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Abstract

Scaling up dialogue state tracking to multiple
domains is challenging due to the growth in
the number of variables being tracked. Fur-
thermore, dialog state tracking models do not
yet explicitly make use of relationships be-
tween dialogue variables, such as slots across
domains. We propose using energy-based
structure prediction methods for large-scale
dialogue state tracking task in two multiple
domain dialogue datasets. Our results indi-
cate that: (i) modelling variable dependen-
cies yields better results; and (ii) the struc-
tured prediction output aligns with the dia-
logue slot-value constraint principles. This
leads to promising directions to improve state-
of-the-art models by incorporating variable de-
pendencies into their prediction process.

1 Introduction

Task-oriented dialogue systems have been devel-
oped to assist users in many fields (Brixey et al.,
2017; Zhao et al., 2019). In recent years it is a
rising trend to scale-up task-oriented dialogue sys-
tems from single domain to multiple domains to
improve the generalisability of models and support
transfer of knowledge across domains. This leads
to a new challenge in handling dialogues in the
multi-domain context, that in turns increases the
work load of the dialogue manager, and in particu-
lar the dialogue state tracking component. On the
other hand, a number of works have demonstrated
the benefit of processing multiple domains, for ex-
ample it has been shown that such models yield
better performances across domains in comparison
with single domain trackers constructed and trained
with the same approach (Mrksic et al., 2015).

Dialogue state tracking in task-oriented dialogue
systems frequently uses a multi-slot representation
for the dialogue state, thus casting the task as a
multi-task classification problem. In these scenar-

ios, an increase in the number of domains is equiv-
alent to an increase in the number of slots, this in
turn enlarges the models and makes the task more
challenging. While traditionally one can develop a
number of models to track dialogue states in each
domain separately, recent advanced techniques tend
to train dialogue state trackers in the multi-domain
environment. Such multi-domain trackers produce
state-of-the-art results (Kim et al., 2020; Heck et al.,
2020).

To date state-of-the-art dialogue state trackers
have treated the task as a set of individual domain-
dependent classification problems (Heck et al.,
2020; Wu et al., 2019; Zhou and Small, 2019).
However, we argue that such approaches leave
room for improvement; particularly with the con-
sideration of the nature of human-machine interac-
tions (Landragin, 2013). Specially, we argue that
the multi-task classification methodology usually
does not take into account the relationships be-
tween dialogue slot variables, despite the fact that
these factors can play an essential part in the dia-
logue state prediction (Trinh et al., 2019a). There-
fore, we propose to explicitly incorporate dialogue
variable associations into the prediction process in
a multi-domain dialogue environment, thus cast-
ing the dialogue state tracking task a structured
prediction problem.

In this paper we demonstrate the manner, in
which dialogue variable dependencies make an im-
pact on the dialogue state tracking process in a
multiple domain context. We choose two newly
published multiple domain datasets, MultiWOZ
2.0 (Budzianowski et al., 2018) and MultiWOZ 2.1
(Eric et al., 2019), to conduct our study. These
datasets contain a large number of dialogues across
several different domains, thus they are practical
for our study. Our investigation is detailed in three
stages:
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• Data analysis – It is important to clearly de-
termine whether variable dependencies ex-
ist in dialogue data, and to what extent they
present in dialogue states. These questions
can be solved by performing statistical tests
on dialogue data (Trinh et al., 2019c).

• Model development – Since we treat the di-
alogue state tracking task as a structured pre-
diction problem, we develop an energy-based
tracking model for the task, where the energy-
based learning methodology has been found
effective in handling variable dependencies
(Trinh et al., 2019b).

• Evaluation & Analysis – We evaluate the
performance of our energy-based model and
benchmark it against state-of-the-art trackers.
Furthermore, we conduct an analysis study on
the effectiveness of dialogue variable depen-
dencies on the dialogue state tracking process
in comparison with a multi-task deep learning
method.

To the best of our knowledge, there have been
structured prediction models developed for dia-
logue state tracking in single domains, but no work
has been performed for multiple domains. On the
other hand, several multi-domain dialogue state
trackers study the topic of variable dependencies
to some extent, but do not provide a detailed anal-
ysis on this phenomenon. Therefore, the contribu-
tions of our work are two-fold: (i) a large-scale
structured prediction model for multi-domain dia-
logue state tracking; and (ii) a systematic analysis
of variable dependencies across dialogue slots and
domains.

