
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 97–106
Online, November 20, 2020. c©2020 Association for Computational Linguistics

97

Quasi-Multitask Learning:
an Efficient Surrogate for Constructing Model Ensembles

Norbert Kis-Szabó1 and Gábor Berend1,2

1Institute of Informatics, University of Szeged
2SZTE-MTA Research Group on Artificial Intelligence

{ksznorbi,berendg}@inf.u-szeged.hu

Abstract

We propose the technique of quasi-multitask
learning (Q-MTL), a simple and easy to imple-
ment modification of standard multitask learn-
ing, in which the tasks to be modeled are iden-
tical. With this easy modification of a standard
neural classifier we can get benefits similar to
an ensemble of classifiers with a fraction of the
resources required. We illustrate it through a
series of sequence labeling experiments over a
diverse set of languages, that applying Q-MTL
consistently increases the generalization abil-
ity of the applied models. The proposed ar-
chitecture can be regarded as a new regulariza-
tion technique that encourages the model to de-
velop an internal representation of the problem
at hand which is beneficial to multiple output
units of the classifier at the same time. Our
experiments corroborate that by relying on the
proposed algorithm, we can approximate the
quality of an ensemble of classifiers at a frac-
tion of computational resources required. Ad-
ditionally, our results suggest that Q-MTL han-
dles the presence of noisy training labels better
than ensembles.

1 Introduction

Ensemble methods are frequently used in machine
learning applications due to their tendency of in-
creasing model performance. While the increase
in the prediction performance is undoubtedly an
important aspect when we train a model, it should
not be forgotten that the increased performance of
ensembling comes at the price of training multiple
models for solving the same task.

The question that we tackle in this paper is the
following: Can we enjoy the benefits of ensemble
learning, while avoiding its overhead for training
models from scratch multiple times? This question
is highly relevant these days, since state-of-the-
art neural models tend to be extremely resource-
intensive on their own (Strubell et al., 2019), pro-

hibiting their inclusion in a traditional ensemble
setting.

Our proposed architecture simultaneously offers
the benefit of ensemble learning, while avoiding its
drawback of training multiple models. The method
introduced here employs a special form of mul-
titask learning (MTL). Caruana (Caruana, 1997)
argues in his seminal work that MTL can be a use-
ful source of introducing inductive bias into ma-
chine learning models. Standard MTL have been
shown to be fruitfully applicable in solving a se-
ries of NLP tasks: Collobert and Weston (2008);
Plank et al. (2016); Rei (2017); Kiperwasser and
Ballesteros (2018); Sanh et al. (2018), inter alia.
We introduce quasi-multitask learning (Q-MTL),
where the goal is to simultaneously learn multi-
ple neural models that solve identical tasks, while
relying on a shared representation layer.

Besides the considerable speedup that comes
with the proposed technique, we additionally ar-
gue that by applying multiple output units on top
of a shared parameter set is beneficial, as we can
avoid converging to such degenerate internal repre-
sentations that are highly tailored for a particular
classification model. In that sense, Q-MTL can
also be viewed as an implicit regularizer.

Our experiments with Q-MTL illustrate that the
presence of multiple classifier layers for the same
task affect each other positively – similar to ensem-
ble learning – without the additional overhead of
actually training multiple models.

A similar technique have already been de-
rived from MTL called Pseudo-Task Augmenta-
tion (Meyerson and Miikkulainen, 2018), which
builds on the idea of common representation, but
the management of these tasks differs. We con-
ducted experiments comparing the two methods for
a greater comprehension of the differences.



98

2 Applied models

We release all our source code used for
our experiments at https://github.com/N0rbi/
Quasi-Multitask-Learning/. Our models are
based on the sequence classification framework
from Plank et al. (2016) implemented in DyNet
(Neubig et al., 2017). Figure 1 provides a vi-
sual summary of the different architectures we
implemented. Figure 1b highlights that Q-MTL
has the benefit of training multiple classification
models over the same internal representation, as
opposed to traditional ensemble model, which re-
quires the training of multiple LSTM parameters
as well (cf. Figure 1c).

2.1 Baseline architecture
Our baseline classifier is a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) incorporat-
ing character and word level embeddings. We first
compute the input embedding for the network at
position i as

ei = wi ⊕−→ci ⊕←−ci ,

where ⊕ is the concatenation operator, wi denotes
the word embedding,−→ci and←−ci refers to the left-to-
right and right-to-left character-based embeddings,
respectively. We subsequently feed ei into a bi-
LSTM, which determines a hidden representation
hi ∈ Rm for every token position as hi =

−→
hi ⊕

←−
hi ,

i.e., the concatenation of the hidden states of the
two LSTMs processing the input from its beginning
to the end, and in reverse direction.

