
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 8–18
Online, November 20, 2020. c©2020 Association for Computational Linguistics

8

Rank and run-time aware compression of NLP Applications

Urmish Thakker
SambaNova Systems

uthakker@cs.wisc.edu

Ganesh Dasika
AMD Research

Jesse Beu
Arm ML Research

Matthew Mattina
Arm ML Research

Dibakar Gope
Arm ML Research

Abstract

Sequence model based NLP applications can
be large. Yet, many applications that benefit
from them run on small devices with very lim-
ited compute and storage capabilities, while
still having run-time constraints. As a re-
sult, there is a need for a compression tech-
nique that can achieve significant compres-
sion without negatively impacting inference
run-time and task accuracy. This paper pro-
poses a new compression technique called Hy-
brid Matrix Factorization that achieves this
dual objective. HLF improves low-rank ma-
trix factorization (LMF) techniques by dou-
bling the rank of the matrix using an intel-
ligent hybrid-structure leading to better accu-
racy than LMF. Further, by preserving dense
matrices, it leads to faster inference run-time
than pruning or structure matrix based com-
pression technique. We evaluate the impact of
this technique on 5 NLP benchmarks across
multiple tasks (Translation, Intent Detection,
Language Modeling) and show that for similar
accuracy values and compression factors, HLF
can achieve more than 2.32× faster inference
run-time than pruning and 16.77% better accu-
racy than LMF.

1 Introduction

Sequence based (LSTMs/GRUs) NLP Applications
are being increasingly run on mobile phones and
smart watches. They are typically enabled by
querying a cloud-based system to do most of the
computation. The energy, latency, and privacy im-
plications associated with running a query on the
cloud is changing where users run a neural network
application. We should, therefore, expect an in-
crease in the number of NLP applications running
on embedded devices. Due to the energy and power
constraints of edge devices, embedded SoCs fre-
quently use lower-bandwidth memory technologies
and smaller caches compared to desktop and server

processors. Thus, there is a need for good compres-
sion techniques to enable large NLP models to fit
into an smaller edge device or ensure that they run
efficiently on devices with smaller caches (Thakker
et al., 2019b). Additionally, compressing models
should not negatively impact the inference run-time
as these tasks may have real-time deadlines to pro-
vide a good user experience.

In order to choose a compression scheme for a
particular network, one needs to consider 3 differ-
ent axes – the compression factor, the inference
run-time speedup over the baseline, and the accu-
racy. Ideally, a good compression algorithm should
not sacrifice improvement along one axis for im-
provement along another. For example, network
pruning (Han et al., 2016) has shown to be an ef-
fective compression technique, but pruning creates
a sparse matrix representation that is inefficient to
execute on most modern CPUs. Our analysis shows
that pruned networks can achieve a faster run-time
than the baseline only for significantly high com-
pression factors. Low-rank matrix factorization
(LMF) is another popular compression technique
that can achieve speedup proportional to the com-
pression factor. However, LMF has had mixed
results in maintaining model accuracy (Grachev
et al., 2017; Chen et al., 2018; Lu et al., 2016).
This is because LMF reduces the rank of a ma-
trix significantly, reducing its expressibility (Yang
et al., 2018). Lastly, structured matrices (Ding
et al., 2018) can also be used to compress neural
networks. While these techniques show a signifi-
cant reduction in computation, this reduction only
translates to a realized run-time improvement for
large matrices (Thomas et al., 2018) or while using
specialized hardware (Li et al., 2018; Sindhwani
et al., 2015). For benchmarks evaluated in this
paper, HLF gets 30× speed-up improvement over
structured matrix based technique (Sindhwani et al.,
2015).



9

Given LMF’s good run-time characteristics, it
can potentially act as an alternative to pruning.
However, LMF leads to an accuracy loss. To over-
come the problem of finding an alternative to
pruning, which preserves the run-time benefit
of dense structures of LMF and the accuracy
benefits of pruned networks, we introduce a
new compression technique called Hybrid Ma-
trix Factorization (HLF). HLF can act as an ef-
fective compression technique for NLP edge use
cases on embedded CPUs. The results are very
promising – HLF achieves iso-accuracy for a large
compression factor (2× to 4×), improves the CPU
run-time over pruning by a factor of 2.32× and can
achieve 16.77% better model accuracy than LMF
and 9% better accuracy than smaller baselines.

2 Related Work

Pruning (Han et al., 2016; Zhu and Gupta, 2017;
Sanh et al., 2020) has been the most successful com-
pression technique for all types of neural networks.
Poor hardware characteristics of pruning has led to
research in block based pruning technique (Narang
et al., 2017). However, block based pruning tech-
nique also requires certain amount of block sparsity
to achieve faster run-time than baseline. Having a
strict compression factor requirement to get better
run-time is a stringent constraint that HLF manages
to avoid.

Structured matrices have shown significant po-
tential for compression of NN (Sindhwani et al.,
2015; Ding et al., 2018; Wang et al., 2018; Ding
et al., 2017; Cheng et al., 2015; Thakker et al.,
2020). Block circular compression is an extension
of structured matrix based compression technique,
converting every block in a matrix into structured
matrix. We will show in this paper that HLF is a
superior technique than block circular decomposi-
tion.

