer being n + d, with residual connec-

tions and different non-linear activation functions.

Table 1 shows the final hyper-parameters of our

model. Due to memory constraints on a single

graphic card, we set the number of non-terminals

and preterminals to 10 and 20, respectively. Later

we will show that the compound PCFG’s perfor-

mance is benefited by a larger grammar; it is

therefore possible the same is true for our neu-

ral L-PCFG. Section 7 includes a more detailed

discussion of space complexity.

5.2 Baselines

We compare our neural L-PCFGs with the

following baselines:

Compound PCFG The compound PCFG (Kim

et al., 2019) is an unsupervised constituency par-

sing model that is a PCFG model with neural

scoring. The main difference between this model

653

DAS UAS F1

Gold Tags Word Embedding Dev Test Dev Test Dev Test

Compound PCFG∗∗ ✗ N (0, I) 21.2 23.5 38.9 40.8 - 55.2

Compound PCFG ✗ N (0, I) 15.6 (3.9) 17.8 (4.2) 27.7 (4.1) 30.2 (5.3) 45.63 (1.71) 47.79 (2.32)

Compound PCFG ✗ GloVe 16.4 (2.4) 18.6 (3.7) 28.7 (3.5) 31.6 (4.5) 45.52 (2.14) 48.20 (2.53)

DMV ✗ - 24.7 (1.5) 27.2 (1.9) 43.2 (1.9) 44.3 (2.2) - -

DMV ✓ - 28.5 (1.9) 29.9 (2.5) 45.5 (2.8) 47.3 (2.7) - -

Neural L-PCFGs ✗ N (0, I) 37.5 (2.7) 39.7 (3.1) 50.6 (3.1) 53.3 (4.2) 52.90 (3.72) 55.31 (4.03)

Neural L-PCFGs ✗ GloVe 38.2 (2.1) 40.5 (2.9) 54.4 (3.6) 55.9 (3.8) 45.67 (0.95) 47.23 (2.06)

Neural L-PCFGs ✓ N (0, I) 35.4 (0.5) 39.2 (1.1) 50.0 (1.3) 53.8 (1.7) 51.16 (5.11) 54.49 (6.32)

Table 2: Dependency and constituency parsing results. DAS/UAS stand for directed/undirected accuracy.

For the compound PCFG we use heuristic head rules to obtain dependencies (§5.2). Figures in the

parenthesis show the standard deviation calculated from five runs with different random seeds.
∗∗indicates a large (30 NT, 60 PT) compound PCFG from Kim et al. (2019) – we could not use this

size in our experiments due to memory constraints. Results are not directly comparable with the other

rows due to model size, but we report them for completeness. Best average performances are indicated

in bold.

and neural L-PCFG is the modeling of headedness

and the dependency between head word and gen-

erated non-terminals or preterminals. We apply the

same hyperparameters and techniques, including

number of non-terminals and preterminals, ini-

tialization, curriculum learning and variational

training to compound PCFGs for a fair compar-

ison. Because compound PCFGs have no notion

of dependencies, we extract dependencies from

the compound PCFG with three kinds of heuristic

head rules: left-headed, right-headed, and large-

headed. Left-/right-headed mean always choosing

the root of the left/right child constituent as the

root of the parent constituent, whereas large-

headedness is generated by a heuristic rule which

chooses the root of larger child constituent as the

root of the parent constituent. Among these, we

choose the method that obtains the best parsing

accuracy on the dev set (making these results an

oracle with access to more information than our

proposed method).

Dependency Model with Valence (DMV) The

DMV (Klein and Manning, 2004) is a model for

unsupervised dependency parsing, where valence

stands for the number of arguments controlled

by a head word. The choices to attach words as

children are conditioned on the head words and

valences. As shown in Smith (2006), the DMV

model can be expressed as a head-driven context-

free grammar with a set of generation rules and

scores, where the non-terminals represent the

valence of head words. For example, ‘‘L[CHASING]

→ L0[IS] R[CHASING]’’ denotes that a left-hand

constituent with full left valence produces a

word and a constituent with full right valence.