The final output of the network for token position
i gets computed as

yi = softmax(ReLU(hiV +bV)W+bW) (1)

with V ∈ Rh×m and bV ∈ Rm denoting the
weight matrix and the bias of a regular percep-
tron layer with m outputs, whereas W ∈ Rm×c

and bW ∈ Rc are the parameters of the neuron
performing classification over the c target classes.

2.2 Q-MTL architecture
The Q-MTL network behaves similarly to the
model introduced in Section 2.1, with the notable
exception that it trains k distinct classification mod-
els, all of which operate over the same hidden repre-
sentation as input obtained from a single bi-LSTM
unit.

More concretely, we replace the single predic-
tion of the standard single task learning (STL)

BiLSTMcoffee
Verb

ReLU

BiLSTMcoffee
Verb

ReLU

BiLSTMcoffee
Noun

ReLU

(a) Sequence of single task learners (STLs)

Σ
Noun

BiLSTM
Verb

ReLU

BiLSTMcoffee
Noun

ReLU Noun
ReLU

(b) Quasi-Multitask Learning (Q-MTL)

Σ
Noun

BiLSTMcoffee
Noun

ReLU

BiLSTMcoffee
Verb

ReLU

BiLSTMcoffee
Noun

ReLU

(c) Ensemble

Figure 1: A schematic illustration of the different archi-
tectures employed in our experiments. Quasi-Multitask
Learning (Q-MTL) averages the predictions of multiple
classification units similar to ensembling without the
computational bottleneck of adjusting the parameters
of multiple LSTM cells.

model from Eq. 1 by a series of predictions for
Q-MTL according to

yi,j = softmax(ReLU(hiV
(j)+b

(j)
V )W (j)+b

(j)
W),
(2)

with j ∈ {1, . . . , k}. As argued before, this ap-
proach behaves efficiently from a computational
point of view, as it relies on a shared representation
hi for all the k classification units.

The loss of the network for token position i and
gold standard class label y∗

i can be conveniently
generalized as

lQ−MTL(i) =

k∑
j=1

CE(y∗
i ,yi,j),

where CE denotes categorical cross entropy loss
and k is the number of (identical) tasks in the Q-
MTL model, with the special case of k = 1 result-
ing in standard STL.

Losses from the different outputs can be effi-
ciently aggregated for backpropagation, hence the
shared LSTM cell benefit from multiple error sig-
nals without the actual need of going through mul-
tiple individual forward and backward passes.

Q-MTL outputs k predictions by all of its pre-
diction units, however, we can as well derive a
combined prediction from the distinct outputs of

https://github.com/N0rbi/Quasi-Multitask-Learning/
https://github.com/N0rbi/Quasi-Multitask-Learning/


99

Q-MTL according to

1

k

k∑
j=1

softmax(ReLU(hiV
(j)+b

(j)
V )W (j)+b

(j)
W),

(3)
which is a weighted average according to the pre-
dicted probabilities of the distinct models. As in-
troducing averaging at the model-level would elim-
inate diversity of the individual classifiers (Lee
et al., 2015), this kind of averaging took place in a
post-hoc manner, only when making predictions.

2.3 Traditional ensemble model
As an additional model, we also employ a tradi-
tional ensemble of k independently trained STL
models. We define the prediction of the ensemble
model by averaging the predictions of k indepen-
dent models as

1

k

k∑
j=1

softmax(ReLU(h
(j)
i V (j)+b

(j)
V )W (j)+b

(j)
W).

(4)
The distinctive difference between Eq. 4 and the
Q-MTL model formulation in Eq. 3 is that ensem-
bling relies on the hidden representations originat-
ing from k independently trained LSTM models
as denoted by the superscripts of the hidden states
in h

(j)
i . Such an ensemble necessarily requires

approximately k-times as much computational re-
sources compared to Q-MTL, due to the LSTM
models being trained in total isolation. For the
above reason, ensembling is a strictly more expen-
sive form of training a model, therefore we regard
its performance as a glass ceiling for Q-MTL.