Tensor decomposition (CP decomposition,
Kronecker, Tucker decomposition etc) based meth-
ods have also shown significant reduction in pa-
rameters (Tjandra et al., 2017; Thakker et al.,
2019c,a). Matrix Factorization (Kuchaiev and Gins-
burg, 2017; Chen et al., 2018; Grachev et al., 2017;
Thakker et al., 2019) can be categorized under this
topic. We will show in this paper that HLF can lead
to better accuracy than LMF compressed RNNs.

Quantization is another popular technique for
compression (Hubara et al., 2017, 2016; Gope et al.,
2020a; Sanh et al., 2019; Liu et al., 2018; Gope

et al., 2020b, 2019). Networks compressed using
HLF can be further compressed using quantization.

Dynamic techniques are used to improve infer-
ence run-time of RNNs by skipping certain RNN
state updates (Campos et al., 2018; Seo et al., 2018;
Yu et al., 2017; Tao et al., 2019). These techniques
are based on the assumption that not all inputs
to a RNN are needed for final classification task.
Thus we can learn a small and fast predictor that
can learn to skip certain inputs and its associated
computation. HLF technique is orthogonal to this
technique and networks compressed using HLF can
be further optimized using this technique.

Design of efficient structures for LSTM/GRU
cells like SRU (Lei et al., 2018), QRNN (Bradbury
et al., 2016) and PRU (Mehta et al., 2018) have
also led to networks with faster inference run-time
benefits or lesser number of parameters. These
structures are different from structured matrices
and are hand-crafted after better understanding the
application domain. HLF can be further used to
optimize the matrices in these architectures to make
the resultant network more parameter and run-time
efficient.

Finally, any technique used to reduce the param-
eter footprint of embedding matrices in NLP can
further optimize RNN networks optimized using
HLF (Acharya et al., 2019; Mehta et al., 2019). In
this paper, we show that HLF can compress net-
works with compressed word embedding layers.

3 Hybrid Matrix Factorization

3.1 Why LMF can potentially lead to loss in
accuracy

LMF (Kuchaiev and Ginsburg, 2017) expresses
a larger matrix A ∈ Rm×n as a product of two
smaller matrices U ∈ Rm×r and V ∈ Rr×n, re-
spectively. Parameter r controls the compression
factor. Unlike pruning, matrix factorization is able
to improve the run-time over the baseline for most
compression factors. Unfortunately, compression
via LMF can lead to loss in accuracy. We believe,
this is because of two closely related reasons:

• Rank-Loss: The rank of a matrix is a measure
of the expressibility of a matrix. A lower rank
matrix means less expressibility, limiting its
learning capacity. This can potentially lead to
some accuracy loss. LMF compression leads
to a lower ranked matrix. While before com-
pression, the rank of matrix A is min(m,n),



10

after compression, it becomes min(m,n, d).
Eg - If A ∈ R256×256, compression using
LMF by a factor of 2 leads to U ∈ R256×64

and V ∈ R64×256. The resultant compressed
matrix A (= U ∗V ) is a 64 rank matrix. Thus,
in order to compress the matrix by a factor
of 2, LMF reduces the rank of a matrix by a
factor of 4.

• Less expressive output features: A closely
related argument can be viewed when we ex-
tend the idea of low-rank matrix and its im-
pact on the output features. Without loss of
generality, an LSTM/GRU layer calculates a
matrix-vector product during inference. If we
assume the parameters of a LSTM/GRU layer
are represented by a matrix A ∈ Rm×n and
the input to the matrix is x ∈ Rn×1, then the
output feature calculated is -

y = f(A ∗ x)
where, y ∈ Rm×1

. f is a non-linear function. Thus, each ele-
ment of y is a dot product of a row of A and
the vector x followed by non-linearity. LMF
expresses A in a lower dimensional space us-
ing the U and V matrix. If we rewrite the
equation to calculate y, when A is expressed
using LMF, we get -

y = f(U ∗ V ∗ x) (1)

y = f(U ∗ k) (assuming k = V ∗ x)
(2)

where, k ∈ Rr×1 (3)

Generally, for compression r < m, n. Thus,
x ∈ Rn×1 is projected to a lower dimensional
embedding of size Rd×1 and expanded again
to Rm×1 to create y. Thus, compressing A to a
lower rank leads to output features calculated
from a lower dimension embedding vector.

3.2 Hybrid Matrix Factorization
This paper introduces a new compression technique
that uses dense matrix representation to ensure fast
run-time properties and avoids making the strong
assumptions made by LMF. This technique is based
on three assumptions -

• A1: Rank of a matrix is important to cre-
ate a high-task accuracy LSTM/GRU network
(Yang et al., 2018)

A

A’

B

C

Size(A’) = j*n

Size (B) = (m-j)*k

Size (C) = k*n

Size(A) = m*n

Figure 1: Representation of a matrix using hybrid fac-
torization

• A2: LMF makes a strong assumption that all
the elements of the output feature vector of a
LSTM/GRU Cell can be expressed from a low-
dimensional embedding vector (Equation 2).
HLF is based on the assumption that a more
relaxed constraint of having a hybrid output
feature vector, where some elements are cal-
culated from a lower dimensional embedding
space and other’s from a higher dimensional
embedding space can lead to better accuracy.

