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Abstract
Automatic extraction of spatial information
from natural language can boost human-
centered applications that rely on spatial dy-
namics. The field of cognitive linguistics has
provided theories and cognitive models to ad-
dress this task. Yet, existing solutions tend
to focus on specific word classes, subject ar-
eas, or machine learning techniques that can-
not provide cognitively plausible explanations
for their decisions. We propose an automated
spatial semantic analysis (ASSA) framework
building on grammar and cognitive linguis-
tic theories to identify spatial entities and re-
lations, bringing together methods of spatial
information extraction and cognitive frame-
works on spatial language. The proposed rule-
based and explainable approach contributes
constructions and preposition schemas and
outperforms previous solutions on the CLEF-
2017 standard dataset.

1 Introduction

Human-centered technologies, such as in self-
driving cars or cognitive assistance systems in avi-
ation, face the challenge of having to provide cog-
nitively plausible decisions, i.e., decisions that are
understandable and accepted by humans. This is
needed for an effortless interaction between arti-
ficial and human agents. Yet, even in spatial lan-
guage, with its advantageous characteristic of fol-
lowing recurring, uniform patterns (Talmy, 2005),
drawing automated inferences in a dynamic spa-
tial environment remains to be an open research
question. As illustration consider Example ( )1:
“I poured water from the bottle into the cup until
it was full”2. Consider the question: “What was

1Instead of numbering examples, we identify them with a
unique semantic symbol in brackets.

2Adapted from Example 24 in the Winograd Schema
Challenge (WSC) dataset https://cs.nyu.edu/faculty/
davise/papers/WinogradSchemas/WSCollection.html
(24.7.2020)

full, the cup or the bottle?”. A cognitively plausi-
ble explanation for the answer the cup, could be as
follows: “As water was poured from the bottle into
the cup, it is likely that the water is in the cup. Nor-
mally, if water is poured into the cup then the cup
is full. Thus, there is some evidence that the cup
is full.” In order to produce and accept “the cup”
as the plausible answer, humans do not require par-
ticular reasoning effort or expert knowledge. Yet
building systems that provide such simple explana-
tions remains to be a challenge.

In the past, a considerable amount of literature
has been published on automated spatial seman-
tic analysis. However, most of the solutions fo-
cus on specific spatial phenomena suffering from a
lack of generalizability (e.g. Platonov and Schubert,
2018; Ulinski et al., 2019), or are generalizable
machine learning approaches (e.g. Kordjamshidi
et al., 2011), but lack explainability of provided
decisions. Also cognitive linguistics contributed to
the understanding of spatial language by proposing
various cognitive models to this end (Jackendoff,
1983; Talmy, 1983).

Taking spatial cognitive models as a starting
point, we propose a novel spatial representation
method and investigate which type of spatial infor-
mation, such as entities of spatial scenes and rela-
tions holding between them, can be extracted from
natural language (NL) expressions. To this end,
we rely on construction grammar and cognitive lin-
guistic theories. For Example ( ), the following
spatial roles apply: agent (“I”), figure (“water”),
ground (“bottle” and “cup”), and simultaneously
source (“bottle”) and goal (“cup”).

Figure 1 illustrates the automated spatial seman-
tic analysis (ASSA) framework proposed in this
paper. ASSA provides an automated extraction
method based on construction grammar and image
schemas (Lakoff, 1987; Johnson, 1987), which are
spatio-temporal relationships built from sensori-

https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html
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Figure 1: External sources are in white, input/ output are in light gray and own contributions are in black boxes.

motor experiences. Based on theories and analy-
ses of spatial language derived from the Winograd
Schema Challenge (WSC) dataset, a list of con-
structions to parse spatial sentences is derived (Sec-
tion 3.1). We classify a list of verbs from VerbNet
(Schuler, 2005) into dynamic and static, helping
the classification of NL statements into dynamic
and static constructions (Section 4.2). Prepositions
have been found to be supreme spatial indicators in
NL (Talmy, 1983; Kordjamshidi et al., 2011), so we
encode spatial information of prepositions in what
we call preposition schemas (Section 4.3) building
on image schemas to help identifying spatial roles
and their relations.

To the best of our knowledge, this is the first
generalizable and explainable framework grounded
in construction grammars and cognitive linguistic
theories to be empirically validated. We firmly
believe and show that exploiting insights gained
from cognitive linguistics can help building such
a framework. This framework contributes to the
automated analysis of spatial semantics in NL and
thereby to the analysis of the human experience
of space and human-centered applications. Our
contributions are: (1) A semantic analysis of spa-
tial prepositions based on image schemas, (2) An
automated extraction method that unifies construc-
tionist theory and cognitive linguistic insights on
spatial language, and (3) A prototype system of
ASSA fully evaluated on a standardized dataset
with competitive performance.