Therefore, it could be seen as a special case

of lexicalized PCFG where the generation rules

provide inductive biases for dependency parsing

but are also restricted—for example, a void-

valence constituent cannot produce a full-valence

constituent with the same head.

Note that DMV uses far fewer parameters than

the PCFG-based models, O(|P|2). The neural L-

PCFG uses a similar number of parameters as we

do, O(n(|P|+ |N |) + n2).

We compare models under two settings: (1) with

gold tag information and (2) without it, denoted

by ✓ and ✗, respectively in Table 2. To use gold

tag information in training the neural L-PCFG,

we assign the 19 most frequent tags as categories

and combine the rest into a 20th ‘‘other’’ cate-

gory. These categories are used as supervision for

the preterminals. In this setting, instead of optimiz-

ing the log probability of the sentence, we optimize

the log joint probability of the sentence and

the tags.

5.3 Quantitative Results

First, in this section, we present and discuss

quantitative results, as shown in Table 2.

5.3.1 Main Results

First comparing neural L-PCFGs with compound

PCFGs, we can see that L-PCFGs perform slightly

better on phrase structure prediction and achieve

much better dependency accuracy. This shows

that (1) lexical dependencies contribute somewhat

to the learning of phrase structure, and (2) the

654

PRPN ON
Compound Neural

PCFG L-PCFG

SBAR 50.0% 51.2% 42.36% 53.60%

NP 59.2% 64.5% 59.25% 67.38%

VP 46.7% 41.0% 39.50% 48.58%

PP 57.2% 54.4% 62.66% 65.25%

ADJP 44.3% 38.1% 49.16% 49.83%

ADVP 32.8% 31.6% 50.58% 58.86%

Table 3: Fraction of ground truth constituents that

were predicted as a constituent by the models

broken down by label (i.e., label recall). Results

of PRPN and ON are from Kim et al. (2019).

head rules learned by neural L-PCFGs are

significantly more accurate than the heuristics

that we applied to standard compound PCFGs.

We also find that GloVe embeddings can help

(unsupervised) dependency parsing, but do not

benefit constituency parsing.

Next, we can compare the dependency induc-

tion accuracy of the neural L-PCFGs with the

DMV. The results indicate that neural L-PCFGs

without gold tags achieve even better accuracy

than DMV with gold tags on both directed

accuracy and undirected accuracy. As discussed

before, DMV can be seen as a special case of

L-PCFG where the attachment of children is con-

ditioned on the valence of the parent tag, while

in L-PCFG the generated head directions are

conditioned on the parent non-terminal and the

head word, which is more general. Comparatively

positive results show that conditioning on

generation rules not only is more general but

also yields a better prediction of attachment.

Table 3 shows label-level recall (i.e., unlabeled

recall of constituents annotated by each non-

terminal). We observe that the neural L-PCFG

outperforms all baselines on these frequent

constituent categories.

5.3.2 Impact of Factorization

Table 4 compares the effects of three alternate

factorizations of gθ(A[α]→ B[α]C[β], z):

gθ(A[α]→ B[α]C[β], z) = pz(C → β)+

F I: log pz(B,C |A) + log pz(x| A→ BC)

F II: log pz(B,C,x| A,α)

F III: log pz(B,x|A, α) + log pz(C |A,B,α)

Factorization I assumes that the child non-

terminals do not depend on the head lexical item,

DAS UAS F1

Neural L-PCFG 35.5 51.4 44.5

w/ xavier init 27.2 47.6 43.6

w/ Factorization I 16.4 33.3 25.7

w/ Factorization II 22.3 42.7 39.6

w/ Factorization III 25.9 46.9 34.7

Table 4: An ablation of dependency and cons-

tituency parsing results on the validation set with

different settings of neural L-PCFG. All models

are trained with GloVe word embeddings and

without gold tags. ‘‘w/ xavier init’’ means that

preterminals are not initialized by clustering

centroids by xavier normal distribution. ‘‘w/

Factorization N’’ represents different factorization

methods (§5.3.2).

which influences the parsing result significantly.