The work presented in this paper is an empirical
research of our previous work on capturing variable
dependencies in dialogue states within single dia-
logue domains (Trinh et al., 2019a,b). We demon-
strate that the energy-based method has good gen-
eralisability when applied to track dialogue states
in multiple domain settings.

2 Variable Associations in Multi-Domain
Dialogue

There are a number of works that to some ex-
tent have studied the variable associations in di-
alogue data in both single and multiple domain
contexts. Single-domain dialogue variable depen-
dencies were explicitly studied in the work by Trinh

et al. (2019c,a). The associations between slots
in single domain dialogue data are demonstrated
to be beneficial factors for dialogue state track-
ing, and structured prediction approaches such as
energy-based learning are effective in studying this
phenomenon. On the other hand, although there
has been no explicit study on variable dependen-
cies in multiple domain dialogue data, we can indi-
rectly infer the benefit of modelling such dependen-
cies. Mrksic et al. (2015) show that shared models
across dialogue domains yield better results than
their domain-specific counterparts. Similarly in
the TRADE model, Wu et al. (2019) highlighted
the correlations between domains by training the
base model on all of the domains except one, then
fine-tuning on the remaining domain.

Since we focus on multiple domain dialogue
state tracking, we conduct our study on MultiWOZ
2.0 (Budzianowski et al., 2018) and MultiWOZ
2.1 (Eric et al., 2019), two novel chat-based multi-
domain dialogue datasets. We perform statistical
tests on the dialogue data, and present the data
analysis results in Figure 1. The statistical tests
are Pearson’s chi-squared test, which is useful for
detecting pairwise dependencies between variables,
and the chi-square test-based Cramer’s V measure-
ment, that measures the dependency strength once
confirmed (Trinh et al., 2019c). In Figure 1 we
present the heatmap of measured Cramer’s V be-
tween all slot pairs in MultiWOZ 2.1 dataset, since
this dataset contains manually fixed labels based
on MultiWOZ 2.0 data.

The analysis explicitly confirms the variable de-
pendencies in the multiple domain dialogue data,
where pairwise statistical significance coefficient p
< 0.05 for all slot pairs. These dependencies exist
on both slot and domain levels. Our analysis results
also align to some extent with the cosine similarity
of slot embedding presented in the TRADE model
(Wu et al., 2019).

3 Energy-based Learning Dialogue State
Tracking

Energy-based learning (LeCun et al., 2006) is an ap-
proach to structured prediction that can be used to
account for variable dependencies in a supervised
learning process. The core concept of the approach
is to represent the associations of all variables in
the system with a scalar value called energy, and
to train an energy function that assigns low energy
values to valid combinations of variables. There
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Figure 1: Cramer’s V assessment of variable dependencies in MultiWOZ 2.1 data

are two key functions in the energy-based dialogue
state tracker that we have developed:

• Feature function F (X) – As a first step, we
transform raw data into a distributed repre-
sentation; this can be done with advanced
techniques such as combinations of embed-
ding and recurrent neural networks (Kelleher,
2019). The feature function can be either
pretrained separately as an auxiliary task or
jointly trained with the energy function.

• Energy function E(F (X), Y ) – The energy
function is designed to capture variable depen-
dencies and present them via a scalar value
called energy. In our work, we develop the
energy function with a deep learning archi-
tecture called Structured Prediction Energy
Networks (SPEN) (Belanger and McCallum,
2016) to capture the dependencies between

input and output variables, as well as among
output variables.

The working mechanism of an energy-based
model is different from a standard feedforward
deep learning model:

• Learning process – During the learning pro-
cess the energy function is typically trained to
assign lower energy values to correct variable
configurations, i.e. the desired output can be
predicted with the minimal energy value with
respect to our input. In our work we adopt
a variant of the learning strategy detailed for
the Deep Value Networks (DVN) architecture
(Gygli et al., 2017) for this task.

• Inference process – Since in the energy-
based learning methodology the energy func-
tion is trained to be an estimator for the good-
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ness of fit between variables in the system,
the output variables cannot be predicted in a
straight forward manner. Therefore, we per-
form multiple inference loops guided by the
gradient of the energy surface to find a set
of labels for a given input using the trained
energy function.