• A3: Most LSTM/GRU networks are followed
by a fully-connected softmax layer or another
LSTM/GRU layer. Even if the order of the el-
ements in the output of a particular RNN layer
changes, the weights in the subsequent fully
connected or LSTM/GRU layers can adjust
to accommodate that. Thus, the order of the
elements of the output vector of LSTM/GRU
layer is not strictly important.

These three intuitions of a LSTM/GRU layer
can be used to create a more hardware-friendly
compression scheme. This paper introduces one
such scheme – Hybrid Matrix Factorization.

Hybrid Matrix Factorization (HLF) splits the in-
put and recurrent matrices in an LSTM/GRU layer
into two parts – a fully parameterized upper part
and low-rank lower part.

Figure 1 shows the strategy we use to decompose
the matrix - an unconstrained upper half A′ and a
lower half that is composed of k rank-1 blocks. If
we decompose the weight matrix using this tech-



11

Algorithm 1 Matrix vector product when a matrix
uses the HLF technique
Input 1: Matrices A′ of dimension j × n, B of
dimension (m− j)× k, C of dimension k × n)
Input 2: Vector I of dimension n× 1
Output: Matrix O of dimension m× 1

1: O1:j ← A′ × I
2: Temp1← C × I
3: Oj+1:m ← B × Temp1
4: O = concatenate{O1:j, Oj+1:m}

Matrix of Size (256,256)

Compression Factor LMF HLF

1.25 102 103 - 204
1.67 76 78 - 153
2.50 51 52 - 101
5.00 25 26 - 50

Table 1: The maximum possible rank of a 256 × 256
sized matrix after it is compressed by 4 different factors
using 3 different compression techniques. To compress
a matrix by a given compression factor, HLF has 2 dif-
ferent parameters j and k to regulate the rank of the
matrix. Hence, we see a range of rank values. Maxi-
mum rank is achieved when k=1. The value for j when
k=1 can be calculated for different compression factors
using equation 4.

nique, the parameter reduction is given by:

m× n

(j × n) + k × (m− j + n)
(4)

Thus, the maximum rank of the matrix becomes
j + k. Different values of j and k can be used to
control the amount of compression and the rank of
the matrix.

Structuring a matrix as shown in Figure 1 can
lead to significant increase in maximum rank of the
compressed matrix. Table-1 shows the maximum
possible rank of a 256 × 256 matrix compressed
to the same number of parameters using the two
compression techniques - LMF and HLF. As shown,
HLF can effectively double the rank of the matrix
for the same number of parameters. To compress
a matrix by a given compression factor, HLF has
2 different parameters, j and k, to regulate the
rank of the matrix. Hence, we see a range of rank
values. Maximum rank is achieved when k=1. The
value for j when k=1 can be calculated for different
compression factors using equation 4.

Apart from the storage reduction, HLF also leads
to a reduction in the number of computations. As-
suming a batch size of 1 during inference, HLF
leads to inference speed-up by using the associa-
tive property of matrix products to calculate the
matrix-vector product - Algorithm 1 shows how to
calculate the matrix vector product when the matrix
is represented using HLF. This algorithm avoids
expanding the matrix A′, B and C into A.

Algorithm 1 uses the associative property of ma-
trix products to gain the computation speedup. For
a matrix vector product between a matrix of size
m × n and a vector of size n × 1, the number
of operations required to compute the product is
m × n (Trefethen and Bau, 1997). Referring to
Algorithm 1, number of operations required to cal-
culate O1:j is j×n. The Temp1 variables need k ∗ n
operations and calculating Oj+1:m needs k*(m-j)
operations. Thus, the reduction in number of oper-
ations when we use Algorithm 1 is:

m× n

j × n+ k × n+ k × (m− j)
(5)

3.2.1 Impact on output feature vector
Algorithm 1 shows that, HLF divides the output
into two stacked sub-vectors. One is a result of a
fully-parameterized multiplication, A′ × I (Line
1, Algorithm 1). The other is the result of the low
rank multiplication : B × C × I (Line 2-3, Algo-
rithm 1). Thus, the upper sub-vector has “richer”
features created from a higher dimensional embed-
ding, while the lower sub vector has “constrained”
features created from a lower dimensional embed-
ding. By incorporating the HLF structure during
training, we force an RNN to learn “richer” fea-
tures in the upper sub-vector and the “constrained”
features in the lower sub-vector. Because a RNN is
followed by another RNN or a softmax layer, this
restructuring should not impact the subsequent lay-
ers. Thus, HLF structure combines the assumptions
A2 and A3 that were discussed previously.

3.3 Why HLF leads to larger rank than LMF
for same number of parameters?

HLF is an extension of LMF. To understand this,
let us revisit Figure 1, where the matrix

A = [A′ ; BC]

where A ∈ Rm×n, A′ ∈ Rj×n, B ∈ R(m−j)×k

and C ∈ Rk×n. Then we can rewrite the matrix



12

as,

A = [I , 01;02 , B][A′ ; C]

where I ∈ Rj×j , 01 ∈ Rj×k and 02 ∈ R(m−j)×j .
The above equation could be re-written as -

A = U ′V ′

where U ′ ∈ Rm×(j+k) and V ′ ∈ R(j+k)×n. Both
U’ and V’ can have a maximum rank of j + k. The
maximum value of this rank is achieved when k=1
and j is calculated as discussed in Table 1. Let this
value be d. A standard LMF decomposition of A
will also lead to a representation of the form UV ,
but this representation will have same parameters
as HLF only if the rank of both U and V is at most
(d+ 1)/2. Thus, HLF can be regarded as a (d+ 1)
ranked LMF of A, with a sparsity forcing mask that
reduces the number of parameters to express the
(d + 1) ranked matrix significantly. This is why
HLF can double the rank of the matrix when
compared to an iso-parameter LMF matrix.