3 Experiments

Our model uses character embeddings of 100 di-
mensions and the word representations get initial-
ized by the 64-dimensional pre-trained polyglot
word embeddings (Al-Rfou et al., 2013) as sug-
gested by Plank and Agić (2018). We use the bi-
LSTM introduced in the previous section. We re-
fer to the hidden representation of the LSTM for
readability as hi ∈ R200 which stands for the con-
catenation of

−→
hi,
←−
hi ∈ R100. Instead of directly

applying a fully-connected layer to perform clas-
sification based on hi, we first transform hi by an
intermediate perceptron unit with ReLU activation
– as shown in 2. The perceptron transforms hi into
20 dimensions, that is, we have V ∈ R20×200. Our
motivation with the extra non-linearity introduced

by ReLU is to encourage an increased diversity in
the behavior of the different output units.

Upon training the LSTMs, we used the default ar-
chitectural settings employed by Plank et al. (2016),
i.e., we relied on a word dropout rate of 0.25 (Kiper-
wasser and Goldberg, 2016) and an additive Gaus-
sian noise (with σ = 0.2) over the input embed-
dings. We trained all our models for 20 epochs
using stochastic gradient descent with a batch size
of 1. First, we assess the quality of Q-MTL towards
POS tagging, then we evaluate it on named entity
recognition as well.

When comparing the performance of different
approaches, Q-MTL models are compared against
the average performance of k STL models, where
k denotes the number of task in the case of Q-MTL.
The k STL models are also used to derive a single
prediction by the ensemble model.

3.1 POS tagging experiments

We set our POS tagging related experiments on
10 treebanks from the Universal Dependencies
dataset v2.2 (Nivre et al., 2018), namely the Greek-
GDT (el), English-LinES (en), Basque-BDT (eu),
Finnish-FTB (fi), Croatian-SET (hr), Hungarian-
Szeged (hu), Indonesian-GSD (id), Dutch-Alpino
(nl), Tamil-TTB (ta) and Turkish-IMST (tr) tree-
banks. These treebanks not only cover a typolog-
ically diverse set of languages, but they also vary
substantially in the number of available training
sequences between 400 (for Tamil) and 14980 (for
Finnish).

3.1.1 Experiments with the number of tasks

We first investigate how changing the value of k,
i.e., the number of simultaneously learned tasks, af-
fects the performance of Q-MTL. We experimented
with k ∈ {1, 10, 30}. Based on the results in Ta-
ble 1, we set the number of tasks to be employed
as k = 10 for all upcoming experiments. In order
to choose k without overfitting to the training data,
this experiment was conducted on the development
set.

3.1.2 Comparing Q-MTL with STL

Following the recommendation in Dodge et al.
(2019), we report learning curves over the devel-
opment set as a function of the number epochs in
Figure 2 As a general observation, we can see that
Q-MTL tends to perform consistently better than
STL models right from the beginning of training.



100

90.0

92.5

95.0

Ac
cu

ra
cy

 (%
)

el

92

94

en

88

90

92

94

eu

85

90

fi

95

96

97
hr

10 20
Number of epochs

80

85

90

95

Ac
cu

ra
cy

 (%
)

hu

10 20
Number of epochs

92

93

id

10 20
Number of epochs

94

96

nl

10 20
Number of epochs

60

70

80

ta

10 20
Number of epochs

85

90

tr

STL Q-MTL

Figure 2: The accuracy of the different model types over the training epochs on the dev set.

Table 1: Results of Q-MTL on the dev sets for varying number of tasks employed (k).

k el en eu fi hr hu id nl ta tr Avg.

1 95.61 94.99 94.49 93.19 96.84 93.95 93.05 96.05 82.74 93.61 93.45
10 95.84 95.23 94.81 93.30 96.99 94.25 92.98 96.53 84.48 93.78 93.82
30 95.86 95.21 94.59 93.09 96.93 93.79 93.25 96.27 83.85 93.46 93.63

Directly comparing the classifiers One benefit
of Q-MTL is that it learns k different classification
models during training with only a marginal com-
putational overhead compared to training a STL
baseline, since all the tasks share a common inter-
nal representation. As discussed earlier, we can
combine the predictions from the k classifiers from
Q-MTL according to Eq. 2. It is also possible, how-
ever, to use the k distinct predictions of Q-MTL. In
what follows next, we compare the performance of
the k STL models we train to the k classifiers that
are incorporated within a Q-MTL model.