3.1 Hierarchical Recurrent Neural Feature
Network

Task-oriented dialogues consist of multiple turns,
where each turn contains machine and user actions.
In the MultiWOZ datasets these actions are pre-
sented in a sentence format instead of dialogue
act semantic representations. To accommodate the
structure of multiple domain dialogue data, we
make use of a multi-task LSTM-based dialogue
state encoder (Trinh et al., 2018). In the description
below we denote dialogue input data X , and the
multi-task LSTM network F (X). The architecture
of our feature network is visualised in Figure 2.

Figure 2: Multi-task Recurrent Neural Feature Net-
work for MultiWOZ datasets. All recurrent units are
LSTM (Hochreiter and Schmidhuber, 1997).

Our LSTM-based feature network consists of 5
layers:

• Word embedding layer – The word embedding
layer is trained from scratch due to the small
vocabulary present in the data.

• Sentence-level LSTM layer – To transform
the sentence into vector representations, we

make use of bidirectional LSTM structure
(Bi-LSTM) (Schuster and Paliwal, 1997). In
this layer machine and user transcripts are
processed with separate Bi-LSTM cells, then
their output vectors are concatenated before
being fed into the next layer.

• Turn-level LSTM layer – A number of unidi-
rectional LSTM cells are used to roll out the
dialogue by turns. As highlighted in an earlier
multi-task LSTM-based model (Trinh et al.,
2018), using a number of LSTM cells can ex-
tract more useful information. The output of
all the LSTM cells is concatenated into joint
vectors, and treated as dialogue turn represen-
tations.

• Domain-specific LSTM layer – For each do-
main in the data we assign one LSTM cell to
specialise the information downstream from
the overall dialogue to the domain level.

• Slot-specific classifiers – The output layer con-
sists of a number of slot-specific classifiers.
Each classifier produces the prediction of the
slot it corresponds to with a softmax activation
function.

We pretrain this feature network F (X) follow-
ing the method as highlighted in a number of works
on energy-based learning (Belanger and McCal-
lum, 2016; Trinh et al., 2019b). It should be noted
that the dialogue features can be extracted as the
output of either the turn-level layer or the domain-
specific layer. From our experiments, we have
observed that the domain-specific LSTM layer pro-
duces more meaningful representations, thus it is
more beneficial to pass on the energy function.

3.2 Deep Learning Energy Network

Since we focus on studying the variable depen-
dencies between slots, our energy function must
include the term for this phenomenon explicitly.
We base the design of our energy network on the
concept of Structured Prediction Energy Networks
(SPEN) (Belanger and McCallum, 2016). The
SPEN network is developed as a deep learning
architecture to define an energy function that in-
cludes two individual energy terms, local energy
and global energy:

E(F (X), Y ) = Elocal(F (X), Y ) + Eglobal(Y )
(1)
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Local energy is computed between input and
output (label) variables, and is intended to capture
the agreement between feature representations and
labels:

Elocal(F (X), Y ) =

L∑
i=1

yiW
>
i X (2)

where W is the set of trainable parameters, Y =
{yi}L is a label vector, and L is the number of label
classes.

Global energy meanwhile is the energy term that
captures the relationship between labels indepen-
dently of the input features:

Eglobal(Y ) =W>g2f(W
>
g1Y ) (3)

where weights Wg1 and Wg2 are trainable parame-
ters, and f(·) is a non-linear function.

3.3 Learning Process

The purpose of the learning process is to train the
energy function to measure the goodness of fit be-
tween variables correctly. It is important to design a
suitable objective function to ensure that the energy
function is well trained (Trinh et al., 2020).

For multi-label classification tasks, F1 measure-
ment is a common evaluation metric. In our struc-
tured dialogue state tracking task we make use of
the F1 metric for continuous variables, and inter-
pret it as the ground truth energy:

E∗F1
(Y, Y ∗) =

2
∑

i yiy
∗
i∑

i yi +
∑

i y
∗
i

(4)

where Y is the predicted labels, and Y ∗ is the
ground truth labels.

Since the ground truth energy is calculated with
our F1 measurement, its value can only fall into
the range [0, 1]. Therefore, it is appropriate to use a
cross entropy function as the loss function between
predicted and ground truth energies:

L(E,E∗F1
) = −E∗F1

logE−(1−E∗F1
) log(1−E)

(5)
where E = E(F (X), Y ) is the predicted energy,
and E∗F1

= E∗F1
(Y, Y ∗) is the ground truth energy.