Although Factorization II is as general as our

proposed method, it uses separate representations

for different directions, vBCx and vBCy.

Factorization III assumes the independence

between direction and dependent non-terminals.

These results indicate that our factorization

strikes a good balance between modeling lexical

dependencies and directionality, and avoiding

over-parameterization of the model that may lead

to sparsity and difficulties in learning.

5.4 Qualitative Analysis

We analyze our best model without gold tags in

detail. Figure 4 visualizes the alignment between

our induced non-terminals and gold constituent

labels on the overlapping constituents of induced

trees and the ground-truth. For each constituent

label, we show the frequency of it annotating

the same span of each non-terminal. We observe

from the first map that a clear alignment

between certain linguistic labels and induced

non-terminals (e.g., VP and NT-4, S and NT-2,

PP, and NT-8). But for other non-terminals, there’s

no clear alignment with induced classes. One hy-

pothesis for this diffusion is the diversity of the

syntactic roles of these constituents. To investigate

this, we zoom in on noun phrases in the second

map, and observe that NP-SBJ, NP-TMP, and

NP-MNR are combined into a single non-terminal

NT-5 in the induced grammar, and that NP, NP-

PRD, and NP-CLR corresponds to NT-2, NT-6,

and NT-0, respectively.

655

Figure 4: Alignment between all induced

non-terminals (x-axis) and gold non-terminals

annotated in the PTB (y-axis). In the upper

figure, we show the seven most frequent gold

non-terminals, and list them by frequency from

left to right. For each gold non-terminal, we show

the proportion of each induced non-terminal. In

the lower map, we breakdown the results of the

noun phrase (NP) into subcategories. Darker color

indicates higher proportion, and vice versa.

We also include an example set of parses

for comparing the DMV and neural L-PCFG in

Table 5. Note that DMV uses ‘‘to’’ as the head

of ‘‘know’’, the neural L-PCFG correctly inverts

this relationship to produce a parse that is better

aligned with the gold tree. One of the possible

reasons that the DMV tends to use ‘‘to’’ as the

head is that DMV has to carry the information

that the verb is in the infinitive form, which will

be lost if it uses ‘‘know’’ as the head. In our

model, however, such information is contained in

the types of non-terminals. In this way, our model

uses the open class word ‘‘know’’ as the root.

Note that we also illustrate a similar failure case

in this example. Neural L-PCFG uses ‘‘if’’ as the

head of the if-clause, which is probably due to

the independency between the root of the if-clause

and ‘‘know’’.
A common mistake made by the neural L-

PCFG is treating auxiliary verbs like adjectives

that combine with the subject instead of modify-

ing verb phrases. For example, the neural L-

PCFG parses ‘‘...the exchange will look at the

performance...’’ as ‘‘((the exchange) will) (look

(at (the performance)))’’, whereas the compound

PCFG produces the correct parse ‘‘((the exchange)

(will (look (at (the performance)))))’’. A possible

reason for this mistake is that English verb phrases

are commonly left-headed, which makes attaching

an auxiliary verb less probable as the left child of a

verb phrase. This type of error may stem from the

model’s inability to assess the semantic function

of auxiliary verbs (Bisk and Hockenmaier, 2015).

6 Related Work

Dependency vs Constituency Induction The

decision to focus on modeling dependencies

and constituencies has largely split the grammar

induction community into two camps. The

most popular approach has been focused on

dependency formalisms (Klein and Manning,

2004; Spitkovsky et al., 2010, 2011, 2013;

Mareček and Straka, 2013; Jiang et al., 2016; Tran

and Bisk, 2018), whereas a second community

has focused on inducing constituencies (Lane

and Henderson, 2001; Ponvert et al., 2011;

Golland et al., 2012; Jin et al., 2018). Induced

constituencies can in the case of CCG (Bisk and

Hockenmaier, 2012, 2013) produce dependencies,

but unlike our proposal, existing approaches do

not jointly model both representations. CFGs have

been used for decades to represent, analyze and

model the phrase structure of language (Chomsky,

1956; Pullum and Gazdar, 1982; Lari and Young,

1990; Klein and Manning, 2002; Bod, 2006).