Upon comparing the performance of a Q-MTL
classifier with a STL model, we made it sure that
the overlapping parameters (matrices V and W )
were initialized with the same values and that they
receive the training instances in the exact same or-
der. This way the performance achieved by the ith

output of Q-MTL is directly comparable with the
ith STL baseline. Comparison of the results of the
individual outputs of Q-MTL and their correspond-
ing STL counterpart are included in Figure 3.

Training Q-MTL models with k tasks simulta-
neously is not only faster than training k distinct
STL models separately, but the individual Q-MTL
models typically outperform their baseline counter-
parts evaluated against both the development and
the test data.

The regularizing effect of Q-MTL We have ar-
gued earlier that Q-MTL has an implicit regular-
izing effect. Among most recent techniques, such
as dropout (Srivastava et al., 2014), weight decay
(Krogh and Hertz, 1992) is one of the most typical
form of regularization for fostering the general-
ization capability of the learned models. When
employing weight decay, we add an extra term pe-
nalizing the magnitude of the values learned by our
model, which results in an overall shrinkage in the
values of the model parameters.

Figure 4 illustrates that the effects of employing
Q-MTL is similar to applying weight decay, as the
Frobenius norm of the parameter matrices from the
classifiers of Q-MTL are substantially smaller than
those of the STL classifiers. This observation holds
for both the of parameter sets V andW . Recall that
the initial values for these matrices were identical
for both Q-MTL and STL.

3.1.3 Comparison to an ensemble of
classifiers

We next compared the Q-MTL technique with en-
semble learning. Our comparison additionally as-
sesses the sensitivity of the different approaches to-
wards the presence of noisily labeled tokens during
training. To do so, we conducted multiple experi-
ments for each language, for which we randomly
replaced the true class label of a token by some pre-



101

95 96 97

95

96

97

Q-
M

TL
 a

cc
ur

ac
y 

(%
)

el

95 96

95.0

95.5

96.0

en

94.25 94.50 94.75

94.2

94.4

94.6

94.8

eu

93.0 93.5 94.0

93.0

93.5

94.0

fi

97.0 97.5

96.8

97.0

97.2

97.4

hr

93 94
STL accuracy (%)

92.5

93.0

93.5

94.0

94.5

Q-
M

TL
 a

cc
ur

ac
y 

(%
)

hu

93.0 93.5
STL accuracy (%)

92.75

93.00

93.25

93.50

id

95.5 96.0 96.5
STL accuracy (%)

95.5

96.0

96.5

nl

82.5 85.0 87.5
STL accuracy (%)

82

84

86

88
ta

93 94
STL accuracy (%)

93.0

93.5

94.0

94.5

tr

dataset test dev

Figure 3: Scatter plot comparing the accuracy of the individual classifiers from Q-MTL (k = 10) and their corre-
sponding STL counterpart. Each model that is above the diagonal line performs better after training in the Q-MTL
setting.

0

25

‖.‖
F

el en eu fi hr

STL Q-MTL
0

25

‖.‖
F

hu

STL Q-MTL

id

STL Q-MTL

nl

STL Q-MTL

ta

STL Q-MTL

tr

V W

Figure 4: The average Frobenius norms of the learned
parameter matrices V and W for the different ap-
proaches and treebanks.

0 10 20 30
Label noise (%)

93.50

93.75

94.00

94.25

94.50

94.75

95.00

Ac
cu

ra
cy

 (%
)

Average
method
STL
Q-MTL
ensemble

Figure 5: Model performances averaged over the 10
treebanks, when a varying amount of noisy training
samples are introduced during training.

defined probability p ∈ {0, 0.1, 0.2, 0.3}. During
the random replacement of the class labels, we en-
sured that the same tokens got randomly relabeled
by the same label for the different approaches.

Figure 5 contains the performance of the three
different models in conjunction with the different
amounts of noisy labels introduced to the training
set. We can observe from Figure 5 that Q-MTL out-
performs STL irrespective to the amount of noisy
tokens being present encountered during training.

Figure 5 further reveals that the performances of the
ensemble models – which are based on the predic-
tions of the STL classifiers – are dominantly better
than the average performance of the individual STL
models. When mislabeled tokens are not present in
the training data at all, ensemble also has a slight
advantage over Q-MTL, however, this advantage
of the ensembling model gradually fades out as
the proportion of noisy training labels increases.
Indeed, for the case when 30% of the training la-
bels are randomly replaced, the performance of
Q-MTL reaches that of the ensemble model. The
proposed approach has the additional benefit over
the ensemble model that it requires a fraction of
computational resources as we will demonstrate it
in Section 3.1.5.