Neural networks seldom learn structured spar-
sity unless they are forced to (Narang et al., 2017),
thus, an RNN trained with the LMF structure will
rarely end up learning the same structure as HLF.
The pre-determined HLF structure effectively
creates a sparsity forcing mask. Such a sparsity
forcing mask also leads to creation of the decou-
pled output feature vectors as described in section
3.2.1.

4 Results

We compare HLF with LMF and 3 other compres-
sion techniques – model pruning, small baseline
and a structured matrix based technique called
block circular decomposition. These techniques
and why they need to be considered are discussed
below:

• Pruning: Model pruning (Zhu and Gupta,
2017) induces sparsity in the matrices of a
neural network, thereby reducing the number
of non-zero valued parameters that need to be
stored. Pruning creates sparse matrices which
are stored in a specialized sparse data structure
such as CSR. The overhead of traversing these
data structures while performing the matrix-
vector multiplication can lead to poorer infer-
ence run-time than when executing the base-
line, non-sparse network. Thus, while pruning

is an effective compression technique, its run-
time performance on CPUs can make it a less
appealing choice for compression. We use the
magnitude pruning framework provided by
(Zhu and Gupta, 2017). While there are other
possible ways to prune, recent work (Gale
et al., 2019) has suggested that magnitude
pruning provides state-of-the-art or compa-
rable performance when compared to other
pruning techniques (Neklyudov et al., 2017;
Louizos et al., 2018).

• Small Baseline: Additionally, we train a
smaller baseline with the number of parame-
ters equal to that of the compressed baseline.
This serves as a useful point of comparison
because of two reasons.

– First, to check if compression of a larger
network leads to better accuracy than
compressing a network by reducing its
dimensions (size of hidden layer or num-
ber of layers). This can help us ver-
ify if the network was originally over-
parameterized.

– Second, to establish the hypothesis
whether HLF’s creation of a stacked
output feature vector as described in
section 3.2.1 adds any useful informa-
tion in the network. Smaller baseline
creates output feature vector that is cre-
ated from a high-dimensional embedding
only. HLF, additionally concatenates the
output features created from lower di-
mensional embedding. Thus, comparing
the accuracy of HLF with Smaller base-
line helps evaluate the usefulness of the
output features created using lower di-
mensional embedding.

Given the significant slow-down of infer-
ence of BCD compressed networks, we do
not discuss the results sing BCD compres-
sion in the rest of the paper.

4.1 Experiment Setup
Measuring inference run-time: In order to com-
pare the inference run-time of RNN cells com-
pressed using pruning, LMF and HLF, we imple-
mented these cells in C++ using the Eigen library.
This paper focuses on inference on an edge de-
vice. As a result, we make the assumption that
the batch size of the application will be 1 while



13

SB

LMF

P

HLF

SB

LMF

P

HLF

SB

LMF

P

HLF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

23.5 24 24.5 25 25.5 26

Sp
ee

d
-u

p
 o

ve
r 

b
as

el
in

e

BLEU Score

Language Translation

Baseline
2.5x
3.33x
5x

SB

LMF

P

HLF

SB

LMF

P

HLF

SB

LMF

P

HLF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

97 97.2 97.4 97.6 97.8 98 98.2 98.4 98.6 98.8

Sp
ee

d
-u

p
 o

ve
r 

b
as

el
in

e

Accuracy

Text Classification

Baseline
2.5x
3.33x
5x

(a) For both figures, HLF exists in the top-right corner, providing the best trade-off in terms of accuracy, compression and
speed-up. For all 3 compression points, HLF provides better accuracy than LMF and SB and better run-time than prun-
ing. (Left) Language Translation: HLF improves the BLEU score achieved by LMF by 2.3% to 4.5% and by Small
Baseline by 2.8% to 4.1%. At the same time, HLF improves the inference run-time over pruning by 1.5 − 1.74×.
(Right) Text Classification: HLF can improve the accuracy achieved by LMF by up-to 1.2% and SB by up-to 1.3% and
improve the run-time achieved by pruning by up-to 1.2×