Similarly, the compound PCFG (Kim et al.,

2019), which we extend, falls into this camp

of models that induce only phrase-structure

grammar. However, in this paper we demonstrate

a novel lexically informed neural parameterization

that extends their model to induce a

unified phrase-structure and dependency-structure

grammar.

Unifying Phrase Structure and Dependency

Grammar Head-driven phrase structure gram-

mar (Sag and Pollard, 1987) and lexicalized tree

adjoining grammar (Schabes et al., 1988) are

656

Table 5: Comparison between Neural L-PCFG and DMV on a case from PTB training set.

approaches to representing dependencies directly

in phrase structure.

The notion that abstract syntactic structure

should provide scaffolding for dependencies, and

that lexical dependencies should provide a seman-

tic guide for syntax, was most famously explored

in Collins (2003) through the introduction of an

L-PCFG. In addition, Carroll and Rooth (1998)

explored the problem of head induction in

L-PCFG; Charniak and Johnson (2005) improves

L-PCFGs with coarse-to-fine parsing and rerank-

ing. Recently, (Green and Žabokrtskỳ, 2012; Ren

et al., 2013; Yoshikawa et al., 2017) explored var-

ious methods to jointly infer phrase structure and

dependencies.

Klein and Manning (2004) show that a combi-

ned DMV and CCM (Klein and Manning, 2002)

model, where each tree is scored with the pro-

duct of the probabilities from the individual mod-

els, outperforms either individual model. These

results demonstrate that the two varieties of unsu-

pervised parsing models can benefit from

ensembling. In contrast, our model considers both

phrase-and dependency structure jointly. Seginer

(2007) introduces a parser using a representation

like dependency structure, which helps con-

stituency parsing.

Bikel (2004)’s analysis of prominent models

at the time found that lexical dependencies pro-

vided only very minor benefits and that choosing

appropriate smoothing parameters was key to

performance and robustness. Hackenmaier and

Steedman (2002) also explores this for combi-

natorial categorial grammar (CCG), showing that

lexical sparsity and smoothing have dramatic

effects regardless of the formalism. The sparsity

and expense of lexicalized PCFGs have precluded

their use in most contexts, though Prescher (2005)

proposes a latent-head model to alleviate the

sparse data problem.

7 Conclusion

In this paper, we propose neural L-PCFG, a

neural parameterization method for lexicalized

PCFGs, for both unsupervised dependency parsing

and constituency parsing. We also provide a

variational inference method to train our model.

By modeling both representations together, our

approach outperforms methods specially designed

for either grammar formalism alone.

Importantly, our work also adds novel in-

sights for the unsupervised grammar induction

literature by probing the role that factorizations

657

and initialization have on model performance.

Different factorizations of the same probability

distribution can lead to dramatically different

performance and should be viewed as playing an

important role in the inductive bias of learning

syntax. Additionally, where others have used

pretrained word vectors before, we show that they

too contain abstract syntactic information which

can bias learning.

Finally, although out of scope for one paper, our

results point to several interesting potential roads

forward, including the study of the effectiveness

of jointly modeling constituency-dependency

representations on freer word order languages,

and whether other distributed word presentations

(e.g., large-scale transformers) might provide even

stronger syntactic signals for grammar induction.

Despite the demonstrated success of lexical

dependencies, it should be noted that these

are only unilexical dependencies, in contrast to

bilexical dependencies, which also consider the

dependencies between head and dependent words.

Modeling these dependencies would require

marginalizing over all possible dependents for

each span-head pair. In this case, the time

complexity of exhaustive dynamic programming

over one sentence would becomeO(L5|N |(|N |+
|P|)2), where L stands for the length of the

sentence. Assuming enough parallel workers, this

time complexity can be reduced toO(L), but it still

requires O(L4|N |(|N | + |P|)2) auxiliary space.