3.1.4 Comparison to Pseudo-Task
Augmentation

Pseudo-Task Augmentation (PTA) architecture
(Meyerson and Miikkulainen, 2018) introduces a
similar architecture to Q-MTL for leveraging a bet-
ter representation of the task by fitting multiple
outputs to the same task. PTA makes a series of
predictions according to

yi,j = softmax(hiW
(j) + b

(j)
W). (5)

PTA introduces two special subroutines, named
as DecInit and DecUpdate. These subroutines in-
troduce various heuristics with the goal of encour-
aging the different decoders to behave differently.

DecInit DecInit gets called right before the start
of the training and can contain any of the following
three methods. PTA-I means that the weight of the



102

96.75

97.00

97.25

Ac
cu

ra
cy

 (%
)

el

95.75

96.00

96.25
en

94.25

94.50

94.75

eu

92

93

94
fi

97.2

97.4

hr

0 10 20 30
Label noise (%)

94.50

94.75

Ac
cu

ra
cy

 (%
)

hu

0 10 20 30
Label noise (%)

93.6

93.8

94.0
id

0 10 20 30
Label noise (%)

95.0

95.5

nl

0 10 20 30
Label noise (%)

87

88

ta

0 10 20 30
Label noise (%)

94.4

94.6

94.8

tr

0 10 20 30
Label noise (%)

93.2

93.4

93.6

93.8

94.0

94.2

94.4

94.6

94.8 Average
AVG @ 0 MLP BEST @ 0 MLP AVG @ 20 MLP BEST @ 20 MLP

Figure 6: PTA and Q-MTL compared in an analogue manner. The model with the highest dev score (BEST) is
compared to model averaging (AVG) and MLP (20 MLP) compared to linear classifier (0 MLP). From PTA (BEST
@ 0 MLP) to Q-MTL (AVG @ 20 MLP) we can see all combinations of these parameters.

tasks get different random initialization. PTA-F,
which freezes all k tasks except for the first one.
Finally, PTA-D adds dropout independently to the
tasks.

DecUpdate DecUpdate introduces the so-called
meta-iteration into the learning process. A meta-
iteration is invoked after M th gradient update. The
methods used in DecUpdate all require a ranking
of the tasks based on their dev dataset performance.
This makes performing an evaluation step neces-
sary at the beginning of each meta-iteration. The
goal of the ranking is to identify the best task (BT )
with the highest dev set performance.

PTA introduces three methods for the DecUp-
date as well. PTA-P perturbs the weight matrix
of the tasks excluding the BT . Hyperturb (PTA-
H) modifies the tasks in the same manner, but in-
stead of adding noise to the weight matrices, noise
gets added to the hyperparameters of the tasks (in
our case it is the dropout probability preceding the
softmax layers). The remaining method is called
greedy (PTA-G), which takes the parameters of
BT and replaces the actual parameters for all the
remaining k − 1 decoders besides BT .

The most similar PTA method to Q-MTL is PTA-
I, with the main difference that Q-MTL uses an
extra transformation and a ReLU non-linearity over
the hidden representation of the LSTM (cf. Eq. 2
and Eq. 5 for Q-MTL and PTA-I, respectively).

Another key difference is that PTA uses model
selection (BEST ), whereas Q-MTL relies on
model averaging (AV G). This means that PTA
makes prediction for test instances during inference
based on the model which achieves best performing
dev set accuracy at the end of the training phase. Q-
MTL, on the other hand, aggregates all the models
according to Eq. 3.

Figure 6 shows the effects of the different com-
binations of inference strategies (BEST/AVG) and
the usage of a Multi-Layered Perceptron (MLP)
in the model (0MLP /20MLP ). In these experi-
ments the 0 MLP means we do not add the extra
layer before the output. Note, that the AV G infer-
ence strategy used in conjunction with the 0MLP
architecture is essentially equivalent to the PTA-I
architecture.

Figure 6 demonstrates that the Q-MTL model
with its MLP layer can facilitate the use of model
averaging shown in Eq. 3 as it outperforms the Q-
MTL using model selection (BEST @ 20 MLP).
On the other hand it is indeed discouraged to use
the AV G model when no MLP is applied, as
BEST often outperforms AV G in case of 0 MLP.
Interestingly, when the train set contains high label
noise, the later observation seems to pivot towards
the ensemble of linear classifiers. Additionally, we
can see that the MLP layer improves the tolerance
of the models to the increasing label noise, as it
outperforms 7 out of 10 treebanks the model not
employing extra ReLU non-linearity.