2 Related Work

Our work combines two strands of research,
namely spatial semantic analysis and (automated)
spatial role labeling. Spatial semantic analysis – the
process of detecting spatial entities, their relations,
and motion – has been a long-standing research
endeavor in areas such as cognitive linguistics (e.g.
Naidu et al., 2018; Talmy, 1983), geographical in-
formation systems (GIS) (e.g. Zhang et al., 2009;
Melo and Martins, 2017), spatial language under-

standing in robotics (e.g. Spranger et al., 2016) as
well as spatial role labeling (Kordjamshidi et al.,
2011). At times, works focus on one aspect of
spatial semantic analysis only, such as preposi-
tions (Platonov and Schubert, 2018) and spatial
frames and their relations (Ulinski et al., 2019).

We consider three works as particularly closely
related to the proposed framework. First, Spranger
et al. (2016) similarly to our work distinguish dy-
namic and static spatial relations, however, focus
on robot-robot interactions. Second, the Embodied
Construction Grammar (Bergen and Chang, 2005)
brings together construction and cognitive gram-
mar, which is, however, exemplified rather than
fully evaluated. Third, Egorova et al. (2018) pro-
pose a knowledge-based approach on fictive mo-
tion, who rely on cognitive linguistic theories, rules
and verbs to differentiate actual motion from fictive
motion. However, they focus on fictive motion in
the geographic domain, such as “The valley ran
towards the sea”. Though such methods are good
starting points for extracting variations of spatio-
temporal information, they are less suited to recon-
struct static and dynamic spatial scences from lin-
guistic descriptions, which we propose to do with
a generalizable and evaluated analysis framework.

Methods specific to spatial role labeling have
mostly utilized machine learning. Kordjamshidi
et al. (2011) apply a step-wise approach with two
probabilistic classifiers, where the first step consists
in uncovering the spatial indicator (a preposition)
and the second in extracting the related trajector
and landmark. While this machine learning method
has a lot to offer, it disregards the influence of verbs
as indicators of movement. However, verbs play
a central role in identifying the relation between
trajector and landmark and represent a vital element
of our proposed method.

One approach testing on the same evaluation
dataset, the Spatial Role Labeling shared task at
CLEF-2017 (Kordjamshidi et al., 2017), is the LIP6
system (Zablocki et al., 2017). They re-implement
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Saul (Kordjamshidi et al., 2015) for the two sub-
tasks of identifying spatially-related entities (tra-
jector, spatial indicator, landmark) and organizing
them into spatial triplets. To this end, a sparse
perceptron classifier is trained for each of these
entities, utilizing lexical, syntactical, and contex-
tual features. While the results are partially com-
petitive to ours, this machine learning method re-
quires complex feature engineering and allows for
little insight into decisions taken for each entity.
In contrast, ASSA is highly transparent and each
decision taken can be fully explained based on the
linguistic properties of the spatial expression and
the assigned constructional schema and cognitive
semantic roles.

3 Theoretical Foundations

Our approach is based on cognitive linguistic theo-
ries, specifically Talmy’s cognitive semantic theory,
Goldberg’s construction grammar, and Lakoff’s
and Johnson’s image schemas.

3.1 Talmy’s Analysis of Spatial Language

Talmy (1985) introduced the following four seman-
tic elements to characterize a motion event: motion,
path, figure, and ground. A motion event consists
of one object, the figure, moving or located w.r.t.
another object, the ground. The figure refers to the
entity that draws focal attention, while the ground
refers to the entity in the periphery of attention.
Consider the following sentence: “The cat was ly-
ing by the mouse hole” ( ). The figure in ( ) is
“the cat”, and the ground is “the mouse hole”. Usu-
ally in English, the manner or the movement of the
event is encoded by the verb, whereas the path or
the spatial relation, is encoded in the preposition
in a spatial expression (Talmy, 2005; Kordjamshidi
et al., 2011). Prepositions as spatial indicators and
verbs as movement indicators provide an excellent
starting point for spatial information extraction.

Talmy lists a number of verbs that encode path:
“enter, exit, ascend, descend, cross, pass, circle,
advance, proceed, approach, arrive, depart, re-
turn, join, separate, part, rise, leave, near, fol-
low” (Talmy, 2000b). Some of these verbs can
be substituted by a verb-preposition combination
with equivalent meaning. For instance, “exit” and
“enter” can be substituted by “get out of” and “get
into” respectively.