In contrast, our model runs for O(L4|N |(|N | +
|P|)2). Assuming enough parallel workers, this

time complexity can also be reduced to O(L),
but still requiresO(L3|N |(|N |+ |P|)2) auxiliary

space. These auxiliary data can be stored in a

32GB graphic card in our experiments (e.g., with

N = 20), whereas the bilexical model cannot.

There are several potential methods to side-step

this problem, including the use of sampling in lieu

of dynamic programming, using heuristic methods

to prune the grammar, and designing acceleration

methods on GPU (Hall et al., 2014).

Acknowledgments

This work was supported by the DARPA

GAILA project (award HR00111990063), and

some experiments made use of computation

credits graciously provided by Amazon AWS.

The views and conclusions contained in this

document are those of the authors and should

not be interpreted as representing the official

policies, either expressed or implied, of the

U.S. Government. The U.S. Government is

authorized to reproduce and distribute reprints

for Government purposes notwithstanding any

copyright notation here on. The authors would like

to thank Junxian He and Yoon Kim for helpful

feedback about the project.

References

Yoshua Bengio, Jérôme Louradour, Ronan

Collobert, and Jason Weston. 2009. Curriculum

learning. In Proceedings of the 26th Annual

International Conference on Machine Learn-

ing, pages 41–48. DOI: https://doi

.org/10.1145/1553374.1553380

Daniel M. Bikel. 2004. Intricacies of Collins’

parsing model. Computational Linguistics,

30(4):479–511. DOI: https://doi.org

/10.1162/0891201042544929

Yonatan Bisk and Julia Hockenmaier. 2012. Sim-

ple robust grammar induction with combinatory

categorial grammars. In Proceedings of the

Twenty-Sixth Conference on Artificial Intelli-

gence (AAAI-12), pages 1643–1649. Toronto,

Canada.

Yonatan Bisk and Julia Hockenmaier. 2013. An

HDP model for inducing combinatory catego-

rial grammars. Transactions of the Association

for Computational Linguistics, pages 75–88.

DOI: https://doi.org/10.1162/tacl

a 00211

Yonatan Bisk and Julia Hockenmaier. 2015.

Probing the linguistic strengths and limitations

of unsupervised grammar induction. In Pro-

ceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics

and the 7th International Joint Conference

on Natural Language Processing (Volume 1:

Long Papers). DOI: https://doi.org

/10.3115/v1/P15-1135

Rens Bod. 2006. An all-subtrees approach to unsu-

pervised parsing. In Proceedings of the 21st

International Conference on Computational

Linguistics and 44th Annual Meeting of the

Association for Computational Linguistics,

pages 865–872. DOI: https://doi.org

/10.3115/1220175.1220284

658

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1162/0891201042544929
https://doi.org/10.1162/0891201042544929
https://doi.org/10.1162/tacl_a_00211
https://doi.org/10.1162/tacl_a_00211
https://doi.org/10.3115/v1/P15-1135
https://doi.org/10.3115/v1/P15-1135
https://doi.org/10.3115/1220175.1220284
https://doi.org/10.3115/1220175.1220284

Glenn Carroll and Eugene Charniak. 1992. Two

experiments on learning probabilistic depen-

dency grammars from corpora. Department of

Computer Science, Univ.

Glenn Carroll and Mats Rooth. 1998. Valence

induction with a head-lexicalized PCFG. arXiv

preprint cmp-lg/9805001.

Eugene Charniak. 1996. Tree-bank grammars. In

Proceedings of the National Conference on

Artificial Intelligence, pages 1031–1036.

Eugene Charniak and Mark Johnson. 2005.

Coarse-to-fine n-best parsing and maxent dis-

criminative reranking. In Proceedings of the

43rd Annual Meeting on Association for

Computational Linguistics, pages 173–180.