Baseline

SB
LMF

P

HLF

SB

LMF

P

HLF

SB

LMF

P

HLF

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

94 94.5 95 95.5 96 96.5

Sp
ee

d
-u

p
 o

ve
r 

b
as

el
in

e

F1- Score

Slot Filling

Baseline
2.5x
3.33x
5x

SB LMF

P

HLF

SB

LMF

P

HLF

SB

LMF

P

HLF

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

95.7 95.9 96.1 96.3 96.5 96.7 96.9 97.1 97.3 97.5

Sp
ee

d
-u

p
 o

ve
r 

B
as

el
in

e

Accuracy

Intent Detection

Baseline
2.5x
3.33x
5x

(b) For both figures, HLF exists in the top-right corner, providing the best trade-off in terms of accuracy, compression and speed-
up. (Left) Slot Filling: For all 3 compression points, HLF provides better accuracy than LMF and SB and better run-time than
pruning. HLF can improve the accuracy achieved by LMF and SB by up-to 1.2% and improve the run-time achieved by
pruning by up-to 1.26×. (Right) Intent Detection: For all 3 compression points, HLF provides better accuracy than LMF and
SB and better run-time than pruning. HLF can improve the accuracy achieved by LMF and SB by up-to 1% and improve
the run-time achieved by pruning by up-to 1.26×

SB

LMF

P

HLF

SB

LMF

P

HLF

SB

LMF

P

HLF

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

81828384858687888990919293949596979899

Sp
ee

d
-u

p
 o

ve
r 

b
as

el
in

e

Perplexity

Language Modeling

Baseline
2.5x
3.33x
5x

(c) Language Modeling: For LM, lower values of perplexity are better. HLF provides a viable alternative to both pruning and
LMF at compression factors of 2.5x, 3.0x and 5x. HLF can achieve 17% better perplexity than LMF, 9% better perplexity
than small baseline and 2.32× better inference run-time than pruning.

Figure 2: Speed-up over baseline vs Accuracy comparing the baseline with a smaller baseline and the baseline
compressed using different compression schemes at varying compression factors. Speed-up values > 1 indicate a
decrease in inference run-time and values < 1 indicate an increase in inference run-time. For each compression
factor, the compression scheme that is most to the top-right is the ideal choice. In case of perplexity, lower
values are better. Thus, the graphs are plotted in a slightly different way to still adhere to the fact that the most
ideal choice of compression is in the top-right corner. P = Pruning, LMF = Low rank matrix factorization, HLF =
Hybrid matrix decomposition, SB = Smaller baseline. The best way to view this figure is to either focus on a
compression point and see how the Pareto curve of speed-up vs accuracy changes as we add HLF or focus
on an accuracy region and see what compression schemes provides the best run-time at highest compression
factor.



14

measuring the run-time of an application. However,
the observations regarding run-time should remain
consistent for larger batch sizes as well. We ran
our experiments on a single cortex-A73 core of the
Hikey 960 board. The size of L3 cache is 2MB.

Training infrastructure: We use Tensorflow
1.14 to train our networks on a cluster of 2 RTX
2080 Ti NVidia GPUs with 11 GB Memory. The
training settings for the benchmarks evaluated can
be found in the reference paper for each bench-
mark.

What do we compress? We compress the
LSTM/GRU layers in each application. We do
not compress the embedding layers using HLF.

The amount of compression determines the rank
of the compressed matrices when we use LMF to
compress an NLP application and the sparsity of
the pruned matrix when we use pruning as our
choice of compression technique. Similar to LMF,
the amount of compression determines the rank
of the compressed matrices when we use HLF as
our choice of compression. However, for HLF two
parameters j and k control the rank of the matrix.
We use a sweep starting with k=1 to determine the
exact values of j and k that help us achieve a good
accuracy.

What do we compare?: We compare the ac-
curacy and inference run-time of all compression
technologies at iso-compression factors for various
compression techniques.

4.2 Comparison of compression techniques
across different ML tasks

The impact of compression on accuracy is com-
pared for 5 benchmarks – machine translation, nat-
ural language understanding (intent detection and
slot filling), text classification and Language Mod-
eling. These tasks are some of the most important
NLP applications that run on edge and embedded
devices like smart phones, smart watches and smart
homes.

4.2.1 Language Translation

We use the English to Vietnamese translation model
in (Luong et al., 2017). The model uses 2-layer
LSTMs of size 512 units with bidirectional encoder
(i.e., 1 bidirectional layers for the encoder), embed-
ding of dim 512 and an attention layer. We used the
hyper-parameters in (Luong et al., 2017) to train
the network while modifying the learning rate val-
ues used. We sweep the learning rates values from

×0.1 to 3.0 in multiples of 3. For HLF, we used
the value of k=2.

Figure 2a shows the results of compressing
the LSTM layers in the NMT VIEN baseline by
2.5×, 3.33× and 5×. HLF improves the BLEU
score achieved by LMF by 2.3% to 4.5% and
by Small Baseline by 2.8% to 4.1%. At the
same time, HLF improves the inference run-
time over pruning by 1.5×−1.74×.

4.2.2 Language Modeling
We use the medium LM model from (Zaremba
et al., 2014) as our baseline. The PTB (Medium)
baseline has 2 LSTM layers each with a hidden
vector of size 650 with a vocabulary size of 10,000
words from the English vocabulary. We used the
hyper-parameters in (Zaremba et al., 2014) and
train the compressed networks for 50 more epochs
than in baseline. The baseline network is trained
for 39 epochs. For the first 6 epochs the learning
rate used is of value 1, and after that we decrease
it by a factor of 1.2 after each epoch. We clip the
norm of the gradients at 5 and use dropout of value
0.35. For HLF, we used the value of k=4.

