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Abstract

The predominant approaches for extracting
key information from documents resort to clas-
sifiers predicting the information type of each
word. However, the word level ground truth
used for learning is expensive to obtain since
it is not naturally produced by the extraction
task. In this paper, we discuss a new method
for training extraction models directly from
the textual value of information. The extracted
information of a document is represented as
a sequence of tokens in the XML language.
We learn to output this representation with
a pointer-generator network that alternately
copies the document words carrying informa-
tion and generates the XML tags delimiting
the types of information. The ability of our
end-to-end method to retrieve structured infor-
mation is assessed on a large set of business
documents. We show that it performs compet-
itively with a standard word classifier without
requiring costly word level supervision.

1 Introduction

Companies and public administrations are daily
confronted with an amount of incoming documents
from which they want to extract key information as
efficiently as possible. They often face known types
of documents such as invoices or purchase orders,
thus knowing what information types to extract.
However, layouts are highly variable across docu-
ment issuers as there are no widely adopted spec-
ifications constraining the positioning and textual
representation of the information within documents.
This makes information extraction a challenging
task to automate.

In addition to the incremental approaches based
on layout identification (d’Andecy et al., 2018;
Dhakal et al., 2019), a number of recent works
have proposed deep neural models to extract in-
formation in documents with yet unseen layouts.
Following Palm et al. (2017), most of these layout-
free approaches resort to classifiers that predict the

information type of each document word. Yet, the
information extraction task does not offer word
level ground truth but rather the normalized textual
values of each information type (Graliński et al.,
2020). The word labels can thus be obtained by
matching these textual values with the document
words but this process is either time-consuming
if manually performed or prone to errors if algo-
rithmically performed. Indeed, extracted informa-
tion may not appear verbatim in the document
as its textual values are normalized. For exam-
ple, the value ”2020-03-30” for the document
date field may be derived from the group of words
”Mar 30, 2020”. This forces the development
of domain specific parsers to retrieve the matching
words. Also, multiple document words can share
the textual value of a extracted field while being
semantically distinct, hence imposing additional
heuristics for disambiguation. Otherwise, a street
number may be wrongly interpreted as a product
quantity, inducing noise in the word labels.

To the best of our knowledge, Palm et al. (2019)
is the only related model that directly learns from
naturally produced extraction results. However,
the authors only tackle the recognition of indepen-
dent and non-recurring fields such as the document
date and omit the extraction of structured entities.
Such entities are structures composed of multiple
field values. Within documents, structured infor-
mation is often contained in tables. For example,
a product entity is usually described in a table row
with its field values, such as price and quantity, be-
ing in different columns. Our work is intended to
remedy this lack by proposing end-to-end methods
for processing structured information. As a first
step towards full end-to-end extraction, we focus
in this paper on the recognition of fields whose val-
ues always appears verbatim in the document, thus
eliminating the need for normalization operations.

As illustrated in Figure 1, extracted structured
information can be represented in a markup lan-
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(a) Document (b) Extracted information

Figure 1: A purchase order (a) and the XML representation of its extracted information (b). In this example, we
retrieve the ordered products which are contained in the main table of the document. Two fields are recognized for
each product entity: the ID number and the quantity.

guage that describes both its content and its struc-
ture. Among many others, we choose the XML
language1 for its simplicity. We define as many
XML tag pairs as the number of entity and field
types to extract. A pair of opening and closing field
tags delimits a list of words constituting a field
instance of the corresponding type.

Following successful applications of sequence-
to-sequence models in many NLP tasks (Otter et al.,
2020), we employ a recurrent encoder-decoder ar-
chitecture for outputting such XML representations.
Conditioned on the sequence of words from the
document, the decoder emits one token at each
time step: either a XML tag or a word belonging to
a field value. Since field values are often specific
to a document or a issuer, extracted information
cannot be generated from a fixed size vocabulary
of words. Rather, we make use of pointing abili-
ties of neural models (Vinyals et al., 2015) to copy
words of the document that carry relevant informa-
tion. Specifically, we adapt the Pointer-Generator
Network (PGN) developed by See et al. (2017) for
text summarization to our extraction needs. We
evaluate the resulting model for extracting ordered
products from purchase orders. We demonstrate
that this end-to-end model performs competitively
with a word classifier based model while avoiding

1https://en.wikipedia.org/wiki/XML

to create supervision at the word level.