There exist slot-value constraint rules in the task-
oriented dialogue state tracking task such that at
any time in the conversation each slot can be clas-
sified with not more than one value. However,
multi-label classification methods do not include a

mechanism to control the output prediction follow-
ing these rules. Therefore we introduce a regulari-
sation term to encourage our energy-based tracker
to shape the output into the desired format:

R(Y, Y ∗) =

(∑
i yi −

∑
i y
∗
i∑

i y
∗
i

)2

(6)

where Y is the predicted output, and Y ∗ is the
ground truth labels.

Our final objective function including the label
regularisation term for the learning process of the
energy network is formulated as follow:

L = L(E,E∗F1
) + αR(Y, Y ∗) (7)

where α is a regularisation coefficient.
This learning process is visualised in Fig. 3.

Figure 3: The learning process of our energy-based di-
alogue state tracker. The grey area denotes a frozen
network where the parameters have been pretrained.

3.4 Inference Process
The energy function, as described above, can be
interpreted as an estimator of the goodness of fit of
the variables in the system. However, at prediction
time we do not have the output variables that are
an essential part of the energy formulation. Instead,
to determine these values we perform a loopy infer-
ence process guided by the gradient of the energy
surface.

We start with a random hypothesis and use gra-
dient ascent to update the output hypothesis:

Y (0) = {random(yi)}L

Y (t+1) = PY
(
Y (t) + η∇YE(F (X), Y (t))

) (8)

where PY is the projection operation to shape the
predicted output to the output variable space Y =
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{yi}M ∈ {[0, 1]}M , and η is the learning rate for
gradient ascent.

Here, it should be noted that the energy func-
tion is an estimator for our F1 measurement of the
predicted output; thus, we aim to maximise the F1

score to achieve the desired prediction:

E(F (X), Y (t)) ∼ E∗F1
(Y (t), Y ∗) (9)

4 Experiments

As indicated earlier, we have selected the mul-
tiple domain dialogue datasets, MultiWOZ 2.0
(Budzianowski et al., 2018) and MultiWOZ 2.1
(Eric et al., 2019), to conduct our study of variable
dependencies. Since the MultiWOZ 2.0 dataset
was known to contain a lot of labelling errors, the
latter version MultiWOZ 2.1 was manually anno-
tated to correct them. Each dataset contains more
than 10000 dialogues across 7 domains, split into
three subsets: train, development and test for train-
ing, validation and test purposes respectively.

However, following the common practice of
other previous works we excluded two domains
that rarely appear in the datasets. We followed
the data processing and scoring scripts from the
TRADE model (Wu et al., 2019) for our dialogue
state tracking task.

Our experiments were conducted in two stages:
first, we trained a multi-task learning network to
extract dialogue features; then, we experimented
on the energy-based learning level to explore inter-
label dependencies.

Our model’s hyperparameters are presented in
Table 1.

We train both feature network and energy-based
models with Adam optimiser (Kingma and Ba,
2015) for 300 epochs. To avoid the overfitting
problem, we apply the early stopping technique
and find that our models converge shortly after 200
epochs. We trained the feature network 3 times for
each dataset, and selected the best model to extract
features. The energy-based network was trained 5
times and the predictions were ensembled into the
ultimate dialogue states for evaluation.

5 Results & Discussion

We evaluate the performance of both our multi-
task feature system and the energy-based tracker
with an Accuracy metric as is common in dialogue
state tracking. The results are reported in Table 2
alongside results of a number of state-of-the-art
systems to our knowledge.

Hyper parameter Value

Energy-based Network
Word embedding size 300
LSTM number of turn-level cells 5
LSTM number of units 128
LSTM drop out 0.2
LSTM output activation tanh
Energy non-linearity function f(·) tanh

Inference process
Number of iterations 50
Inference learning rate 0.001

Learning process
Objective function Equation 7
Regularisation coefficient 0.01
Optimiser Adam
Learning rate 0.001
Maximal global gradient norm 5.0

Table 1: Basic hyper parameters used in experiments
constructing the energy-based dialogue state tracker.

