
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 124–135
Online, November 20, 2020. c©2020 Association for Computational Linguistics

124

SqueezeBERT: What can computer vision teach NLP about
efficient neural networks?

Forrest N. Iandola
forresti@berkeley.edu

Albert E. Shaw
ashaw596@gmail.com

Ravi Krishna
UC Berkeley EECS

ravi.krishna@berkeley.edu

Kurt W. Keutzer
UC Berkeley EECS
keutzer@berkeley.edu

Abstract

Humans read and write hundreds of billions
of messages every day. Further, due to the
availability of large datasets, large comput-
ing systems, and better neural network mod-
els, natural language processing (NLP) tech-
nology has made significant strides in under-
standing, proofreading, and organizing these
messages. Thus, there is a significant oppor-
tunity to deploy NLP in myriad applications
to help web users, social networks, and busi-
nesses. Toward this end, we consider smart-
phones and other mobile devices as crucial
platforms for deploying NLP models at scale.
However, today’s highly-accurate NLP neural
network models such as BERT and RoBERTa
are extremely computationally expensive, with
BERT-base taking 1.7 seconds to classify a
text snippet on a Pixel 3 smartphone. To begin
to address this problem, we draw inspiration
from the computer vision community, where
work such as MobileNet has demonstrated that
grouped convolutions (e.g., depthwise convo-
lutions) can enable speedups without sacrific-
ing accuracy. We demonstrate how to replace
several operations in self-attention layers with
grouped convolutions and use this technique in
a novel network architecture called Squeeze-
BERT, which runs 4.3x faster than BERT-base
on the Pixel 3 while achieving competitive ac-
curacy on the GLUE test set.

A PyTorch-based implementation of Squeeze-
BERT is available as part of the Hug-
ging Face Transformers library: https://
huggingface.co/squeezebert

1 Introduction and Motivation
The human race writes over 300 billion messages
per day (Sayce, 2019; Schultz, 2019; Al-Heeti,
2018; Templatify, 2017). Out of these, more than
half of the world’s emails are read on mobile de-
vices, and nearly half of Facebook users exclusively
access Facebook from a mobile device (Lovely

Mobile News, 2017; Donnelly, 2018). Natural lan-
guage processing (NLP) technology has the poten-
tial to aid these users and communities in several
ways. When a person writes a message, NLP mod-
els can help with spelling and grammar checking
as well as sentence completion. When content is
added to a social network, NLP can facilitate con-
tent moderation before it appears in other users’
news feeds. When a person consumes messages,
NLP models can help classify messages into fold-
ers, compose news feeds, prioritize messages, and
identify duplicates.

In recent years, the development and adop-
tion of Attention Neural Networks have led to
dramatic improvements in almost every area of
NLP. In 2017, Vaswani et al. proposed the
multi-head self-attention module, which demon-
strated superior accuracy to recurrent neural net-
works on English-German machine language trans-
lation (Vaswani et al., 2017).1 These modules have
since been adopted by GPT (Radford et al., 2018)
and BERT (Devlin et al., 2019) for sentence classi-
fication, and by GPT-2 (Radford et al., 2019) and
CTRL (Keskar et al., 2019) for sentence comple-
tion and generation. Recent works such as ELEC-
TRA (Clark et al., 2020) and RoBERTa (Liu et al.,
2019) have shown that larger datasets and more
sophisticated training regimes can further improve
the accuracy of self-attention networks.

Considering the enormity of the textual data cre-
ated by humans on mobile devices, a natural ap-
proach is to deploy the NLP models directly onto
mobile devices, embedding them in the apps used
to read, write, and share text. Unfortunately, highly-
accurate NLP models are computationally expen-
sive, making mobile deployment impractical. For
example, we observe that running the BERT-base

1Neural networks that use the self-attention modules of
Vaswani et al. are sometimes called "Transformers," but in
the interest of clarity, we call them "self-attention networks."

https://huggingface.co/squeezebert
https://huggingface.co/squeezebert

125

network on a Google Pixel 3 smartphone approx-
imately 1.7 seconds to classify a single text data
sample.2 Much of the research on efficient self-
attention networks for NLP has just emerged in the
past year. However, starting with SqueezeNet (Ian-
dola et al., 2016b), the mobile computer vision
(CV) community has spent the last four years op-
timizing neural networks for mobile devices. Intu-
itively, it seems like there must be opportunities to
apply the lessons learned from the rich literature of
mobile CV research to accelerate mobile NLP. In
the following, we review what has already been ap-
plied and propose two additional techniques from
CV that we will leverage to accelerate NLP models.

1.1 What has CV research already taught
NLP research about efficient networks?

In recent months, novel self-attention networks
have been developed with the goal of achieving
faster inference. At present, the MobileBERT net-
work defines the state-of-the-art in low-latency
text classification for mobile devices (Sun et al.,
2020). MobileBERT takes approximately 0.6 sec-
onds to classify a text sequence on a Google Pixel 3
smartphone while achieving higher accuracy on the
GLUE benchmark, which consists of 9 natural lan-
guage understanding (NLU) datasets (Wang et al.,
2018), than other efficient networks such as Distil-
BERT (Sanh et al., 2019), PKD (Sun et al., 2019a),
and several others (Lan et al., 2019; Turc et al.,
2019; Jiao et al., 2019; Xu et al., 2020). To achieve
this, MobileBERT introduced two concepts into
their NLP self-attention network that are already in
widespread use in CV neural networks:

1. Bottleneck layers. In ResNet (He et al.,
2016), the 3x3 convolutions are computation-
ally expensive, so a 1x1 "bottleneck" convo-
lution is employed to reduce the number of
channels input to each 3x3 convolution layer.
Similarly, MobileBERT adopts bottleneck lay-
ers that reduce the number of channels before
each self-attention layer, reducing the compu-
tational cost of the self-attention layers.