As an interesting note, the Q-MTL has an im-
proved performance for Indonesian as the amount
of noisy training labels increases. A possible ex-
planation for this is that corrupting the class labels
of the training data can be viewed as an alterna-
tive form of label smoothing (Szegedy et al., 2016),
which is known to increase the generalization abil-
ity of neural models.

After the detailed differentiation between PTA-I
and Q-MTL we also compare Q-MTL to the more
complex PTA variants that were introduced in Mey-
erson and Miikkulainen (2018). We conducted
these experiments for English only because of the
computational overhead introduced by the meta-



103

Table 2: Comparison of Q-MTL to the different types
of PTA. This table shows the performance (%) of Q-
MTL and the different PTA models on the en POS tag-
ging dataset.

Q-MTL PTA-I PTA-GP PTA-P PTA-D PTA-GD PTA-HGD PTA-F PTA-FP

96.27 96.17 96.04 96.16 96.22 96.22 96.1 80.87 80.85

el en eu fi hr hu id nl ta tr

10
0

10
1

10
2

El
ap

se
d 

tim
e 

(h
ou

rs
) k = 10

el en eu fi hr hu id nl ta tr

k = 30
STL Q-MTL Ensemble

Figure 7: Training times of the different approaches for
the different languages.

iterations being part of the PTA approach. In cases
when there are more than one letter after the prefix
of the keyword, it refers to a combination of multi-
ple approaches (eg. PTA-HGD: hyperturb, greedy,
dropout).

Table 2 shows that while most PTA architectures
slightly underperform the Q-MTL, two variants of
PTA – namely freeze (F) and freeze combined with
perturb (FP) – had a substantially inferior perfor-
mance.

These experiments have also shown that the
meta-iterations of PTA are responsible for the non-
gradient based updates create a considerable com-
putational overhead – as noted above – compared
to the traditional SGD without external heuristics.
We used M = 100 for our POS tagging classifiers.
This means, that 100 training samples are followed
by an evaluation on the dev set, making the training
phase 5 and a half hours on average for the different
PTA models, while our method took slightly less
than 2 hours to finish training. We do not report
the performance of all eight methods due to the
limitation by this training time overhead.

3.1.5 Comparison of training times
One of the main benefits of Q-MTL resides in
its training efficiency compared to traditional en-
semble models as also demonstrated by Figure 7,
which includes the training times for the different
approaches. We plot the training times on the loga-
rithmic scale for better readability for both k = 10
and k = 30. We can see that the training times for

STL and Q-MTL practically concur, whereas the
overall costs of ensembling exceeds the training
time of STL and Q-MTL models by a factor of k.

The training times reported in Figure 7 were
obtained without GPU acceleration – on an Intel
Xeon E7-4820 CPU – in order to simulate a set-
ting with limited computational resources. We also
repeated training on a TITAN Xp GPU. The GPU-
based training was 3 to 10 times quicker depending
on the languages, but the relative performance be-
tween the different approaches remained the same,
i.e., STL and Q-MTL training times did not dif-
fer substantially, whereas the ensemble model took
k-times as much time to be created.

This training overhead is due to the number of
excess parameters in the ensemble and Q-MTL
models. Given we have a k = 5 English model,
the ensemble has 5 times the parameter numbers
of STL while the Q-MTL has only 1.003 times the
number of STL parameters.

3.2 Evaluation on Named Entity Recognition

We also conducted experiments on the CoNLL
2002/2003 shared task data on named entity recog-
nition (NER) in English, Spanish and Dutch (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meulder,
2003). For these experiments, we report perfor-
mance in terms of overall F1 scores calculated by
the official scorer of the shared task. We trained
models with k = 10 and compared the average
performance of the individual STL models to the
performance of the Q-MTL and ensemble models.

Table 3a shows the results for NER over the
different languages, corroborating our previous ob-
servation that Q-MTL is capable of closing the
gap between the performance of STL models and
the much more resource-intensive ensemble model
derived from k independent models.

In our POS tagging experiment, we trained
models on treebanks of radically differing sizes,
whereas during our NER experiments, we had ac-
cess to training data sets of comparable sizes (rang-
ing between 218K and 273K tokens). In order to
simulate the effects of having access to limited
training data on NER as well, we artificially relied
on only 10% of the available training sets.