2 Related Work

2.1 Information extraction
As mentioned before, most methods for informa-
tion extraction in documents take the word labels
for granted and rather focus on improving the en-
coding of the document.

Holt and Chisholm (2018) combine heuristic fil-
tering for identifying word candidates and a gradi-
ent boosting decision tree for independently scor-
ing them. The strength of their model mainly lies
on the wide range of engineered features describing
syntactic, semantic, positional and visual content
of each word as well as its local context.

When extracting the main fields of invoices and
purchase orders, Palm et al. (2017) and Sage et al.
(2019) both employ recurrent connections across
the document to reinforce correlations between the
class predictions of words. They show empirically
that Recurrent Neural Networks (RNN) surpass
classifiers whose prediction dependence is only
due to local context knowledge introduced in the
word representations. For this purpose, they ar-
range the words within a document as a unidimen-
sional sequence and pass the word representations
into a bidirectional LTSM (BLSTM) network for
field classification. Similar to the state-of-the-art

https://en.wikipedia.org/wiki/XML
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in Named Entity Recognition (Yadav and Bethard,
2018), Jiang et al. (2019) also add a Conditional
Random Field (CRF) on top of the BLSTM to re-
fine predictions while extracting information from
Chinese contracts.

Yet, unlike plain text, word spacing and align-
ments in both horizontal and vertical directions
convey substantial clues for extracting information
of documents. By imposing a spurious unidimen-
sional word order, these architectures significantly
favor transmission of context in one direction at
the expense of the other. Lately, methods that ex-
plicitly consider the two dimensional structure of
documents have emerged with two different ap-
proaches.

Lohani et al. (2018), Liu et al. (2019) and
Holeček et al. (2019) represent documents by
graphs, with each node corresponding to a word or
a group of words and edges either connecting all
the nodes or only spatially near neighbors. Convo-
lutional or recurrent mechanisms are then applied
to the graph for predicting the field type of each
node.

Some authors rather represent a document page
as a regular two dimensional grid by downscal-
ing the document image. Each pixel of the grid
contains at most one token - either a character or
a word - and its associated representation. Then,
they employ fully convolutional neural networks
to model the document, either with dilated con-
volutions (Zhao et al., 2019; Palm et al., 2019)
or encoder-decoder architectures performing alter-
nately usual and transposed convolutions (Katti
et al., 2018; Denk and Reisswig, 2019; Dang and
Thanh, 2019). Finally, all these works except Palm
et al. (2019) output a segmentation mask represent-
ing the probabilities that each token contained in a
pixel of the grid belong to the field types to extract.
Katti et al. (2018) and Denk and Reisswig (2019)
additionally tackle tabular data extraction by pre-
dicting the coordinates of the table rows bounding
boxes to identify the invoiced products.

Instead of directly classifying each word of
the document, Palm et al. (2019) output attention
scores to measure the relevance of each word given
the field type to extract. The relevant words are
then copied and fed to learned neural parsers to
generate a normalized string corresponding to the
expected value of the field. The predicted string
is measured by exact match with the ground truth.
Evaluated on 7 fields types of invoices, their end-

to-end method outperforms a logistic regression
based model whose word labels are derived from
end-to-end ground truth using heuristics. However,
their approach cannot extract structured informa-
tion such as the invoiced products.

Although there are publicly released datasets for
the task of information extraction in documents
(Jiang et al., 2019; Huang et al., 2019; Graliński
et al., 2020), as far as we know, none of them are
annotated to recognize structured data.

2.2 Structured language generation

A number of works prove that neural encoder-
decoder models can produce well-formed and well-
typed sequences in a structured language without
supplying an explicit grammar of the language.

Extending traditional text recognition, some au-
thors transform images of tables (Zhong et al.,
2019; Deng et al., 2019) and mathematical formu-
las (Deng et al., 2017; Wu et al., 2018) into their
LaTeX or HTML representations. After applying a
convolutional encoder to the input image, they use
a forward RNN based decoder to generate tokens
in the target language. The decoder is enhanced
with an attention mechanism over the final feature
maps to help focusing on the image part that is
recognized at the current time step.