2. High-information flow residual connec-
tions. In BERT-base, the residual connections
serve as links between the low-channel-count

2Note that BERT-base (Devlin et al., 2019), RoBERTa-
base (Liu et al., 2019), and ELECTRA-base (Clark et al.,
2020) all use the same self-attention encoder architecture, and
therefore these networks incur approximately the same latency
on a smartphone.

(768 channels) layers. The high-channel-
count (3072 channels) layers in BERT-base
do not have residual connections. However,
the ResNet and Residual-SqueezeNet (Iandola
et al., 2016b) CV networks connect the high-
channel-count layers with residuals, enabling
higher information flow through the network.
Similar to these CV networks, MobileBERT
adds residual connections between the high-
channel-count layers.

1.2 What else can CV research teach NLP
research about efficient networks?

We are encouraged by the progress that Mobile-
BERT has made in leveraging ideas that are popular
in the CV literature to accelerate NLP. However,
we are aware of two other ideas from CV, which
weren’t used in MobileBERT which could be ap-
plied to accelerate NLP:

1. Convolutions. Since the 1980s, computer vi-
sion neural nets have relied heavily on con-
volutional layers (Fukushima, 1980; LeCun
et al., 1989). Convolutions are quite flexi-
ble and well-optimized in software, and they
can implement things as simple as a 1D fully-
connected layer, or as complex as a 3D dilated
layer that performs upsampling or downsam-
pling.

2. Grouped convolutions. A popular tech-
nique in modern mobile-optimized neural net-
works is grouped convolutions (see Section
3). Proposed by Krizhevsky et al. in the
2012 winning submission to the ImageNet
image classification challenge (Krizhevsky
et al., 2011, 2012; Russakovsky et al., 2015),
grouped convolutions disappeared from the
literature from some years, then re-emerged
as a key technique circa 2016 (Chollet,
2016; Xie et al., 2017) and today are exten-
sively used in efficient CV networks such
as MobileNet (Howard et al., 2017), Shuf-
fleNet (Zhang et al., 2018), and Efficient-
Net (Tan and Le, 2019). While common in CV
literature, we are not aware of work applying
grouped convolutions to NLP.

1.3 SqueezeBERT: Applying lessons learned
from CV to NLP

In this work, we describe how to apply convolu-
tions and particularly grouped convolutions in the
design of a novel self-attention network for NLP,

126

which we call SqueezeBERT. Empirically, we find
that SqueezeBERT runs at lower latency on a smart-
phone than BERT-base, MobileBERT, and several
other efficient NLP models, while maintaining com-
petitive accuracy.

2 Implementing self-attention with
convolutions

In this section, first, we review the basic structure
of self-attention networks. Next, we identify that
their biggest computational bottleneck is in their
position-wise fully-connected (PFC) layers. We
then show that these PFC layers are equivalent to a
1D convolution with a kernel size of 1.

2.1 Self-attention networks
In most BERT-derived networks there are typically
3 stages: the embedding, the encoder, and the clas-
sifier (Devlin et al., 2019; Liu et al., 2019; Clark
et al., 2020; Sun et al., 2020; Lan et al., 2019).3

The embedding converts preprocessed words (rep-
resented as integer-valued tokens) into learned
feature-vectors of floating-point numbers. The en-
coder is comprised of a series of self-attention and
other layers. The classifier produces the network’s
final output. As we will see later in Table 1, the
embedding and the classifier account for less than
1% of the runtime of a self-attention network, so
we focus our discussion on the encoder.

We now describe the encoder that is used in
BERT-base (Devlin et al., 2019). The encoder con-
sists of a stack of blocks. Each block consists of a
three position-wise fully-connected (PFC) layers,
then a self-attention module, and finally a stack of
three position-wise fully-connected layers, known
as feed-forward network (FFN) layers. The initial
three PFC layers, are used to generate the query

(Q), key (K), and value (V) activation vectors for
each position in the feature embedding. Each of
these Q, K, and V layers applies the same oper-
ation to each position in the feature embedding
independently. While neural networks traditionally
multiply weights by activations, a distinguishing
factor of attention neural networks is that they mul-
tiply activations by other activations, enabling dy-
namic weighting of tensor elements to adjust based
on the input data. Further, attention networks al-
low modeling of arbitrary dependencies regardless

3Some self-attention networks such as (Vaswani et al.,
2017; Radford et al., 2018) also have "decoder” stage. The
decoder typically uses a similar neural architecture as the
encoder, but is auto-regressive.

Table 1: How does BERT spend its time? This is
a breakdown of computation (in floating-point opera-
tions, or FLOPs) and latency (on a Google Pixel 3
smartphone) in BERT-base. The sequence length is
128.

Stage Module type FLOPs Latency

Embedding Embedding 0.00% 0.26%
Encoder Self-attention calculations 2.70% 11.3%
Encoder PFC layers 97.3% 88.3%
Final Classifier PFC layers 0.00% 0.02%

Total 100% 100%

of their distance in the input or output (Vaswani
et al., 2017). The self-attention module proposed
by Vaswani et al. (Vaswani et al., 2017) (which is
also used by GPT (Radford et al., 2018), BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
ELECTRA (Clark et al., 2020) and others) mul-
tiplies the Q, K, and V activations together using
the equation softmax(QKT

p
dk

)V , where dk is the
number of channels in one attention head.4

2.2 Benchmarking BERT for mobile
inference

To identify the parts of BERT that are time-
consuming to compute, we profile BERT on a
smartphone. Specifically, we measure the neu-
ral network’s latency using PyTorch (Paszke et al.,
2019) and TorchScript on a Google Pixel 3 smart-
phone, with an input sequence length of 128 and
a batch size of 1. This is a reasonable sequence
length for text messages, instant messages, short
emails, and other messages that are commonly writ-
ten and read by smartphone users. In Table 1, we
show the breakdown of FLOPs and latency among
the main components of the BERT network, and
we observe that the self-attention calculations (i.e.
softmax(QKT

p
dk

)V) account for only 11.3% of the
total latency. However, PFC layers account for
88.3% of the latency.