Figure 2c shows the results of compressing the
LSTM layers in the PTB (Medium) baseline by
2.5×, 3.33× and 5×. Lower the perplexity, bet-
ter the model. Pruning achieves the same (some-
times better) perplexity than baseline and other
compression techniques. LMF leads to signifi-
cant loss in perplexity for all compression factors
while HLF achieves better perplexity than LMF and
faster inference run-time than baseline and pruned
networks for all compression factors. In fact,
HLF can achieve 17% better perplexity than
LMF, 9% better perplexity than small baseline
and 2.32× better inference run-time than prun-
ing. The preferred choice of compression scheme
for different compression factors will depend on
whether slight loss in perplexity can be accommo-
dated for faster inference run-time or not. However,
HLF still manages to serve as a more viable alter-
native to pruning than LMF for inference on edge
CPUs.

4.2.3 Text Classification
We use the text classification network in (Zhou
et al., 2016) evaluated on the SemEval-2010 dataset.
The baseline network has 1 bidirectional LSTM
layers with hidden vector of size 256. We used
the hyper-parameters in (Zhou et al., 2016) to train
the baseline and as the initial hyperparameters ex-



15

plored for the compressed networks. We trained
the compressed networks for additional 20 epochs
while exploring learning rates of 10× and 1/10
than the baseline learning rate. The baseline model
was trained using AdaDelta with a learning rate of
1.0. The model parameters were regularized with
L2 regularization strength of 10−5.

Figure 2b shows the results for compressing the
text classification network by 2.5×−5×. HLF can
improve the accuracy achieved by LMF by up-
to 1.2%, by SB by up-to 1.3% and improve the
run-time achieved by pruning by almost 1.20×.

4.2.4 Intent Detection and Slot Filling
We used the benchmark published in (Liu and Lane,
2016). This benchmark is trained on the ATIS
dataset and jointly trains for intent detection and
slot filling. The benchmark uses 1 LSTM layer of
size 128 along with attention layers. For HLF, we
used the value of k=1.

Figure 2b shows the results for slot filling task.
HLF can improve the F1-accuracy achieved by
LMF and SB by up-to 1.2% and improve the
run-time achieved by pruning by up-to 1.26×.
Figure 2b shows the result for the intent classi-
fication task. Due to joint training, the network
used for slot filling and intent classification is the
same. As a result, the runtime improvement of
HLF over pruning is exactly the same as for the
slot filling task. Additionally, HLF improves the
intent classification accuracy by up to 1% over
LMF and small baseline.

4.3 Ablation Studies

4.3.1 Compressing Word Embedding layers
using HLF

We compressed the input word-embedding layers
in the PTB-LM model discussed in section 4.2.2,
without compressing other layers in the network.
However, even 3× compression using HLF led to
8% loss in perplexity score.

4.3.2 Orthogonality of word embedding
compression methods and HLF

We ran experiments where we prune the word em-
bedding layers in the PTB-LM model in section
4.2.2 by 2×while keeping the LSTM layers uncom-
pressed, leading to 83.1 perplexity score. We were
able to further compress this network by 2× using
HLF with only 1 point loss in perplexity score, in-
dicating that HLF is compatible with techniques
used for compressing word-embedding layers.

5 Discussion

Effectively, HLF acts as an alternative to LMF
whenever compression using pruning does not lead
to the required run-time benefit and LMF leads to
loss in accuracy. HLF has a better accuracy than
LMF for most evaluation points, validating the as-
sumption in the paper that rank of a matrix in a
RNN is important for better task accuracy in NLP
applications. Additionally, HLF has a better ac-
curacy than smaller baseline. This validates the
assumption of the importance of constrained fea-
tures in addition to the richer features in a Small
Baseline network.

6 Limitations

While HLF provides significant benefits over LMF,
there are two limitations associated with the tech-
nique:

• The unique nature of RNNs (Assumption A1-
A3) makes HLF a natural fit for LSTM/GRU
layers. However, these assumptions are not
valid for the final classification layer. In clas-
sification layer, HLF will lead to more expres-
sive output for certain classes (the top part of
HLF matrix) in the dataset and less expressive
output for the rest of the classes (bottom part
of HLF matrix).

• HLF is a training aware compression and can-
not be applied to a pre-trained network.

7 Conclusion

Choosing the right compression technique requires
looking at three criteria – compression factor, accu-
racy, and run-time. Pruning is an effective compres-
sion technique, but can sacrifice speedup over base-
line for certain compression factors. LMF achieves
better speedup than baseline for all compression
factors, but leads to accuracy degradation. This
paper introduces a new compression scheme called
HLF, which preserves the dense structures of LMF
while effectively doubling the rank of the matrix
using an intelligent structure by design. This leads
to 2× faster inference run-time than pruning and
up-to 16% better accuracy than LMF.

References
Anish Acharya, Rahul Goel, Angeliki Metallinou, and

Inderjit Dhillon. 2019. Online embedding compres-
sion for text classification using low rank matrix fac-



16

torization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6196–
6203.

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2016. Quasi-recurrent neural net-
works. CoRR, abs/1611.01576.

Vı́ctor Campos, Brendan Jou, Xavier Giró-i Nieto,
Jordi Torres, and Shih-Fu Chang. 2018. Skip rnn:
Learning to skip state updates in recurrent neural
networks. In International Conference on Learning
Representations.