Neural encoder-decoder architectures have also
been used for semantic parsing which aims at con-
verting natural language utterances to formal mean-
ing representations (Dong and Lapata, 2016; Rabi-
novich et al., 2017). The representations may be
an executable language such as SQL and Prolog or
more abstract representations like abstract syntax
trees. Text being the modality of both input and out-
put sequences, Jia and Liang (2016), Zhong et al.
(2017) and McCann et al. (2018) include attention-
based copying abilities in their neural model to
efficiently produce the rare or out-of-vocabulary
words.

3 Approach

We assume that the text of a document is already
transcribed before extracting its information. For
scanned documents, we employ a commercial Op-
tical Character Recognition (OCR) engine for re-
trieving the text.

The method we propose for extracting structured
information from a document is depicted in Fig-
ure 2. The model is derived from the PGN of See
et al. (2017) proposed for summarization of news
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Figure 2: Illustration of the pointer-generator network for extracting structured information of the document in
Figure 1. For each decoder time step, a generation probability pgen ∈ [0, 1] is calculated, which weights the proba-
bility of generating XML tags from the vocabulary versus copying words from the document carrying information.
The vocabulary distribution and the attention distribution are weighted and summed to obtain the final distribution.
For the illustrated time step, the model mainly points to the word R-1141, i.e. the ID number of the first product.

articles. The attention-based pointing mechanism
allows to accurately reproduce factual information
of articles by copying words that are not in the gen-
erator’s vocabulary, e.g. rare proper nouns. Simi-
larly, we take advantage of its pointing ability to
copy the words from the document which carry
relevant information while allowing the generator
to produce the XML tags which structure the ex-
tracted information. In the following subsections,
we describe in details our model and highlight key
differences with the original PGN.

3.1 Word representation

Each word wi of the document is represented by a
vector denoted ri. In complement to the word level
embeddings used by See et al. (2017), we enrich
representations with additional textual features to
cope with the open vocabulary observed within the
corpus of documents. First, we follow the C2W
model of Ling et al. (2015) to form a textual rep-
resentation qci at the character level. To that end,
we apply a BLSTM layer over the dense embed-

dings associated to the characters of the word and
concatenate the last hidden state in both directions.
We also add the number ni of characters in the
word and case features, i.e. the percentage αi of
its characters in upper case and a binary factor βi
indicating if it has a title form. We concatenate all
these features to form the textual component rti of
the word representation:

rti = [qwi , q
c
i , ni, αi, βi] (1)

where qwi is its word level embedding.
To take into account the document layout, we

also compute spatial features rsi of the word. These
encompass the coordinates of the top-left and
bottom-right edges of the word bounding box, nor-
malized by the height and width of the page. We
concatenate the spatial rsi and textual rti compo-
nents to build the word representation ri.

3.2 Encoder

The words of the document are organized as a uni-
dimensional sequence of length N by reading them
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in a top-left to bottom-right order. The word rep-
resentations {ri}i=1..N are then fed to a two-layer
BLSTM to obtain contextualized representations
through the encoder hidden states {hi}i=1..N .

3.3 Decoder

Decoding is performed by a two-layer forward
LSTM, producing a hidden state st at each time
step t. An attention mechanism is added on top of
the decoder to compute the attention distribution
at over the document words and the context vector
h∗t =

∑N
i=1 a

t
ihi. While See et al. (2017) use the

alignment function of Bahdanau et al. (2015), we
employ the general form of Luong et al. (2015) as
this is computationally less expensive while show-
ing similar performances:

eti = sTt Wahi (2)

at = softmax(et) (3)

where Wa is a matrix of learnable parameters.
We simplify the computing of the vocabulary dis-

tribution Pvocab as the generator is only in charge
of producing the XML tags and thus has a vocabu-
lary of limited size. We apply a unique dense layer
instead of two and do not involve the context vector
h∗t in the expression of Pvocab:

Pvocab = softmax(V st + b) (4)

where V and b are learnable parameters
The generation probability pgen ∈ [0, 1] for

choosing between generating XML tags versus
copying words from the document is computed
as follows:

pgen = σ(wT
hh

∗
t + wT

s st + wT
xxt + bptr) (5)

where xt is the decoder input, vectors wh, ws, wx

and scalar bptr are learnable parameters and σ is the
sigmoid function. Then, pgen weights the sum of
the attention and vocabulary distributions to obtain
the final distribution P (w) over the extended vo-
cabulary, i.e. the union of all XML tags and unique
textual values from the document words:

P (w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ati (6)

Note that if a textual value appears multiple times
in the document, the attention weights of all the
corresponding words are summed for calculating
its probability of being copied.