2.3 Replacing the position-wise fully
connected (PFC) layers with convolutions

Given that PFC layers account for the overwhelm-
ing majority of the latency, we now focus on re-
ducing the PFC layers’ latency. In particular, we
intend to replace the PFC layers with grouped con-
volutions, which have been shown to produce sig-
nificant speedups in computer vision networks. As

4For example, in BERT-base, the self-attention module has
768 channels and 12 heads, so dk = 768

12 = 64.

127

a first step in this direction, we now show that the
position-wise fully-connected layers used through-
out the BERT encoder are a special case of non-
grouped 1D convolution.

Let w denote the weights of the position-wise
fully-connected layer with dimensions (C, C).
Given an input feature vector f of dimensions
(P, C) with P positions and C channels to gen-
erate an output of (P, C) features, the operation
performed by the position-wise fully-connected
layer for each output channel c at position p can be
defined:

PFCp,c(f ,w) =
CX

i

wc,i ⇤ fp,i

Then if we consider the definition of a 1D con-
volution with kernel size K with the same input
and output dimensions. Let q be the weights of the
convolution with with dimensions (C, C, K)

Convp,c(f ,q) =
CX

i

KX

k

qc,i,k ⇤ f(p�K�1
2 +k),i

we observe that the position-wise fully-connected
operation is equivalent to a convolution with a ker-
nel size of K = 1 where qc,i,0 = wc,i

Convp,c(f ,q) =
CX

i

qc,i,0 ⇤ fp,i

Thus, the PFC layers of Vaswani et al. (Vaswani
et al., 2017), GPT, BERT, and similar self-attention
networks can be implemented using convolutions
without changing the networks’ numerical proper-
ties or behavior.

3 Incorporating grouped convolutions
into self-attention

Now that we have shown how to implement the
expensive PFC layers in self-attention networks
using convolutions, we can incorporate efficient
grouped convolutions into a self-attention network.
Grouped convolutions are defined as follows.

Given an input feature vector of dimensions
(P, C) with P positions and C channels outputting
a vector with dimensions (P, C), a 1d convolution
with kernel size K = 1 and } groups and weight
vector q of dimensions (C, Cg) can be defined as
follows. Let N = C

g where N is the number of

cin= 8

c o
ut

=
 8

cin= 8

c o
ut

=
 8

(a) groups=1 (b) groups=4

Figure 1: Traditional vs. grouped convolutions. In
panel (a), we illustrate the weight matrix of a traditional
1D convolution with 8 input channels, 8 output chan-
nels, and a kernel size of 1. In panel (b), we illustrate
a grouped convolution with g = 4. White cells in the
grid are empty. Observe that with g = 4, the weight
matrix has one-fourth the number of parameters as a
traditional convolution.

channels in each group.

GConvp,c(f ,q) =

C
gX

i

qc,i,0 ⇤ fp,(i+b c
N cN)

This is equivalent to splitting the the input vec-
tor into g separate vectors of size (P, Cin

g) along
the C dimension and running g separate convolu-
tions with independent weights each computing
vectors of size (P, Cout

g). The grouped convolution,
however, requires only 1

g as many floating-point
operations (FLOPs) and 1

g as many weights as an
ordinary convolution, not counting the small (and
unchanged) amount of operations needed for the
channel-wise bias term that is often included in
convolutional layers.5 Finally, to complement the
mathematical explanation of grouped convolutions,
we illustrate the difference between traditional con-
volutions and grouped convolutions in Figure 1.

3.1 SqueezeBERT
Now, we describe our proposed neural architec-
ture called SqueezeBERT, which uses grouped
convolutions. SqueezeBERT is much like BERT-
base, but with PFC layers implemented as convo-
lutions, and grouped convolutions for many of the
layers. Recall from Section 2 that each block in
the BERT-base encoder has a self-attention mod-
ule that ingests the activations from 3 PFC layers,
and the block also has 3 more PFC layers called
feed-forward network layers (FFN1, FFN2, and
FFN3). The FFN layers have the following di-
mensions: FFN1 has Cin = Cout = 768, FFN2

5Note that the grouped convolution with g = 1 is identical
to an ordinary convolution.

128

K tensor (W, C)Q tensor (W, C)

Input tensor (W, C)

Q layer g=4 K layer g=4 V layer g=4

Reshape

Q tensor
(E, W, C/E)

Reshape Reshape

MatMul

K tensor
(E, C/E, W)

MatMul
QK tensor
(E, W, W)

V tensor
(E, W, C/E)

QKV tensor
(E, W, C/E)

Reshape

QKV tensor (W, C)

Feed Forward Network Layer 1 g=1

Residual connections not shown.

Feed Forward Network Layer 2 g=4

Feed Forward Network Layer 3 g=4

FFN1 tensor (W, C)

FFN2 tensor (W, 4C)

FFN3 tensor (W, C)

W = sequence length = 128
C = channels = 768
E = number of hEads = 12
g = number of groups

V tensor (W, C)

Self-Attention

Figure 2: One block of the SqueezeBERT encoder. The SqueezeBERT encoder consists of a stack of 12 of these
modules.

has Cin = 768 and Cout = 3072, and FFN3 has
Cin = 3072 and Cout = 768. In all PFC layers
of the self-attention modules, and in the FFN2 and
FFN3 layers, we use grouped convolutions with
g = 4. To allow for mixing across channels of dif-
ferent groups, we use g = 1 in the less-expensive
FFN1 layers. Note that in BERT-base, FFN2 and
FFN3 each have 4 times more arithmetic opera-
tions than FFN1. However, when we use g = 4 in
FFN2 and FFN3, now all FFN layers have the same
number of arithmetic operations. We illustrate one
block of the SqueezeBERT encoder in Figure 2.