Association for Computational Linguistics. DOI:

https://doi.org/10.3115/1219840

.1219862

Noam Chomsky. 1956. Three models for the

description of language. IRE Transactions on

Information Theory, 2(3):113–124. IEEE. DOI:

https://doi.org/10.1109/TIT.1956

.1056813

Alexander Clark. 2001. Unsupervised induction

of stochastic context-free grammars using dis-

tributional clustering. In Proceedings of the

2001 Workshop on Computational Natural

Language Learning-Volume 7, page 13. Asso-

ciation for Computational Linguistics. DOI:

https://doi.org/10.3115/1117822

.1117831

Michael Collins. 2003. Head-driven statistical

models for natural language parsing. Com-

putational Linguistics, 29(4):589–637. DOI:

https://doi.org/10.1162/0891201

03322753356

Marie-Catherine De Marneffe and Christopher D.

Manning. 2008. Stanford typed dependencies

manual, Technical report, Stanford Univer-

sity. DOI: https://doi.org/10.3115

/1608858.1608859

Xavier Glorot and Yoshua Bengio. 2010.

Understanding the difficulty of training deep

feedforward neural networks. In Proceedings

of the Thirteenth International Conference

on Artificial Intelligence and Statistics,

pages 249–256.

Dave Golland, John DeNero, and Jakob Uszkoreit.

2012. A feature-rich constituent context model

for grammar induction. In Proceedings of the

50th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short

Papers), pages 17–22, Jeju Island, Korea.

Association for Computational Linguistics.

Nathan David Green and Zdeněk Žabokrtskỳ.

2012. Hybrid combination of constituency and

dependency trees into an ensemble dependency

parser. In Proceedings of the Workshop

on Innovative Hybrid Approaches to the

Processing of Textual Data, pages 19–26.

Association for Computational Linguistics.

David Hall, Taylor Berg-Kirkpatrick, and Dan

Klein. 2014. Sparser, better, faster GPU pars-

ing. In Proceedings of the 52nd Annual

Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers),

pages 208–217, Baltimore, Maryland. Asso-

ciation for Computational Linguistics. DOI:

https://doi.org/10.3115/v1/P14

-1020

Wenjuan Han, Yong Jiang, and Kewei Tu.

2019. Enhancing unsupervised generative

dependency parser with contextual information.

In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics,

pages 5315–5325.

Junxian He, Graham Neubig, and Taylor

Berg-Kirkpatrick. 2018. Unsupervised learning

of syntactic structure with invertible neural pro-

jections. arXiv preprint arXiv:1808.09111.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and

Jian Sun. 2016. Deep residual learning for

image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, pages 770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.

Long short-term memory. Neural Computation,

9(8):1735–1780. DOI: https://doi.org

/10.1162/neco.1997.9.8.1735, PMID:

9377276

Julia Hockenmaier and Mark Steedman. 2002.

Generative models for statistical parsing with

combinatory categorial grammar. In Proceed-

ings of 40th Annual Meeting of the Association

659

https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.3115/1117822.1117831
https://doi.org/10.3115/1117822.1117831
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
https://doi.org/10.3115/1608858.1608859
https://doi.org/10.3115/1608858.1608859
https://doi.org/10.3115/v1/P14-1020
https://doi.org/10.3115/v1/P14-1020
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://europepmc.org/article/MED/9377276

for Computational Linguistics, pages 335–342.

Philadelphia, Pennsylvania, USA. DOI:

https://doi.org/10.3115/1073083

.1073139

Yong Jiang, Wenjuan Han, and Kewei Tu. 2016.

Unsupervised neural dependency parsing. In

Proceedings of the 2016 Conference on Empir-

ical Methods in Natural Language Processing,

pages 763–771. Association for Computational

Linguistics. DOI: https://doi.org/10

.18653/v1/D16-1073

Lifeng Jin, Finale Doshi-Velez, Timothy Miller,

William Schuler, and Lane Schwartz. 2018.

Unsupervised grammar induction with depth-

bounded PCFG. Transactions of the Associa-

tion for Computational Linguistics, 6:211–224.