Ting Chen, Ji Lin, Tian Lin, Song Han, Chong Wang,
and Denny Zhou. 2018. Adaptive mixture of low-
rank factorizations for compact neural modeling.
Advances in neural information processing systems
(CDNNRIA workshop).

Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choud-
hary, and S. Chang. 2015. An exploration of param-
eter redundancy in deep networks with circulant pro-
jections. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 2857–2865.

Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning
Liu, Youwei Zhuo, Chao Wang, Xuehai Qian,
Yu Bai, Geng Yuan, Xiaolong Ma, Yipeng Zhang,
Jian Tang, Qinru Qiu, Xue Lin, and Bo Yuan. 2017.
Circnn: Accelerating and compressing deep neural
networks using block-circulant weight matrices. In
Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-50
’17, pages 395–408, New York, NY, USA. ACM.

Caiwen Ding, Ao Ren, Geng Yuan, Xiaolong Ma, Ji-
ayu Li, Ning Liu, Bo Yuan, and Yanzhi Wang. 2018.
Structured weight matrices-based hardware acceler-
ators in deep neural networks: Fpgas and asics. In
Proceedings of the 2018 on Great Lakes Symposium
on VLSI, GLSVLSI ’18, pages 353–358, New York,
NY, USA. ACM.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. CoRR,
abs/1902.09574.

Dibakar Gope, Jesse Beu, Urmish Thakker, and
Matthew Mattina. 2020a. Ternary mobilenets via
per-layer hybrid filter banks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops.

Dibakar Gope, Jesse G. Beu, Urmish Thakker, and
Matthew Mattina. 2020b. Aggressive compression
of mobilenets using hybrid ternary layers. tinyML
Summit.

Dibakar Gope, Ganesh Dasika, and Matthew Mat-
tina. 2019. Ternary hybrid neural-tree networks for
highly constrained iot applications. In Proceedings
of Machine Learning and Systems 2019, pages 190–
200.

Artem M. Grachev, Dmitry I. Ignatov, and Andrey V.
Savchenko. 2017. Neural networks compression for
language modeling. In Pattern Recognition and Ma-
chine Intelligence, pages 351–357, Cham. Springer
International Publishing.

Song Han, Huizi Mao, and William J Dally. 2016.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. International Conference on Learning
Representations (ICLR).

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized
neural networks. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing
Systems, NIPS’16, page 4114–4122, Red Hook, NY,
USA. Curran Associates Inc.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized
neural networks: Training neural networks with low
precision weights and activations. J. Mach. Learn.
Res., 18(1):6869–6898.

Oleksii Kuchaiev and Boris Ginsburg. 2017. Fac-
torization tricks for LSTM networks. CoRR,
abs/1703.10722.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav
Artzi. 2018. Simple recurrent units for highly par-
allelizable recurrence. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4470–4481, Brussels, Bel-
gium. Association for Computational Linguistics.

Zhe Li, Shuo Wang, Caiwen Ding, Qinru Qiu, Yanzhi
Wang, and Yun Liang. 2018. Efficient recurrent
neural networks using structured matrices in fpgas.
6th International Conference on Learning Represen-
tations, ICLR 2018 ; Conference date: 30-04-2018
Through 03-05-2018.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In Interspeech 2016, pages 685–689.

Xuan Liu, Di Cao, and Kai Yu. 2018. Binarized LSTM
language model. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2113–2121, New Orleans, Louisiana. Association
for Computational Linguistics.

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning sparse neural networks
through l 0 regularization. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Zhiyun Lu, Vikas Sindhwani, and Tara N. Sainath.
2016. Learning compact recurrent neural networks.
CoRR, abs/1604.02594.

http://arxiv.org/abs/1611.01576
http://arxiv.org/abs/1611.01576
https://openreview.net/forum?id=B1eHgu-Fim
https://openreview.net/forum?id=B1eHgu-Fim
https://doi.org/10.1109/ICCV.2015.327
https://doi.org/10.1109/ICCV.2015.327
https://doi.org/10.1109/ICCV.2015.327
https://doi.org/10.1145/3123939.3124552
https://doi.org/10.1145/3123939.3124552
https://doi.org/10.1145/3194554.3194625
https://doi.org/10.1145/3194554.3194625
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
https://www.tinyml.org/summit/abstracts/Gope_Dibakar_poster_abstract.pdf
https://www.tinyml.org/summit/abstracts/Gope_Dibakar_poster_abstract.pdf
http://arxiv.org/abs/1703.10722
http://arxiv.org/abs/1703.10722
https://doi.org/10.18653/v1/D18-1477
https://doi.org/10.18653/v1/D18-1477
https://doi.org/10.21437/Interspeech.2016-1352
https://doi.org/10.21437/Interspeech.2016-1352
https://doi.org/10.21437/Interspeech.2016-1352
https://doi.org/10.18653/v1/N18-1192
https://doi.org/10.18653/v1/N18-1192
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
http://arxiv.org/abs/1604.02594


17

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao.
2017. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt.

Sachin Mehta, Rik Koncel-Kedziorski, Mohammad
Rastegari, and Hannaneh Hajishirzi. 2018. Pyrami-
dal recurrent unit for language modeling. CoRR,
abs/1808.09029.