Finally, the embedding size (768), the num-
ber of blocks in the encoder (12), the number of
heads per self-attention module (12), the Word-
Piece tokenizer (Schuster and Nakajima, 2012; Wu
et al., 2016), and other aspects of SqueezeBERT
are adopted from BERT-base. Aside from the
convolution-based implementation and the adop-
tion of grouped convolutions, the SqueezeBERT
architecture is identical to BERT-base.

4 Experimental Methodology
4.1 Datasets
Pretraining Data. For pretraining, we use a com-
bination of Wikipedia and BooksCorpus (Zhu et al.,

2015), setting aside 3% of the combined dataset as
a test set. Following the ALBERT paper, we use
Masked Language Modeling (MLM) and Sentence
Order Prediction (SOP) as pretraining tasks (Lan
et al., 2019).

Finetuning Data. We finetune and evaluate
SqueezeBERT (and other baselines) on the Gen-
eral Language Understanding Evaluation (GLUE)
set of tasks. This benchmark consists of a diverse
set of 9 NLU tasks; thanks to the structure and
breadth of these tasks (see supplementary material
for detailed task-level information), GLUE has be-
come the standard evaluation benchmark for NLP
research. A model’s performance across the GLUE
tasks likely provides a good approximation of that
model’s generalizability (especially for text classi-
fication tasks).

4.2 Training Methodology
Many recent papers on efficient NLP networks
report results on models trained with bells and
whistles such as distillation, adversarial training,
and/or transfer learning across GLUE tasks. How-
ever, there is no standardization of these training
schemes across different papers, making it difficult
to distinguish the contribution of the model from

129

the contribution of the training scheme to the final
accuracy number. Therefore, we first train Squeeze-
BERT using a simple training scheme (described in
Section 4.2.1, with results reported in Section 5.1),
and then we train SqueezeBERT with distillation
and other techniques (described in Section 4.2.2,
with results reported in Section 5.2).

4.2.1 Training without bells and whistles
We pretrain SqueezeBERT from scratch (without
distillation) using the LAMB optimizer, and we
employ the hyperparameters recommended by the
LAMB authors: a global batch size of 8192, a
learning rate of 2.5e-3, and a warmup proportion
of 0.28 (You et al., 2020). Following the LAMB
paper’s recommendations, we pretrain for 56k steps
with a maximum sequence length of 128 and then
for 6k steps with a maximum sequence length of
512.

For finetuning, we use the AdamW optimizer
with a batch size of 16 without momentum
or weight decay with �1 = 0.9 and �2 =
0.999 (Loshchilov and Hutter, 2019). As is com-
mon in the literature, during finetuning for each
task, we perform hyperparameter tuning on the
learning rate and dropout rate. We present more
details on this in the supplementary material. In the
interest of a fair comparison, we also train BERT-
base using the aforementioned pretraining and fine-
tuning protocol.

4.2.2 Training with bells and whistles
We now review recent techniques for improving
the training of NLP networks, and we describe the
approaches that we will use for the training and
evaluation of SqueezeBERT in Section 5.2.

Distillation approaches used in other efficient
NLP networks. While the term "knowledge dis-
tillation" was coined by Hinton et al. to describe a
specific method and equation (Hinton et al., 2015),
the term "distillation" is now used in reference to
a diverse range of approaches where a "student"
network is trained to replicate a "teacher" network.
Some researchers distill only the final layer of the
network (Sanh et al., 2019), while others also distill
the hidden layers (Sun et al., 2019a, 2020; Xu et al.,
2020). When distilling the hidden layers, some ap-
ply layer-by-layer distillation warmup, where each
module of the student network is distilled indepen-
dently while downstream modules are frozen (Sun
et al., 2020). Some distill during pretraining (Sun
et al., 2020; Sanh et al., 2019), some distill during

finetuning (Xu et al., 2020), and some do both (Sun
et al., 2019a; Jiao et al., 2019).

Bells and whistles used for training Squeeze-
BERT (for results in Section 5.2). Distillation
is not a central focus of this paper, and there is a
large design space of potential approaches to dis-
tillation, so we select a relatively simple form of
distillation for use in SqueezeBERT training. We
apply distillation only to the final layer, and only
during finetuning. On the GLUE sentence classi-
fication tasks, we use soft cross entropy loss with
respect to a weighted sum of the teacher’s logits
(t) and a one-hot encoding of the ground-truth
(g). The weighting between the teacher logits and
the ground-truth is controlled by a hyperparameter
↵. Formally, we write this weighted sum as:

 = (1� ↵) t + ↵ g

Also note that GLUE has one regression task (STS-
B text similarity), and for this task we replace the
soft cross entropy loss with mean squared error. In
addition to distillation, inspired by STILTS (Phang
et al., 2018) and ELECTRA (Clark et al., 2020),
we apply transfer learning from the MNLI GLUE
task to other GLUE tasks as follows. The Squeeze-
BERT student model is pretrained using the ap-
proach described in Section 4.2.1, and then it is fine-
tuned on the MNLI task. The weights from MNLI
training are used as the initial student weights for
other GLUE tasks except for CoLA.6 Similarly,
the teacher model is a BERT-base model that is
pretrained using the ELECTRA method and then
finetuned on MNLI. The teacher model is then fine-
tuned independently on each GLUE task, and these
task-specific teacher weights are used for distilla-
tion.

5 Results
We now turn our attention to comparing Squeeze-
BERT to other efficient neural networks.

5.1 Results without bells and whistles
In the upper portions of Tables 2 and 3, we com-
pare our results to other efficient networks on the
dev and test sets of the GLUE benchmark. Note
that relatively few of the efficiency-optimized net-
works report results without bells and whistles, and
most such results are reported on the development

6For CoLA, the student weights are pretrained (per Sec-
tion 4.2.1) but not finetuned on MNLI prior to task-specific
training.