Overall, our energy-based dialogue state tracker
yields competitive results in comparison to models
that account for variable relationships using tech-
niques such as attention mechanism (Kumar et al.,
2020; Zhong et al., 2018) and transfer learning
(Wu et al., 2019). When accounting for the vari-
able dependencies with the energy-based method,
we improve the belief state tracking results by large
margins, i.e., 13.9% for MultiWOZ 2.0 and 18.1%
for MultiWOZ 2.1. We believe that there are at
least two reasons for this large improvement:

• High quality features are extracted from di-
alogue data due to the architecture of a hier-
archical multi-task LSTM network. As we
extract input features from domain-specific
LSTM cells, the features contain both dia-
logue information up to current turns as well
as domain information.

• The associations between variables, in partic-
ular label dependencies, are accounted for ex-
plicitly; hence more information is available
for the classification of each slot than would
be available in a straightforward multi-task
classification process.

While the energy-based system does not achieve
the state-of-the-art performance, it should be noted
that state-of-the-art systems currently employ a
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Model MultiWOZ 2.0 MultiWOZ 2.1

TripPy (Heck et al., 2020) - 0.553
Schema-guided (Chen et al., 2020) 0.512 0.552
DST-Picklist (Zhang et al., 2019) - 0.533
SOM-DST (Kim et al., 2020) 0.517 0.530
MA-DST (Kumar et al., 2020) - 0.519
DSTQA (Zhou and Small, 2019) 0.514 0.512
COMER (Ren et al., 2019) 0.488 -
TRADE (Wu et al., 2019) 0.486 0.456
HyST (Goel et al., 2019) 0.442 -
Neural reading (Gao et al., 2019) 0.411 -
GCE (Nouri and Hosseini-Asl, 2018) 0.363 -
GLAD (Zhong et al., 2018) 0.356 -

Our work
Energy-based system 0.488 0.547
Multi-task feature system 0.349 0.366

Table 2: Performances of state-of-the-art and presented dialogue state tracking systems on MultiWOZ 2.0 & 2.1
data. The results for belief states are reported with the Accuracy metric.

very wide variety of modelling techniques while the
currently presented work focuses on the addition
of a mechanism to guide final labelling. For exam-
ple, TripPy (Heck et al., 2020), which achieves
the highest accuracy in MultiWOZ 2.1 data, is
based on span-prediction and a number of mem-
ory mechanisms. Meanwhile, SOM-DST (Kim
et al., 2020) improves the dialogue state tracking
efficiency with a selectively overwriting memory
mechanism. Both of these however do not explic-
itly look at the variable dependencies as potentially
useful factors of dialogue states. The practical use
of the energy-based learning method may lie in its
use to fine tune results to take into account variable
dependencies. Given the fact that the energy-based
model is developed separately from the feature net-
work, we can apply it to state-of-the-art models to
investigate the effectiveness of variable dependen-
cies in different situations.

One final observation with respect to the results
is differences in performance across MultiWOZ
2.0 and 2.1 datasets. Even though the labels in
MultiWOZ 2.1 dataset are corrected with manual
labour, meaning the data is less noisy than the
MultiWOZ 2.0 data, not all systems yield better
results in MultiWOZ 2.1 than in MultiWOZ 2.0,
e.g., models such as TRADE (Wu et al., 2019)
and DSTQA (Zhou and Small, 2019) perform bet-
ter with the original noisy data. In contrast, we
observe that other state-of-the-art systems includ-

ing our energy-based tracker perform better with
cleaner data (MultiWOZ 2.1); this is of course a
common phenomenon in supervised learning.

5.1 Variable Dependencies Analysis

In term of accuracy score our energy-based tracker
outperforms the multi-task feature system by a
large margins. However, the accuracy metric does
not in itself verify the system’s ability to capture
variable dependencies. In order to evaluate the ef-
fectiveness of the energy-based learning method
in capturing variable dependencies, we conduct
an analysis on the performance of our trackers
on the MultiWOZ 2.1 test set. Specifically, we
analyse pairwise variable dependencies with Pear-
son’s chi-squared test and measure their strength
with Cramer’s V coefficient as detailed earlier in
Section 2. We present the results of variable as-
sociation analysis between a number of slots in
Table 3 with respect to test labels, labels produced
by the Energy-based Tracker and labels produced
by our Multi-Task Learning tracker. Here, we only
show the dependencies between a subset of the
slots purely for space reasons. If we were to show
more or all of them, the table wouldn’t fit in the
template. We have, however, done the analysis of
the dependencies for other slots and the results in-
dicate that the other slots have similar tendencies,
and more importantly that the data we present is
representative of this more general pattern.
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hotel restaurant taxi train
price range price range departure destination departure destination