During training, the decoder input xt is the pre-
vious token of the ground truth sequence, while
in inference mode, the previous token emitted by
the decoder is used. An input token is either rep-
resented by a dense embedding if the token is a
XML tag or by the textual feature set rti of the cor-
responding words {wi} if the token is copied from
the document.

To help the model keeping track of words already
copied, we concatenate the previous context vector
h∗t−1 with the input representation xt before ap-
plying the first decoder LSTM layer (Luong et al.,
2015). We also employ the coverage mechanism
proposed in See et al. (2017) in order to reduce rep-
etitions in the generated sequences. The idea is to
combine the attention distributions of the previous
time steps in the coverage vector ct =

∑t−1
t′=1 a

t′

to compute the current attention distribution. We
adapt their mechanism to our alignment function,
thus changing the equation 2 to:

eti = sTt (Wahi + ctiwc) (7)

where wc is a vector of adjustable parameters.
The training loss is the combination of the nega-

tive log-likelihood of the target tokens {w∗
t }t=1..T

and the coverage loss which penalizes the model
for repeatedly paying attention to the same words:

losst = − logP (w∗
t ) + λ

N∑
i=1

min(ati, c
t
i) (8)

loss =
1

T

T∑
t=1

losst (9)

where λ is a scalar hyperparameter.
When the decoding stage is performed, the result-

ing string is parsed according to the XML syntax
to retrieve all the predicted entities and fields of the
document.

4 Dataset

We train and evaluate our extraction model on a
dataset of real world business documents which un-
fortunately cannot be publicly released. It consists
of 219,476 purchase orders emanated by 17,664
issuers between April 2017 and May 2018. The
dataset is multilingual and multicultural even if
the documents mainly originate from the U.S. The
number of purchase orders per issuer is at least 3
and at most 31, ensuring diversity of document lay-
outs. Training, validation and test sets have distinct
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issuers to assess the ability of the model to general-
ize to unseen layouts. They have been constructed
by randomly picking 70 %, 10 % and 20 % of the
issuers, respectively. More detailed statistics of the
dataset are given in the Table 1.

Table 1: Statistics of our dataset.

Training documents 154,450
Validation documents 22,261
Test documents 42,765
Words per document (Avg.) 411
Pages per document (Avg.) 1.52
Product entities per document (Avg.) 3.52
Tokens in output sequence (Avg.) 32.24
Words per ID number instance (Avg.) 1.36
Words per quantity instance (Avg.) 1.00

This dataset comes from a larger corpus of doc-
uments with their information extraction results
that have been validated by end users of a com-
mercial document automation software. Among all
the types of information, we focus on the extrac-
tion of the ordered product entities which have two
mandatory fields: ID number and quantity. From
this corpus, we select the purchase orders whose
location in the document is supplied for all its field
instances. The knowledge of location comes from
a layout-based incremental extraction system and
ensures that we perfectly construct the labels for
training a word classifier. Since a field instance
can be composed of multiple words, we adopt the
IOB (Inside, Outside, Beginning) tagging scheme
of Ramshaw and Marcus (1999) for defining the
field type of each document word.

5 Experiments

Our end-to-end model is compared on this dataset
with a baseline extraction method based on a word
classifier. This baseline encodes the document as
the end-to-end model does, i.e. with the same oper-
ations for constructing the word representations ri
and the encoder outputs hi. On top of the encoder,
a dense layer with softmax activation is added with
5 output units. 4 of these units refer to the begin-
ning and continuation of an instance for ID number
and quantity fields. The remaining unit is dedi-
cated to the Outside class, i.e. for the document
words carrying information that we do not want
to extract. The words with a predicted probability
above 0.5 for one of the 4 field units are associ-

ated with the corresponding class, otherwise we
attribute the Outside class. Field instances are then
constructed by merging words with beginning and
continuing classes of the same field type. Finally,
each quantity instance is paired with an ID number
instance to form the product entities. To do so, the
Hungarian algorithm (Kuhn, 1955) solves a linear
sum assignment problem with the vertical distance
on the document as the matching cost between two
field instances. For our task, this pairing strategy is
flawless if the field instances are perfectly extracted
by the word classifier.