130

Table 2: Comparison of neural networks on the development set of the GLUE benchmark. For tasks that have
2 metrics (e.g. MRPC’s metrics are Accuracy and F1), we report the average of the 2 metrics. Üdenotes models
trained by the authors of the present paper. Bells and whistles are: A = adversarial training; D = distillation of
final layer; E = distillation of encoder layers; S = transfer learning across GLUE tasks (a.k.a. STILTs (Phang et al.,
2018)); W = per-layer warmup. In GLUE accuracy, a dash means that accuracy for this task is not provided in the
literature.

GLUE accuracy efficiency

Model B
el

ls
&

W
hi

st
le

s

M
N

LI
-m

M
N

LI
-m

m

Q
Q

P

Q
N

LI

SS
T-

2

C
oL

A

ST
S-

B

M
R

PC

RT
E

A
ve

ra
ge

#M
Pa

ra
m

s

G
FL

O
Ps

La
te

nc
y

(m
s)

Sp
ee

du
p

Results without bells and whistles

BERT-baseÜ - 85.2 84.8 89.9 92.2 92.7 62.8 90.7 91.2 76.5 85.1 109 22.5 1690 1.0x
MobileBERT (Sun et al., 2020) - 80.8 - - 88.2 90.1 - - 84.3 - - 25.3 5.36 572 3.0x
ALBERT-base (Lan et al., 2019) - 81.6 - - - 90.3 - - - - - 12.0 22.5 1690 1.0x
SqueezeBERTÜ - 82.3 82.9 89.4 90.5 92.0 53.7 89.4 89.8 71.8 82.4 51.1 7.42 390 4.3x

Results with bells and whistles

DistilBERT 6/768 (Sanh et al., 2019) D 82.2 - 88.5 89.2 91.3 51.3 86.9 87.5 59.9 - 66 11.3 814 2.1x
Turc 6/768 (Turc et al., 2019) D 82.5 83.4 89.6 89.4 91.1 - - 87.2 66.7 - 67.5 11.3 814 2.1x
Theseus 6/768 (Xu et al., 2020) DESW 82.3 - 89.6 89.5 91.5 51.1 88.7 89.0 68.2 - 66 11.3 814 2.1x
MobileBERT (Sun et al., 2020) DEW 84.4 - - 91.5 92.5 - - 87.0 - - 25.3 5.36 572 3.0x
SqueezeBERTÜ DS 82.5 82.9 89.5 90.9 92.2 53.7 90.3 92.0 80.9 84.0 51.1 7.42 390 4.3x

Table 3: Comparison of neural networks on the test set of the GLUE benchmark. Üdenotes models trained by the
authors of the present paper. Bells and whistles are: A = adversarial training; D = distillation of final layer; E =
distillation of encoder layers; S = transfer learning across GLUE tasks (a.k.a. STILTs (Phang et al., 2018)); W =
per-layer warmup.

GLUE accuracy efficiency

Model B
el

ls
&

W
hi

st
le

s

M
N

LI
-m

M
N

LI
-m

m

Q
Q

P

Q
N

LI

SS
T-

2

C
oL

A

ST
S-

B

M
R

PC

RT
E

W
N

LI

G
LU

E
sc

or
e

#M
Pa

ra
m

s

G
FL

O
Ps

La
te

nc
y

(m
s)

Sp
ee

du
p

Results without bells and whistles

BERT-baseÜ - 84.4 84.2 80.5 91.4 92.8 51.3 86.9 87.9 70.7 65.1 79.0 109 22.5 1690 1.0x
BERT-base (Devlin et al., 2019) - 84.6 83.4 80.2 90.5 93.5 52.1 86.5 86.9 66.4 65.1 78.3 109 22.5 1690 1.0x
SqueezeBERTÜ - 82.0 81.1 80.1 90.1 91.0 46.5 84.9 86.1 66.7 65.1 76.9 51.1 7.42 390 4.3x

Results with bells and whistles

TinyBERT 4/312 (Jiao et al., 2019) DE 82.5 81.8 - 87.7 92.6 43.3 79.9 - 62.9 65.1 - 14.5 1.2 118 14x
ELECTRA-Small++ (Clark et al., 2020) AS 81.6 - - 88.3 91.1 55.6 84.6 84.9 63.6 65.1 - 14.0 2.62 248 6.8x
PKD 6/768 (Sun et al., 2019a) DE 81.5 81.0 79.8 89.0 92.0 - - 82.5 - 65.1 - 67.0 11.3 814 2.1x
Turc 6/768 (Turc et al., 2019) D 82.8 82.2 79.7 89.4 91.8 - - 84.3 65.3 65.1 - 67.5 11.3 814 2.1x
Theseus 6/768 (Xu et al., 2020) DESW 82.4 82.1 80.5 89.6 92.2 47.8 84.9 85.4 66.2 65.1 77.1 66 11.3 814 2.1x
MobileBERT (Sun et al., 2020) DEW 84.3 83.4 79.4 91.6 92.6 51.1 85.5 86.7 70.4 65.1 78.5 25.3 5.36 572 3.0x
SqueezeBERTÜ DS 82.0 81.1 80.3 90.1 91.4 46.5 86.7 87.8 73.2 65.1 78.1 51.1 7.42 390 4.3x

131

(not test) set of GLUE. Fortunately, the authors of
MobileBERT – a network which we will find in the
next section compares favorably to other efficient
networks with bells and whistles enabled – do pro-
vide development-set results without distillation on
4 of the GLUE tasks.7 We observe in the upper por-
tion of Table 2 that, when both networks are trained
without distillation, SqueezeBERT achieves higher
accuracy than MobileBERT on all of these tasks.
This provides initial evidence that the techniques
from computer vision that we have adopted can be
applied to NLP, and reasonable accuracy can be
obtained. Further, we observe that SqueezeBERT
is 4.3x faster than BERT-base, while MobileBERT
is 3.0x faster than BERT-base.8

Due to the dearth of efficient neural network re-
sults on GLUE without bells and whistles, we also
provide a comparison in Table 2 with the ALBERT-
base network. ALBERT-base is a version of BERT-
base that uses the same weights across multiple
attention layers, and it has a smaller encoder than
BERT. Due to these design choices, ALBERT-base
has 9x fewer parameters than BERT-base. How-
ever, ALBERT-base and BERT-base have the same
number of FLOPs, and we observe in our measure-
ments in Table 2 that ALBERT-base does not offer
a speedup over BERT-base on a smartphone.9 Fur-
ther, on the two GLUE tasks where the ALBERT
authors reported the accuracy of ALBERT-base,
MobileBERT and SqueezeBERT both outperform
the accuracy of ALBERT-base.