Test label
attraction area 0.200 0.236 0.272 0.276 0.107 0.089
hotel area 0.225 0.315 0.218 0.218 0.094 0.078
restaurant area 0.214 0.411 0.254 0.286 0.093 0.107

Energy-based tracker
attraction area 0.182 0.173 0.193 0.194 0.095 0.096
hotel area 0.236 0.336 0.199 0.199 0.075 0.078
restaurant area 0.256 0.419 0.254 0.321 0.120 0.109

Multi-task feature system
attraction area 0.291 0.194 0.153 0.151 0.086 0.084
hotel area 0.147 0.232 0.149 0.160 0.055 0.056
restaurant area 0.287 0.213 0.137 0.137 0.124 0.126

Table 3: Data analysis on variable dependencies in the performance of multi-task and energy-based trackers in
MultiWOZ 2.1 data. The variable dependencies are reported with Cramer’s V coefficient. In the table, the first
block is variable dependencies in labels of the test set, while the second block is variable dependencies detected by
our energy-based model, and the last block is the performance of the multi-task feature system.

The analysis results demonstrate that the energy-
based tracker more consistently mirrors the asso-
ciation strengths seen in the test labels then does
our baseline Multi-Task Learning approach. It is
evidenced by smaller margins in Cramer’s V coef-
ficients between the Energy-based tracker and the
Test label results than seen between the Multi-task
system results and the Test label results1. There are,
however, very few exceptions to this trend, namely
the attraction.area – restaurant.price range and
attraction.area – train.destination pairs where the
multi-task based system has produced associations
closer to the test label case than does the energy-
based model.

Overall, we argue that the ability to capture vari-
able dependencies between slots across dialogue
domains explains the reason why the energy-based
method outperforms the multi-task learning ap-
proach.

5.2 Slot-Value Constraint Analysis

Dialogue states of many task-oriented dialogue sys-
tems must satisfy a slot-value constraint principle
that each slot must not have more than one value in
the belief state of any turn. Specifically, the value
of each informable slot can be either none if it is not

1It should be noted that stronger associations do not nec-
essarily indicate better tracking performance – our goal is
to capture valid associations not to arbitrarily increase the
number of associations seen in label outputs.

mentioned by users, or a specific value, for exam-
ple Chinese for the slot food in domain restaurant
if information is provided by the user. While the
underlying multi-task feature system follows this
rule strictly due to the use of the output softmax
activation function in slot-specific classifiers, the
energy-based tracking model is not guaranteed to
maintain this strict constraint.

To overcome this challenge, we proposed a label
regularisation term (Equation 6) in the objective
function detailed in Section 3.3. To evaluate the
effectiveness of this mechanism, we conduct an ad-
ditional analysis to determine the behaviours of our
energy-based system based on this regularisation.
This analysis is conducted in two stages:

• First, we train and evaluate our energy-based
method on the dialogue data without the label
regularisation term. Thus, the loss function
(Equation 5) becomes our learning objective
in this baseline case.

• Second, we set different threshold values, and
calculate the proportion of correct predictions
over the total number of dialogue turns that
follow slot-value constraint rules with differ-
ent thresholds. A value is considered activated
if the predicted belief score of this value ex-
ceeds the threshold. This stage is conducted
for our energy-based method both with and
without the regularisation term.
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The slot-value constraint analysis is presented in
Table 4.

Threshold MultiWOZ 2.0 MultiWOZ 2.1
+Reg –Reg +Reg –Reg

0.5 45.7 36.8 52.4 48.3
0.7 29.7 26.3 39.4 35.1
0.9 16.8 15.5 18.3 18.1

Table 4: Analysis of the impact of label regularisation
on the energy-based dialogue state tracking on the Mul-
tiWOZ 2.0 & 2.1 data. The results are reported with
the proportion (%) of correct predictions over the total
number of dialogue turns that follow the slot-value con-
straint rules. +Reg/–Reg denotes the presence/absence
of the label regularisation in the learning process.