Sachin Mehta, Rik Koncel-Kedziorski, Mohammad
Rastegari, and Hannaneh Hajishirzi. 2019. Define:
Deep factorized input token embeddings for neural
sequence modeling.

Sharan Narang, Eric Undersander, and Gregory F. Di-
amos. 2017. Block-sparse recurrent neural networks.
CoRR, abs/1711.02782.

Kirill Neklyudov, Dmitry Molchanov, Arsenii
Ashukha, and Dmitry Vetrov. 2017. Structured
bayesian pruning via log-normal multiplicative
noise. In Proceedings of the 31st International
Conference on Neural Information Processing
Systems, NIPS’17, page 6778–6787, Red Hook, NY,
USA. Curran Associates Inc.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning.

Min Joon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2018. Neural speed reading via skim-rnn.
In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar.
2015. Structured transforms for small-footprint
deep learning. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
28, pages 3088–3096. Curran Associates, Inc.

Jin Tao, Urmish Thakker, Ganesh Dasika, and Jesse
Beu. 2019. Skipping rnn state updates without re-
training the original model. In Proceedings of the
1st Workshop on Machine Learning on Edge in Sen-
sor Systems, SenSys-ML 2019, page 31–36, New
York, NY, USA. Association for Computing Machin-
ery.

U. Thakker, J. Beu, D. Gope, G. Dasika, and M. Mat-
tina. 2019. Run-time efficient rnn compression for
inference on edge devices. In 2019 2nd Workshop
on Energy Efficient Machine Learning and Cogni-
tive Computing for Embedded Applications (EMC2),
pages 26–30.

Urmish Thakker, Jesse G. Beu, Dibakar Gope, Chu
Zhou, Igor Fedorov, Ganesh Dasika, and Matthew

Mattina. 2019a. Compressing rnns for iot de-
vices by 15-38x using kronecker products. CoRR,
abs/1906.02876.

Urmish Thakker, Ganesh Dasika, Jesse G. Beu, and
Matthew Mattina. 2019b. Measuring scheduling
efficiency of rnns for NLP applications. CoRR,
abs/1904.03302.

Urmish Thakker, Igor Fedorov, Jesse G. Beu, Dibakar
Gope, Chu Zhou, Ganesh Dasika, and Matthew Mat-
tina. 2019c. Pushing the limits of RNN compression.
CoRR, abs/1910.02558.

Urmish Thakker, Paul Whatamough, Matthew Mattina,
and Jesse G. Beu. 2020. Compressing language
models using doped kronecker products. CoRR,
abs/2001.08896.

Anna Thomas, Albert Gu, Tri Dao, Atri Rudra, and
Christopher Ré. 2018. Learning compressed trans-
forms with low displacement rank. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 31, pages 9066–
9078. Curran Associates, Inc.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.
2017. Compressing recurrent neural network with
tensor train. In Neural Networks (IJCNN), 2017 In-
ternational Joint Conference on, pages 4451–4458.
IEEE.

Lloyd Trefethen and David Bau. 1997. Numerical Lin-
ear Algebra. SIAM: Society for Industrial and Ap-
plied Mathematics.

Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru
Qiu, Yanzhi Wang, and Yun Liang. 2018. C-
lstm: Enabling efficient lstm using structured com-
pression techniques on fpgas. In Proceedings of
the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’18, pages
11–20, New York, NY, USA. ACM.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In Inter-
national Conference on Learning Representations.

Adams Wei Yu, Hongrae Lee, and Quoc Le. 2017.
Learning to skim text. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1880–
1890, Vancouver, Canada. Association for Computa-
tional Linguistics.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li,
Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th

http://arxiv.org/abs/1808.09029
http://arxiv.org/abs/1808.09029
http://arxiv.org/abs/1911.12385
http://arxiv.org/abs/1911.12385
http://arxiv.org/abs/1911.12385
http://arxiv.org/abs/1711.02782
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2005.07683
http://arxiv.org/abs/2005.07683
https://openreview.net/forum?id=Sy-dQG-Rb
https://doi.org/10.1145/3362743.3362965
https://doi.org/10.1145/3362743.3362965
http://arxiv.org/abs/1906.02876
http://arxiv.org/abs/1906.02876
http://arxiv.org/abs/1904.03302
http://arxiv.org/abs/1904.03302
http://arxiv.org/abs/1910.02558
http://arxiv.org/abs/2001.08896
http://arxiv.org/abs/2001.08896
http://papers.nips.cc/paper/8119-learning-compressed-transforms-with-low-displacement-rank.pdf
http://papers.nips.cc/paper/8119-learning-compressed-transforms-with-low-displacement-rank.pdf
https://doi.org/10.1145/3174243.3174253
https://doi.org/10.1145/3174243.3174253
https://doi.org/10.1145/3174243.3174253
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://doi.org/10.18653/v1/P17-1172
http://arxiv.org/abs/1409.2329
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034


18

Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
207–212, Berlin, Germany. Association for Compu-
tational Linguistics.

Michael Zhu and Suyog Gupta. 2017. To prune,
or not to prune: exploring the efficacy of prun-
ing for model compression. arXiv e-prints, page
arXiv:1710.01878.

http://arxiv.org/abs/1710.01878
http://arxiv.org/abs/1710.01878
http://arxiv.org/abs/1710.01878