5.2 Results with bells and whistles
Now, we turn our attention to comparing Squeeze-
BERT to other models, all trained with bells-and-
whistles. Note that the bells-and-whistles come at
the cost of extra training time, but the bells-and-
whistles do not change the inference time or model-
size. In the lower portion of Table 3, we first ob-

7Note that some papers report results on only the develop-
ment set or the test set, and some papers only report results on
a subset of GLUE tasks. Our aim with this evaluation is to be
as inclusive as possible, so we include papers with incomplete
GLUE results in our results tables.

8In our measurements, we find MobileBERT takes 572ms
to classify one length-128 sequence on a Pixel 3 phone. This
is slightly faster than the 620ms reported by the MobileBERT
authors in the same setting (Sun et al., 2019b). We use the
faster number in our comparisons. Further, all latencies in our
results tables were benchmarked by us.

9However, reducing the number of parameters while re-
taining a high number of FLOPs can present other advantages,
such as faster distributed training (Lan et al., 2019; Iandola
et al., 2016a) and superior energy-efficiency (Iandola and
Keutzer, 2017).

serve that when trained with bells-and-whistles Mo-
bileBERT matches or outperforms the accuracy of
the other efficient models (except SqueezeBERT)
on 8 of the 9 GLUE tasks. Further, on 4 of the 9
tasks SqueezeBERT outperforms the accuracy of
MobileBERT; on 4 of 9 tasks MobileBERT out-
performs SqueezeBERT; and on 1 task (WNLI)
all models predict the most frequently occurring
category.10 Also, SqueezeBERT achieves an av-
erage score across all GLUE tasks that is within
0.4 percentage-points of MobileBERT. Given the
speedup of SqueezeBERT over MobileBERT, we
think it is reasonable to say that SqueezeBERT
and MobileBERT each offer a compelling speed-
accuracy tradeoff for NLP inference on mobile de-
vices.

6 Related Work
Quantization and Pruning. Quantization is a
family of techniques which aims to reduce the num-
ber of bits required to store each parameter and/or
activation in a neural network, while at the same
time maintaining the accuracy of that network. This
has been successfully applied to NLP in such works
as (Shen et al., 2020; Zafrir et al., 2019). Pruning
aims to directly eliminate certain parameters from
the network while maintaining accuracy, thereby
reducing the storage and potentially computational
cost of that network; for an application of this to
NLP, please see Sanh et al. (2020). These meth-
ods could be applied to SqueezeBERT to yield
further efficiency improvements, but quantization
and pruning are not a focus of this paper.

Addressing long sequence-lengths. In work
such as SqueezeBERT and MobileBERT, the in-
ference FLOPs and latency are evaluated using a
sequence length of 128. This is a reasonable se-
quence length for use-cases such as classifying
text messages, instant-messages, and short emails.
However, if the goal is to classify longer-form texts
such as book chapters or even an entire book, then
the typical sequence length is much longer. While
the positionwise fully-connected (PFC) layers in
BERT scale linearly in the sequence length, the
self-attention calculations scale quadratically in the
sequence length. So, when classifying a long se-
quence, the self-attention calculations are the dom-
inant factor in the FLOPs and latency of the neural

10Note that data augmentation approaches have been pro-
posed to improve accuracy on WNLI; see (Kocijan et al.,
2019). For fairness in comparing against our baselines, we
choose not to use data augmentation to improve WNLI results.

132

network. Several recent projects have worked to
address this problem. For instance, Funnel Trans-
former downsamples the sequence length in the
first few layers of the network, and it upsamples
the sequence length in the final few layers of the
network (Dai et al., 2020). This approach is similar
to computer vision models for semantic segmen-
tation such as U-Net (Ronneberger et al., 2015).
In addition, Longformer reduces the number of
FLOPs by introducing structured sparsity into the
self-attention tensors (Beltagy et al., 2020). Fur-
ther, Linformer projects long sequences into shorter
fixed-length sequences (Wang et al., 2020b). Fi-
nally, Tay et al. (2020) provide an extensive survey
of approaches for redesigning self-attention net-
works to efficiently classify long sequences.

Self-attention networks with dynamic com-
putational cost. DeeBERT (Xin et al., 2020), Fast-
BERT (Liu et al., 2020), and Schwartz et al. (2020)
each describe a method to dynamically adjust the
amount of computation for different sequences.
The intuition is that some sequences are easier to
classify than others, and the "easy" sequences can
be correctly classified by only computing the first
few layers of a BERT-like network.