The analysis result demonstrates that our energy-
based systems with the label regularisation consis-
tently outperforms those that do not include this
term in the learning process with different belief
score thresholds. Here, the label regularisation
helps guide the system’s prediction behaviour to-
wards the requirement of the task-oriented domains.
We can conclude that the impact of label regulari-
sation on dialogue state tracking is systematic.

6 Conclusion

In this paper we demonstrated the effectiveness of
applying the energy-based learning method to a
large-scale dialogue state tracking task in multiple
domains. We showed that the energy-based method
is capable of capturing the dependencies between
dialogue variables such as slots across domains,
thus it improves the performance over a multi-task
deep learning system significantly. Our analyses
also showed that the structured prediction method
can produce dialogue states that follow dialogue
slot-value constraint rules in contrast with a multi-
label classification method.

Although the results achieved with the energy-
based method are competitive with published dia-
logue state tracking systems, they are not yet state
of the art. There are several directions to investi-
gate the further impact of an energy-based method-
ology on the dialogue state tracking task. One
promising direction is the application of our energy-
based method on top of an existing state-of-the-art
systems to further improve that system’s perfor-
mance. Another direction is to refine the energy-
based structure and investigate various strategies
for the learning and inference processes to improve

the ability to integrate captured dependencies into
the structured prediction at a higher level. Further-
more our long term goal is to apply the structured
learning approach in tracking different aspects of
the conversations such as personality and prefer-
ence as well as user intents.
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madan, and Milica Gašić. 2018. MultiWOZ - A
Large-Scale Multi-Domain Wizard-of-Oz Dataset
for Task-Oriented Dialogue Modelling. In Proceed-
ings of 2018 Conference on Empirical Methods in
Natural Language Processing.

Lu Chen, Boer Lv, Chi Wang, Su Zhu, Bowen Tan, and
Kai Yu. 2020. Schema-Guided Multi-Domain Dia-
logue State Tracking with Graph Attention Neural
Networks. In Association for the Advancement of
Artificial Intelligence.

Mihail Eric, Rahul Goel, Shachi Paul, Adarsh Kumar,
Abhishek Sethi, Anuj Kumar Goyal, Peter Ku, San-
chit Agarwal, Shuyang Gao, and Dilek Hakkani-
Tur. 2019. MultiWOZ 2.1: A Consolidated Multi-
Domain Dialogue Dataset with State Corrections
and State Tracking Baselines.

Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagy-
oung Chung, and Dilek Hakkani-tur. 2019. Dialog
State Tracking: A Neural Reading Comprehension
Approach. In Proceedings of the SIGDial 2019 Con-
ference, pages 264–273.

http://arxiv.org/abs/1511.06350
http://arxiv.org/abs/1511.06350
http://arxiv.org/abs/1907.01669
http://arxiv.org/abs/1907.01669
http://arxiv.org/abs/1907.01669


42

Rahul Goel, Shachi Paul, and Dilek Hakkani-Tur. 2019.
HyST: A Hybrid Approach for Flexible and Accu-
rate Dialogue State Tracking. In Proceedings of the
INTERSPEECH 2019 Conference.

Michael Gygli, Mohammad Norouzi, and Anelia An-
gelova. 2017. Deep Value Networks Learn to Eval-
uate and Iteratively Refine Structured Outputs. In
Proceedings of the 34th International Conference on
Machine Learning.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and
Milica Gašić. 2020. TripPy: A Triple Copy Strategy
for Value Independent Neural Dialog State Tracking.
In Proceedings of the SIGDial 2020 Conference.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

John D Kelleher. 2019. Deep Learning. The MIT
Press.

Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-
Woo Lee. 2020. Efficient Dialogue State Tracking
by Selectively Overwriting Memory. In Proceed-
ings of the 58th annual meeting of the Association
for Computational Linguistics (ACL).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference for Learn-
ing Representations.

Adarsh Kumar, Peter Ku, Anuj Goyal, Angeliki Met-
allinou, and Dilek Hakkani-Tur. 2020. MA-DST:
Multi-Attention-Based Scalable Dialog State Track-
ing. In Proceedings of the 34th AAAI Conference on
Artificial Intelligence (AAAI 2020).

Frédéric Landragin. 2013. Man-Machine Dialogue:
Design and Challenges. ISTE Ltd and John Wiley
& Sons, Inc.

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’ Au-
relio Ranzato, and Fu Jie Huang. 2006. A Tutorial
on Energy-Based Learning. Predicting Structured
Data.