The model hyperparameters are chosen accord-
ing to the micro averaged gain on the validation
set. The end-to-end model and baseline share the
same hyperparameter values, except the number of
BLSTM cells in each encoder layer that is fixed to
128 and 256 respectively, to ensure similar num-
bers of trainable parameters. The input character
and word vocabularies are derived from the training
set. We consider all observed characters while we
follow the word vocabulary construction of Sage
et al. (2019) designed for business documents. This
results in vocabularies of respectively 5,592 and
25,677 elements. Their embedding has a size of 16
and 32 and are trained from scratch. The BLSTM
layer iterating over characters of document words
has 32 cells. For all BLSTM layers, each direction
has n/2 LSTM cells and their output are concate-
nated to form n-dimensional vectors. The decoder
layers have a size of 128 and are initialized by the
last states of the encoding BLSTM layers. At infer-
ence time, we decode with a beam search of width
3 and we set the maximum length of the output
sequence to the number of words in the document.
This results in 1,400,908 and 1,515,733 trainable
parameters for the PGN and the word classifier.

To deal with exploding gradients, we apply gra-
dient norm clipping (Pascanu et al., 2013) with
a clipping threshold of 5. The loss is minimized
with the Adam optimizer, its learning rate is fixed
to 0.001 the first 2 epochs and then exponentially
decreases by a factor of 0.8. We stop the training
when the micro gain on the validation set has not
improved in the last 3 epochs. As suggested in
See et al. (2017), the coverage loss is added to the
minimized loss only at the end of training, for one
additional epoch. We weight its contribution by
setting λ = 0.1 as the original value of 1 makes the
negative log-likelihood loss increase. The batch
size is 8 if the model fits on GPU RAM, 4 other-
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wise.
The experiments are carried out on a single

NVIDIA TITAN X GPU. Model training takes
from 3 to 10 days for 10 to 15 epochs. Due to the
computational burden, the hyperparameters values
have not been optimized thoroughly. Besides, we
are not able to train the models on documents with
more than 1800 words, which amounts to about
4 % of the training set being put aside. Yet, we
evaluate the models on all documents of the vali-
dation and test sets. The implementation is based
on the seq2seq subpackage of TensorFlow Addons
(Luong et al., 2017).

6 Results

6.1 Manual post-processing cost
We evaluate the models by measuring how much
work is saved by using them rather than manually
doing the extraction. For this purpose, we first as-
sign the predicted products of a document to the
ground truth entities, then we count the number of
deletions, insertions and modifications to match the
ground truth field instances from the predicted in-
stances that have been assigned. The modification
counter is incremented by one when a predicted
field value and its target do not exactly match. For a
given field, we estimate the manual post-processing
gain with the following edit distance:

1− # deletions + # insertions + # modifications
N

(10)
where N is the number of ground truth instances
in the document for this field. Micro averaged
gain is calculated by summing the error counters of
ID number and quantity fields and applying equa-
tion 10. We select the assignment between pre-
dicted and target entities that maximizes the micro
gain of the document. To assess the post-processing
gains across a set of documents, we sum the coun-
ters of each document before using equation 10.

Our evaluation methodology is closely related to
Katti et al. (2018). However, they compute metrics
independently for each field while we take into
account the structure of entities in our evaluation.

We report in Table 2 the results of both extraction
models on the test set. We retain the best epoch of
each model according to the validation micro gain.
All post-processing gains have positive values,
meaning that it is more efficient to correct potential
errors of models than manually perform the extrac-
tion from scratch (in this case, # insertions = N

Table 2: Post-processing gains when extracting the
products from the test documents. % Perfect column
indicates the percentage of documents perfectly pro-
cessed by each model.