These results for the limited training data setting
are included in Table 3b, from which we can see
that Q-MTL manages to preserve more of its origi-
nal performance, i.e., 87.5% on average as opposed
to the ensemble and STL models, which preserved



104

Table 3: F1 performance scores for the NER experi-
ments.

(a) 100% training data used

Avg. STL Q-MTL Ensemble

en 86.68 86.88 87.86
es 82.28 82.35 83.76
nl 81.84 83.15 83.61

Avg. 83.60 84.13 85.07

(b) 10% training data used

Avg. STL Q-MTL Ensemble

en 77.54 80.24 78.52
es 70.71 71.57 72.56
nl 68.47 69.16 70.33

Avg. 72.42 73.66 73.80

only 86.7% and 86.4% of their original F-scores.

4 Related work

Caruana (1997) showed that neural networks can be
trained for multiple tasks, leveraging cross domain
information. More recently, Søgaard and Goldberg
(2016); Sanh et al. (2018) argues that solving low-
level NLP tasks can improve the performance of
high level tasks. Additionally, Plank et al. (2016);
Bingel and Søgaard (2017) show that better per-
forming models can be trained by introducing mul-
tiple auxiliary tasks. Rei (2017) proposes an auxil-
iary task for NLP sequence labeling tasks, where
the auxiliary tasks is to predict the previous and
next word in the sequence. Our results complement
these findings by showing that this generalization
property holds even if the tasks are the same.

Meyerson and Miikkulainen (2018) introduced
Pseudo-Task Augmentation a similar architecture
that aims to build a robust internal representation
from multiple classifier units optimized for the
same task in the same network. Section 3.1.4
describes the similarities and differences to our
method. PTA architecture is evaluated on multitask
as well, while our work only considers single tasks
at the moment.

Ruder and Plank (2018) has shown that self-
learning and tri-training can be adapted to deep
neural nets in the semi-supervised regime. Their
tri-training architecture resembles our approach in
that they were utilizing multiple classifier units that

were built on top of a common representation layer
for providing labels to previously unlabeled data.

Cross-view training (CVT) (Clark et al., 2018)
resembles Q-MTL in that it also employs a shared
bi-LSTM layer used by multiple output layers. The
main difference between CVT and Q-MTL is that
we are utilizing an bi-LSTM to solve the same
task multiple times in a supervised setting, whereas
Clark et al. used it to solve different tasks in a
semi-supervised scenario.

A series of studies have made use of ensemble
learning in the context of deep learning (Hansen
and Salamon, 1990; Krogh and Vedelsby, 1995;
Lee et al., 2015; Huang et al., 2017). Our pro-
posed model is also related to the line of research
on mixture of experts proposed by Jacobs et al.
(1991), which has already been applied success-
fully in NLP before (Le et al., 2016). The main
difference in our proposed architecture is that the
internal LSTM representation is shared across the
classifiers, hence a more efficient training could be
achieved as opposed to training multiple indepen-
dent expert models as it was done in Shazeer et al.
(2017).

Model distillation (Hinton et al., 2015) is an
alternative approach for making computationally
demanding models more effective during inference,
however, the approach still requires training of a
“cumbersome” model first.

5 Conclusions

We proposed quasi-multitask learning (Q-MTL),
which can be viewed as an efficiently trainable al-
ternative of traditional ensembles. We additionally
demonstrated that it acts as an implicit form of reg-
ularization as well. In our experiments, Q-MTL
consistently outperformed the single task learning
(STL) baseline for both POS tagging and NER. We
have also illustrated that Q-MTL generalizes better
on smaller and noisy datasets compared to both
STL and ensemble models.

The computational overhead for the additional
classification units in Q-MTL is infinitesimal due
to the effective aggregation of the losses and the
shared recurrent unit between the identical tasks.
Although we evaluated Q-MTL over an LSTM, the
idea can be applied for more resource-heavy ar-
chitectures, like transformer (Vaswani et al., 2017)
based models where training an ensemble would
be too expensive. This is the future direction of our
research.



105

Acknowledgements

This research was supported by the European
Union and co-funded by the European Social Fund
through the project ”Integrated program for train-
ing new generation of scientists in the fields of
computer science” (EFOP-3.6.3-VEKOP-16-2017-
0002) and by the National Research, Development
and Innovation Office of Hungary through the Ar-
tificial Intelligence National Excellence Program
(2018-1.2.1-NKP-2018-00008).

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual nlp. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, pages 183–192. Association for
Computational Linguistics.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 164–169. Association for Computa-
tional Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
Learning, 28(1):41–75.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925. Association for Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New
York, NY, USA. ACM.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results.
CoRR, abs/1909.03004.