DOI: https://doi.org/10.1162/tacl

a 00016

Lifeng Jin, Finale Doshi-Velez, Timothy Miller,

Lane Schwartz, and William Schuler. 2019. Un-

supervised learning of PCFGS with normalizing

flow. In Proceedings of the 57th Annual Meet-

ing of the Association for Computational Lin-

guistics, pages 2442–2452.

Yoon Kim, Chris Dyer, and Alexander M. Rush.

2019. Compound probabilistic context-free

grammars for grammar induction. In Pro-

ceedings of the 57th Annual Meeting of the

Association for Computational Linguistics,

pages 2369–2385. DOI: https://doi

.org/10.18653/v1/P19-1228, PMID:

31697821, PMCID: PMC6539514

Diederik P. Kingma and Max Welling. 2014.

Auto-encoding variational bayes. In Pro-

ceedings of ICLR.

Dan Klein and Christopher D. Manning. 2002.

A generative constituent-context model for

improved grammar induction. In Proceedings

of the 40th Annual Meeting on Association

for Computational Linguistics, pages 128–135.

Association for Computational Linguistics. DOI:

https://doi.org/10.3115/1073083

.1073106

Dan Klein and Christopher D. Manning. 2004.

Corpus-based induction of syntactic structure:

Models of dependency and constituency. In

Proceedings of the 42nd Annual Meeting on

Association for Computational Linguistics,

page 478. Association for Computational Lin-

guistics. DOI: https://doi.org/10.3115

/1218955.1219016

Peter C.R. Lane and James B. Henderson.

2001. Incremental syntactic parsing of natural

language corpora with simple synchrony

networks. IEEE Transactions on Knowledge

and Data Engineering, 13(2):219–231. DOI:

https://doi.org/10.1109/69.917562

Karim Lari and Steve J. Young. 1990. The estima-

tion of stochastic context-free grammars using

the inside-outside algorithm. Computer Speech

& Language, 4(1):35–56. DOI: https://

doi.org/10.1016/0885-2308(90)

90022-X

Laurens van der Maaten and Geoffrey Hinton.

2008. Visualizing data using t-SNE. Journal of

Machine Learning Research, 9(Nov):2579–2605.

James MacQueen. 1967. Some methods for classi-

fication and analysis of multivariate observa-

tions. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and

Probability, volume 1, pages 281–297. Oakland,

CA, USA.

Mitchell Marcus, Beatrice Santorini, and Mary

Ann Marcinkiewicz. 1993. Building a large an-

notated corpus of English: The Penn Treebank.

Computational Linguistics, 19(2):313–330.

DOI: https://doi.org/10.21236/

ADA273556

David Mareček and Milan Straka. 2013. Stop-

probability estimates computed on a large

corpus improve unsupervised dependency

parsing. In Proceedings of the 51st Annual

Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers),

pages 281–290, Sofia, Bulgaria. Association

for Computational Linguistics.

Mark A. Paskin. 2002. Grammatical bigrams. In

Advances in Neural Information Processing

Systems, pages 91–97.

Jeffrey Pennington, Richard Socher, and

Christopher D. Manning. 2014. GloVe: Global

vectors for word representation. In Proceedings

of the 2014 Conference on Empirical Methods

660

https://doi.org/10.3115/1073083.1073139
https://doi.org/10.3115/1073083.1073139
https://doi.org/10.18653/v1/D16-1073
https://doi.org/10.18653/v1/D16-1073
https://doi.org/10.1162/tacl_a_00016
https://doi.org/10.1162/tacl_a_00016
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://europepmc.org/article/MED/31697821
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539514
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.1109/69.917562
https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.21236/ADA273556
https://doi.org/10.21236/ADA273556

in Natural Language Processing (EMNLP),

pages 1532–1543. DOI: https://doi.org

/10.3115/v1/D14-1162

Elias Ponvert, Jason Baldridge, and Katrin Erk.

2011. Simple unsupervised grammar induction

from raw text with cascaded finite state

models. In Proceedings of the 49th Annual

Meeting of the Association for Computational

Linguistics: Human Language Technologies,

pages 1077–1086, Portland, Oregon, USA.