Nikola Mrksic, Diarmuid O’Seaghdha, Blaise Thom-
son, Milica Gasic, Pei-Hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2015. Multi-
domain Dialog State Tracking using Recurrent Neu-
ral Networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics, pages 794–799.

Elnaz Nouri and Ehsan Hosseini-Asl. 2018. Toward
Scalable Neural Dialogue State Tracking Model. In
Proceedings of the 2nd Conversational AI workshop,
NeurIPS 2018.

Liliang Ren, Jianmo Ni, and Julian McAuley. 2019.
Scalable and Accurate Dialogue State Tracking via
Hierarchical Sequence Generation. In Proceedings

of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 1876–1885.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Anh Duong Trinh, Robert J. Ross, and John D. Kelle-
her. 2018. A Multi-Task Approach to Incremental
Dialogue State Tracking. In Proceedings of The
22nd workshop on the Semantics and Pragmatics of
Dialogue, SEMDIAL, pages 132–145.

Anh Duong Trinh, Robert J. Ross, and John D. Kelle-
her. 2019a. Capturing Dialogue State Variable De-
pendencies with an Energy-based Neural Dialogue
State Tracker. In Proceedings of the SIGDial 2019
Conference, pages 75–84.

Anh Duong Trinh, Robert J. Ross, and John D. Kelle-
her. 2019b. Energy-Based Modelling for Dialogue
State Tracking. In Proceedings of the 1st Workshop
on NLP for Conversational AI, pages 77–86.

Anh Duong Trinh, Robert J. Ross, and John D. Kelle-
her. 2019c. Investigating Variable Dependencies in
Dialogue States. In Proceedings of the 23rd Work-
shop on the Semantics and Pragmatics of Dialogue,
pages 195–197.

Anh Duong Trinh, Robert J. Ross, and John D. Kelle-
her. 2020. F-Measure Optimisation and Label Reg-
ularisation for Energy-Based Neural Dialogue State
Tracking Models. In Artificial Neural Networks and
Machine Learning ICANN 2020.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable Multi-Domain State Gen-
erator for Task-Oriented Dialogue Systems. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics.

Jian-Guo Zhang, Kazuma Hashimoto, Chien-Sheng
Wu, Yao Wan, Philip S. Yu, Richard Socher, and
Caiming Xiong. 2019. Find or Classify? Dual Strat-
egy for Slot-Value Predictions on Multi-Domain Di-
alog State Tracking.

Guoguang Zhao, Jianyu Zhao, Yang Li, Christoph Alt,
Robert Schwarzenberg, Leonhard Hennig, Stefan
Schaffer, Sven Schmeier, Changjian Hu, and Feiyu
Xu. 2019. MOLI: Smart Conversation Agent for
Mobile Customer Service. Information (Switzer-
land), 10(2).

Victor Zhong, Caiming Xiong, and Richard Socher.
2018. Global-Locally Self-Attentive Dialogue State
Tracker. In Proceedings of the 56th Annual Meet-
ing ofthe Association for Computational Linguistics,
pages 1458–1467.

Li Zhou and Kevin Small. 2019. Multi-domain Dia-
logue State Tracking as Dynamic Knowledge Graph
Enhanced Question Answering.

http://arxiv.org/abs/1703.04363
http://arxiv.org/abs/1703.04363
http://arxiv.org/abs/2005.02877
http://arxiv.org/abs/2005.02877
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1911.03906
http://arxiv.org/abs/1911.03906
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2002.08898
http://arxiv.org/abs/2002.08898
http://arxiv.org/abs/2002.08898
https://doi.org/10.1002/9781118578681
https://doi.org/10.1002/9781118578681
http://arxiv.org/abs/1506.07190
http://arxiv.org/abs/1506.07190
http://arxiv.org/abs/1506.07190
https://doi.org/10.18653/v1/d19-1196
https://doi.org/10.18653/v1/d19-1196
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://arxiv.org/abs/1910.03544
https://arxiv.org/abs/1910.03544
https://arxiv.org/abs/1910.03544
https://doi.org/10.3390/info10020063
https://doi.org/10.3390/info10020063
https://arxiv.org/abs/1911.06192
https://arxiv.org/abs/1911.06192
https://arxiv.org/abs/1911.06192