Convolutions in self-attention networks for
language-generation tasks. In this paper, our ex-
periments focus on natural language understanding
(NLU) tasks such as sentence classification. How-
ever, another widely-studied area is natural lan-
guage generation (NLG), which includes the tasks
of machine-translation (e.g., English-to-German)
and language modeling (e.g., automated sentence-
completion). While we are not aware of work that
adopts convolutions in self-attention networks for
NLU, we are aware of such work in NLG. For
instance, the Evolved Transformer and Lite Trans-
former architectures contain self-attention modules
and convolutions in separate portions of the net-
work (So et al., 2019; Wu et al., 2020). Addition-
ally, LightConv shows that well-designed convolu-
tional networks without self-attention produce com-
parable results to self-attention networks on certain
NLG tasks (Wu et al., 2019b). Also, Wang et al.

sparsify the self-attention matrix multiplication us-
ing a pattern of nonzeros that is inspired by di-
lated convolutions (Wang et al., 2020a). Finally,
while not an attention network, Kim applied con-
volutional networks to NLU several years before
the development of multi-head self-attention (Kim,
2014).

7 Conclusions & Future Work
In this paper, we have studied how grouped con-
volutions, a popular technique in the design of ef-
ficient computer vision neural networks, can be
applied to natural language processing. First, we
showed that the position-wise fully-connected lay-
ers of self-attention networks can be implemented
with mathematically-equivalent 1D convolutions.
Further, we proposed SqueezeBERT, an efficient
NLP model which implements most of the layers of
its self-attention encoder with 1D grouped convolu-
tions. This model yields an appreciable >4x latency
decrease over BERT-base when benchmarked on a
Pixel 3 phone. We also successfully applied distil-
lation to improve our approach’s accuracy to a level
that is competitive with a distillation-trained Mo-
bileBERT and with the original version of BERT-
base.

We now discuss some possibilities for future
work in the design of computationally-efficient
neural networks for NLP. As we observed in Sec-
tion 6, in recent months numerous approaches have
been proposed for reducing the computational cost
of self-attention neural architectures for natural
language processing. These approaches include
new model structures (e.g. MobileBERT), rethink-
ing the dimensions of attention calculations (e.g.
Linformer), grouped convolutions (SqueezeBERT),
and much more. Further, once the neural architec-
ture has been selected, approaches such as quanti-
zation and pruning can further reduce some of the
costs associated with self-attention neural network
inference. The combination of all of these poten-
tial techniques opens up a broad search-space of
neural architecture designs for NLP. This motivates
the application of automated neural architecture
search (NAS) approaches such as those described
in (Shaw et al., 2019; Wu et al., 2019a) to further
improve the design of neural networks for NLP.

Acknowledgements

K. Keutzer’s research is supported by Alibaba,
Amazon, Google, Facebook, Intel, and Samsung.
We would like to thank the EMNLP SustaiNLP
Workshop’s reviewers for their helpful comments
on this paper.

133

References
Abrar Al-Heeti. 2018. WhatsApp: 65B messages sent

each day, and more than 2B minutes of calls. CNET.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment challenge.
In Text Analysis Conference (TAC).

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. In Eleventh Inter-

national Workshop on Semantic Evaluations.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2018. Quora question pairs.

Francois Chollet. 2016. Xception: Deep learning with
depthwise separable convolutions. In IEEE Con-

ference on Computer Vision and Pattern Recogni-

tion (CVPR). https://arxiv.org/abs/1610.
02357.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-

ing Representations (ICLR).

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V.
Le. 2020. Funnel-transformer: Filtering out se-
quential redundancy for efficient language process-
ing. arXiv:2006.03236.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American

Chapter of the Association for Computational Lin-

guistics (NAACL).

William B. Dolan and Chris Brockett. 2005. Auto-
matically constructing a corpus of sentential para-
phrases. In Proceedings of the International Work-

shop on Paraphrasing.

Gordon Donnelly. 2018. 75 super-useful
facebook statistics for 2018. https:
//www.wordstream.com/blog/ws/2017/
11/07/facebook-statistics.

Kunihiko Fukushima. 1980. Neocognitron: A self-
organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position.
Biological Cybernetics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.
arXiv:1503.02531.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. 2017. Mo-
bileNets: Efficient convolutional neural networks
for mobile vision applications. arXiv:1704.04861.

Forrest Iandola and Kurt Keutzer. 2017. Small neu-
ral nets are beautiful: Enabling embedded systems
with small deep-neural-network architectures. In
ESWEEK Keynote.

Forrest N. Iandola, Khalid Ashraf, Matthew W.
Moskewicz, and Kurt Keutzer. 2016a. FireCaffe:
near-linear acceleration of deep neural network train-
ing on compute clusters. In CVPR.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
2016b. SqueezeNet: Alexnet-level accuracy with
50x fewer parameters and <0.5mb model size.
arXiv:1602.07360.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. TinyBERT: Distilling bert for natural lan-
guage understanding. arXiv:1909.10351.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
Ctrl: A conditional transformer language model for
controllable generation. arXiv:1909.05858.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Conference on Empirical

Methods in Natural Language Processing (EMNLP).

Vid Kocijan, Ana-Maria Cretu, Oana-Maria Camburu,
Yordan Yordanov, and Thomas Lukasiewicz. 2019.
A surprisingly robust trick for winograd schema
challenge. In ACL.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. ImageNet Classification with Deep Con-
volutional Neural Networks. In NeurIPS.

Alex Krizhevsky et al. 2011. cuda-convnet.
https://code.google.com/archive/p/
cuda-convnet.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite bert for self-supervised learn-
ing of language representations. In ICLR.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. 1989. Back-
propagation applied to handwritten zip code recog-
nition. Neural Computation.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Proceedings of the Thirteenth International Confer-

ence on the Principles of Knowledge Representation

and Reasoning.

https://www.cnet.com/news/whatsapp-65-billion-messages-sent-each-day-and-more-than-2-billion-minutes-of-calls/
https://www.cnet.com/news/whatsapp-65-billion-messages-sent-each-day-and-more-than-2-billion-minutes-of-calls/
http://static.hongbozhang.me/doc/STAT_441_Report.pdf
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://www.wordstream.com/blog/ws/2017/11/07/facebook-statistics
https://www.wordstream.com/blog/ws/2017/11/07/facebook-statistics
https://www.wordstream.com/blog/ws/2017/11/07/facebook-statistics
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/D14-1181
https://code.google.com/archive/p/cuda-convnet
https://code.google.com/archive/p/cuda-convnet

134

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a
self-distilling bert with adaptive inference time.
arXiv:2004.02178.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Lovely Mobile News. 2017. Mobile has largely dis-
placed other channels for email.