Association for Computational Linguistics.

Detlef Prescher. 2005. Head-driven PCFGs with

latent-head statistics. In Proceedings of the

Ninth International Workshop on Parsing Tech-

nology, pages 115–124, Vancouver, British

Columbia. Association for Computational

Linguistics.

Geoffrey K. Pullum and Gerald Gazdar. 1982.

Natural languages and context-free languages.

Linguistics and Philosophy, 4(4):471–504.

DOI: https://doi.org/10.1007

/BF00360802

Xiaona Ren, Xiao Chen, and Chunyu Kit. 2013.

Combine constituent and dependency parsing

via reranking. In Twenty-Third International

Joint Conference on Artificial Intelligence.

Herbert Robbins and others. 1951. Asymptotically

subminimax solutions of compound statistical

decision problems. In Proceedings of the

Second Berkeley Symposium on Mathematical

Statistics and Probability. The Regents of the

University of California.

Ivan A. Sag and Carl Pollard. 1987. Information-

based syntax and semantics. CSLI Lecture

Notes, 13.

Yves Schabes, Anne Abeille, and Aravind K.

Joshi. 1988. Parsing strategies with ’lexical-

ized’ grammars: application to tree adjoining

grammars. In Proceedings of the 12th Confer-

ence on Computational Linguistics-Volume 2,

pages 78–583. Association for Computational

Linguistics. DOI: https://doi.org/10

.3115/991719.991757

Yoav Seginer. 2007. Fast unsupervised incre-

mental parsing. In Proceedings of the 45th

Annual Meeting of the Association of Com-

putational Linguistics, pages 384–391.

Noah Smith. 2006. Novel estimation methods

for unsupervised discovery of latent structure

in natural language text. Ph.D. thesis, Johns

Hopkins University.

Valentin I. Spitkovsky, Hiyan Alshawi,

Angel X. Chang, and Daniel Jurafsky. 2011.

Unsupervised dependency parsing without gold

part-of-speech tags. In Proceedings of the 2011

Conference on Empirical Methods in Natural

Language Processing, pages 1281–1290,

Edinburgh, Scotland, UK. Association for

Computational Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, and

Daniel Jurafsky. 2010. From baby steps to

leapfrog: How ‘‘less is more’’ in unsupervised

dependency parsing. In Human Language

Technologies: The 2010 Annual Conference of

the North American Chapter of the Association

for Computational Linguistics, pages 751–759.

Los Angeles, California.

Valentin I. Spitkovsky, Hiyan Alshawi, and

Daniel Jurafsky. 2013. Breaking out of local

optima with count transforms and model

recombination: A study in grammar induction.

In Empirical Methods in Natural Language

Processing. Association for Computational

Linguistics.

Ke Tran and Yonatan Bisk. 2018. Inducing

grammars with and for neural machine

translation. In Proceedings of the 2nd Workshop

on Neural Machine Translation. Melbourne,

Australia.

Masashi Yoshikawa, Hiroshi Noji, and Yuji

Matsumoto. 2017. A* CCG parsing with a

supertag and dependency factored model. In

Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 277–287, Van-

couver, Canada. Association for Computational

Linguistics.

Deniz Yuret. 1998. Discovery of linguistic re-

lations using lexical attraction. arXiv preprint

cmp-lg/9805009.

661

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1007/BF00360802
https://doi.org/10.1007/BF00360802
https://doi.org/10.3115/991719.991757
https://doi.org/10.3115/991719.991757

	Introduction
	Motivation and Definitions
	Phrase Structures and CFGs
	Dependency Structures and Grammars
	Lexicalized CFGs
	Grammar Induction with L-PCFGs

	Neural Lexicalized PCFGs
	Neural L-PCFG Factorization
	Compound Grammar

	Training and Inference
	Training
	Inference

	Experiments
	Data Setup
	Baselines
	Quantitative Results
	Main Results
	Impact of Factorization

	Qualitative Analysis

	Related Work
	Conclusion