ID
number Quantity Micro

avg.
%

Perfect
Word
classifier 0.754 0.855 0.804 67.4

PGN 0.711 0.832 0.771 68.2

and # deletions = # modifications = 0). We note
that the performances of the word classifier and
PGN are quite similar. Even if its field level gains
are a little behind, the PGN slightly surpasses the
word classifier for recognizing whole documents.
Both models significantly reduce human efforts as
the end users do not have any corrections to make
for more than 2 out of 3 documents. Besides, the
PGN produces sequences that are well-formed ac-
cording to the XML syntax for more than 99.5 %
of the test documents.

6.2 Visual inspection of the attention
mechanism

The comparison with the baseline confirms that the
PGN has learned to produce relevant attention dis-
tributions in order to copy words carrying useful
information. In particular, when the expected field
value appears multiple times in the document, the
PGN is able to localize the occurrence that is se-
mantically correct, as illustrated in the document
displayed in Figure 3. As shown, the PGN focuses
its attention on the word 1 in the table row of the
product that is currently recognized. On the con-
trary, the model ignores the occurrences of 1 which
are contained in the rest of the product table and in
the address blocks. This behaviour is noteworthy
since the model is not explicitly taught to perform
this disambiguation.

7 Discussion

The main difficulty faced by both models is ambi-
guity in the ground truth as our dataset has been
annotated by users from many distinct companies.
Some documents contain multiple valid values for
a field of a unique product. For example, there may
be the references from both recipient and issuer for
the ID number. The field value which is retained
as ground truth then depends on further process-
ing of the extracted information, e.g. integration
into a Enterprise Resource Planning (ERP) system.
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Figure 3: A sample document with filled bounding
boxes around words whose colors depend on their atten-
tion weights. For sake of readability, we only highlight
the top 15 words. We show attention values for the 6th

time step of the pointer-generator network, after having
outputted the tokens <Product>, <IDNumber>,
THX-63972D, </IDNumber> and <Quantity>.
The model rightly points to the word 1 to extract the
quantity value of the first product.

This seriously prevents any extraction model from
reaching the upper bound of post-processing gain
metrics which is 1.

Besides, the ID number field does not always
have a dedicated physical column and rather ap-
pears within the description column, without key-
words clearly introducing the field instances such
as in Figure 1. Also, its instances are constituted on
average of more words than the quantity, making
less likely the exact match between predicted and
target instances. These additional complications
explain the gap of model performances between
the two fields.

Unlike the word classifier based approach, the
PGN tends to repeat itself by duplicating some field
instances and skipping others. This is especially
observed for documents having a large number of
products, therefore large output sequences. To mea-

sure the impact of these repetitions on metrics, we
split the test set into 3 subsets according to the
number of products contained in the document: no
more than 3, between 4 and 14 and at least 15 enti-
ties. The last subset gathers documents with output
sequences of at least 122 tokens. We recompute
the metrics for each subset and report the micro
averaged gains in Table 3.

Table 3: Micro averaged gains over the test set condi-
tioned on the number N of products in the document.

N ≤ 3 3 < N < 15 N ≥ 15

Documents 33,332 7,820 1,613

Product entities 46,893 53,771 44,094

Word classifier 0.804 0.807 0.801

PGN 0.820 0.791 0.696

Without coverage 0.799 0.817 0.671

The performances are stable for the word clas-
sifier whatever the number of entities in the docu-
ment. The PGN is on par with the word classifier
for the documents with a small number of products
which constitute the vast majority of the dataset.
However, its extraction performance greatly de-
clines for large output sequences, indicating that
the PGN is more affected by repetitions than the
baseline. It is unclear why the coverage mechanism
is not as successful on our task as it is for abstrac-
tive summarization (See et al., 2017). We also
tried to use the temporal attention from Paulus et al.
(2018) to avoid copying the same words multiple
times but this was unsuccessful too.

8 Conclusion

We discussed a novel method based on pointer-
generator networks for extracting structured infor-
mation from documents. We showed that learning
directly from the textual value of information is a
viable alternative to the costly word level supervi-
sion commonly used in information extraction. In
this work, we focused on purchase orders but the
approach could be used to extract any structured
entity as long as its information type is known at
training time.

Future work should aim to: i) reduce repetitions
in the output sequences, ii) add parsing abilities
into our encoder-decoder in order to transform the
values of copied words. This will allow to pro-
cess fields that need to be normalized when being
extracted.
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