NVIDIA. 2020a. APEX - A PyTorch Extension: Tools
for easy mixed precision and distributed training in
pytorch. https://github.com/NVIDIA/apex.

NVIDIA. 2020b. Deep learning examples for
tensor cores. https://github.com/NVIDIA/
DeepLearningExamples.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. PyTorch: An
imperative style, high-performance deep learning li-
brary. In NeurIPS.

Jason Phang, Thibault Févry, and Samuel R. Bow-
man. 2018. Sentence encoders on stilts: Supple-
mentary training on intermediate labeled-data tasks.
arXiv:1811.01088.

Quora. 2017. Quora question pairs.

Alec Radford, Karthik Narasimhan, Tim Sali-
mans, and Ilya Sutskever. 2018. Improving
language understanding by generative pre-
training. https://s3-us-west-2.amazonaws.
com/openai-assets/research-covers/
language-unsupervised/language_
understanding_paper.pdf.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage models are unsupervised multitask learn-
ers. https://d4mucfpksywv.cloudfront.
net/better-language-models/language_
models_are_unsupervised_multitask_
learners.pdf.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
2015. U-net: Convolutional networks for biomed-
ical image segmentation. In International Confer-

ence on Medical image computing and computer-

assisted intervention.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. Interna-

tional Journal of Computer Vision.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. arXiv:2005.07683.

David Sayce. 2019. The number of tweets
per day in 2019. https://www.dsayce.com/
social-media/tweets-day/.

Jeff Schultz. 2019. How much data is created on the
internet each day?

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In International Confer-

ence on Acoustics, Speech and Signal Processing

(ICASSP).

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model
and instance complexities. arXiv:2004.07453.

Albert Shaw, Daniel Hunter, Forrest Iandola, and
Sammy Sidhu. 2019. SqueezeNAS: Fast neural ar-
chitecture search for faster semantic segmentation.
In ICCV Neural Architects Workshop.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian based ultra low
precision quantization of bert. In AAAI.

David R. So, Chen Liang, and Quoc V. Le. 2019. The
evolved transformer. In ICLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In EMNLP.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019a.
Patient knowledge distillation for BERT model com-
pression. In Conference on Empirical Methods in

Natural Language Processing and the International

Joint Conference on Natural Language Processing

(EMNLP-IJCNLP).

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2019b. Mobile-
BERT: Task-agnostic compression of BERT by pro-
gressive knowledge transfer. OpenReview submis-

sion.

https://lovelymobile.news/mobile-has-largely-displaced-other-channels-for-email
https://lovelymobile.news/mobile-has-largely-displaced-other-channels-for-email
https://github.com/NVIDIA/apex
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://www.kaggle.com/c/quora-question-pairs/overview
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.dsayce.com/social-media/tweets-day/
https://www.dsayce.com/social-media/tweets-day/
https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day
https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day
https://openreview.net/forum?id=SJxjVaNKwB
https://openreview.net/forum?id=SJxjVaNKwB
https://openreview.net/forum?id=SJxjVaNKwB

135

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Ren-
jie Liu, Yiming Yang, and Denny Zhou. 2020.
MobileBERT: a compact task-agnostic BERT for
resource-limited devices. In Annual Meeting of the

Association for Computational Linguistics (ACL).
ArXiv:2004.02984.

Mingxing Tan and Quoc V. Le. 2019. EfficientNet:
Rethinking model scaling for convolutional neural
networks. In International Conference on Machine

Learning (ICML).

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.
arXiv:2009.06732.

Templatify. 2017. How many emails are sent every
day? top email statistics for business.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Conference on Neural Information Pro-

cessing Systems (NeurIPS).

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2018. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding.
arXiv:1804.07461.

Chenguang Wang, Zihao Ye, Aston Zhang, Zheng
Zhang, and Alexander J. Smola. 2020a. Trans-
former on a diet. arXiv:2002.06170.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020b. Linformer: Self-
attention with linear complexity. arXiv:2006.04768.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
In Transactions of the Association for Computa-

tional Linguistics.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Con-

ference of the North American Chapter of the Asso-

ciation for Computational Linguistics (NAACL).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. arXiv:1910.03771.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan
Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. 2019a. FB-
Net: Hardware-aware efficient convnet design via

differentiable neural architecture search. In IEEE

Conference on Computer Vision and Pattern Recog-

nition (CVPR).

Felix Wu, Angela Fan, Alexei Baevski, Yann N.
Dauphin, and Michael Auli. 2019b. Pay less atten-
tion with lightweight and dynamic convolutions. In
ICLR.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arXiv:1609.08144.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song
Han. 2020. Lite transformer with long short term
attention. In ICLR.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. 2017. Aggregated residual trans-
formations for deep neural networks. In IEEE Con-

ference on Computer Vision and Pattern Recognition

(CVPR).

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating bert inference. In ACL.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. Bert-of-theseus: Com-
pressing bert by progressive module replacing.
arXiv:2002.02925.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large batch optimization for deep learning:
Training bert in 76 minutes. In ICLR.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: Quantized 8bit bert.
arXiv:1910.06188.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. 2018. ShuffleNet: An extremely efficient con-
volutional neural network for mobile devices. In
CVPR.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In IEEE International Confer-

ence on Computer Vision (ICCV).

https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://info.templafy.com/blog/how-many-emails-are-sent-every-day-top-email-statistics-your-business-needs-to-know
https://info.templafy.com/blog/how-many-emails-are-sent-every-day-top-email-statistics-your-business-needs-to-know
https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.acl-main.204