Lars Kai Hansen and Peter Salamon. 1990. Neural
network ensembles. IEEE Transactions on Pattern
Analysis & Machine Intelligence, (10):993–1001.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learn-
ing Workshop.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu,
John E. Hopcroft, and Kilian Q. Weinberger. 2017.
Snapshot ensembles: Train 1, get M for free. CoRR,
abs/1704.00109.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. 1991. Adaptive mixtures of
local experts. Neural Comput., 3(1):79–87.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 6:225–240.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Anders Krogh and John A. Hertz. 1992. A simple
weight decay can improve generalization. In J. E.
Moody, S. J. Hanson, and R. P. Lippmann, editors,
Advances in Neural Information Processing Systems
4, pages 950–957. Morgan-Kaufmann.

Anders Krogh and Jesper Vedelsby. 1995. Neural net-
work ensembles, cross validation, and active learn-
ing. In Advances in neural information processing
systems, pages 231–238.

Phong Le, Marc Dymetman, and Jean-Michel Ren-
ders. 2016. Lstm-based mixture-of-experts for
knowledge-aware dialogues. In Proceedings of the
1st Workshop on Representation Learning for NLP,
pages 94–99. Association for Computational Lin-
guistics.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell,
David J. Crandall, and Dhruv Batra. 2015. Why M
heads are better than one: Training a diverse ensem-
ble of deep networks. CoRR, abs/1511.06314.

Elliot Meyerson and Risto Miikkulainen. 2018.
Pseudo-task augmentation: From deep multitask
learning to intratask sharing—and back.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. Dynet: The dy-
namic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Joakim Nivre, Mitchell Abrams, and et al. 2018. Uni-
versal dependencies 2.2. LINDAT/CLARIN digi-
tal library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

http://aclweb.org/anthology/W13-3520
http://aclweb.org/anthology/W13-3520
http://aclweb.org/anthology/E17-2026
http://aclweb.org/anthology/E17-2026
http://aclweb.org/anthology/E17-2026
https://doi.org/10.1023/A:1007379606734
http://aclweb.org/anthology/D18-1217
http://aclweb.org/anthology/D18-1217
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
http://arxiv.org/abs/1909.03004
http://arxiv.org/abs/1909.03004
http://arxiv.org/abs/1503.02531
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1704.00109
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
http://aclweb.org/anthology/Q18-1017
http://aclweb.org/anthology/Q18-1017
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
http://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization.pdf
http://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization.pdf
https://doi.org/10.18653/v1/W16-1611
https://doi.org/10.18653/v1/W16-1611
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1511.06314
http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837


106

Barbara Plank and Željko Agić. 2018. Distant super-
vision from disparate sources for low-resource part-
of-speech tagging. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 614–620. Association for Compu-
tational Linguistics.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with bidi-
rectional long short-term memory models and auxil-
iary loss. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 412–418. Associa-
tion for Computational Linguistics.

Marek Rei. 2017. Semi-supervised multitask learn-
ing for sequence labeling. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2121–2130. Association for Computational Linguis-
tics.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1044–1054. Associ-
ation for Computational Linguistics.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2018.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 231–235. Associa-
tion for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2016. Re-
thinking the inception architecture for computer vi-
sion. In CVPR, pages 2818–2826. IEEE Computer
Society.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In Proceedings of CoNLL-
2002, pages 155–158. Taipei, Taiwan.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003 - Volume 4,
CONLL ’03, pages 142–147, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

http://aclweb.org/anthology/D18-1061
http://aclweb.org/anthology/D18-1061
http://aclweb.org/anthology/D18-1061
https://doi.org/10.18653/v1/P16-2067
https://doi.org/10.18653/v1/P16-2067
https://doi.org/10.18653/v1/P16-2067
https://doi.org/10.18653/v1/P17-1194
https://doi.org/10.18653/v1/P17-1194
http://aclweb.org/anthology/P18-1096
http://aclweb.org/anthology/P18-1096
http://aclweb.org/anthology/P18-1096
http://arxiv.org/abs/arXiv:1811.06031
http://arxiv.org/abs/arXiv:1811.06031
https://openreview.net/pdf?id=B1ckMDqlg
https://openreview.net/pdf?id=B1ckMDqlg
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.aclweb.org/anthology/P19-1355
https://www.aclweb.org/anthology/P19-1355
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