3.2 Goldberg’s Construction Grammar

In cognitive linguistics, several construction gram-
mars have been proposed, among others, by Fill-
more et al. (1988), Goldberg (1995), and Croft
(2001). For the ASSA semantic role extraction
presented in Section 5, Goldberg’s construction
grammar was applied. Her approach focuses on the
argument structure of sentence-level constructions,
such as caused-motion construction and ditransi-
tive construction. More importantly, it provides
the syntactic-semantic interface between semantic
roles and argument roles of an argument structure
construction. One of its important principles is that
the grammar of a language cannot exclusively be
represented by a formal system with rules defin-
ing well-formed sequences, but rather consists of
constructions. A construction is a form-meaning
pair, where neither the form nor the meaning can
be fully determined by its individual components,
i.e., words or phrases, or other previously estab-
lished constructions. For instance, “I kicked the
ball into the room” (G), implies ‘X caused Y to
move Z’ (caused-motion), where X , Y and Z, are
associated with “I”, “the ball”, and “into the room”,
in (G), respectively. Caused-motion cannot be gen-
erally assigned to “kick”. If it could, then “I kicked
the heavy stone, but the stone did not move” would
imply that “I caused the heavy stone to move, but
the stone did not move”, which seems unreason-
able. However, we can assign the caused-motion
to the construction instead.

Goldberg proposed the correspondence princi-
ple, in which correspondence describes the rela-
tions between the participant roles of the verb and
the argument roles of the argument structure con-
struction, e.g. agent, theme, location roles. For
the above example, the correspondence relation be-
tween participant roles and argument roles is as
follows:

Instance I kicked the ball into the room

Semantic Agent Action Patient Path
Syntactic NP VP NP PP

Grammatical Subject Predicate Object Complement

This principle provides a syntactic-semantic inter-
face and indicates that once the construction type
of a sentence is identified, we can obtain the cor-
responding semantic roles of syntactic elements
based on their correspondence relations.
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3.3 Image Schemas

Within the tradition of embodied cognition, im-
age schemas (Johnson, 1987; Lakoff, 1987) are
described as spatio-temporal relationships learned
from recurring sensorimotor experiences with our
environment from early infancy on that through
analogical reasoning can be used to explain and
predict outcomes on any current or future situation.
Image schemas are believed to provide a missing
link between physical experiences and high-level
cognition, such as language and reasoning. For
instance, if a child has learned that it can go IN and
OUT of a tent – having learned the image schema
of CONTAINMENT – it can transfer this informa-
tion to other instances of this image schema, such
as an eggshell as CONTAINER for egg yolk and
white. As discussed in detail in Hedblom et al.
(2018), each image schema represents a family of
building blocks that can constitute different vari-
ants of the basic image schema, such as a lake can
be seen as a CONTAINER with a flexible number
of openings – the surface can be entered and exited
at any point – whereas a tunnel has one opening
to enter and one to exit. These building blocks
are called spatial primitives, such as IN, OUT and
CONTAINER, that compose more complex image
schemas and schematic integrations (Mandler and
Pagán Cánovas, 2014). For instance, variations of
SOURCE PATH GOAL compositions could be only
SOURCE PATH or PATH GOAL. There is no hierar-
chy for image schemas or the composition of spa-
tial primitives, but in form of integrations various
image schemas can come together in one spatial
scene or also the lexical description of such a scene.
Several spatial primitives resonate of preposition
meanings, such as the image schema VERTICAL-
ITY being defined by the UP and DOWN that res-
onate of the prepositions “up” and “down”, which
represent the basis for the preposition schemas pro-
posed in this paper.

4 Spatial Semantic Analysis Framework

The spatial semantic analysis framework covers
three components depicted on the right of Figure 1:
Section 4.1 specifies the semantic roles, Section 4.2
develops the spatial constructional schemas for the
identification of these roles and their relations, and
Section 4.3 provides the semantic analysis frame-
work for the proposed preposition schemas.

Roles Description

figure Entity that needs to be located.
ground Reference entity w.r.t. which

figure’s location is characterized.
relation Relative location of figure and ground.
agent Entity that causes figure to move.
source Location of figure before it changes location.
path Shape of trajectory of figure’s movement.
goal location of figure after it changes location.
via A place on the way of figure’s movement.
orientation Orientation of figure’s movement.

Table 1: The spatial semantic roles w.r.t. the spatial ex-
pression type.

4.1 Semantic Roles
Following Talmy’s description of a motion event
frame in Section 3.1, there are basic semantic roles:
figure and ground. Additionally, spatial expres-
sions can either be dynamic or static. The for-
mer describes the motion event, such as for Ex-
ample ( ), while the latter describes the state-of-
affairs and does not involve movement of entities,
such as for Example ( ). For static spatial ex-
pressions, relation represents the spatial relations
between figure and ground in Table 1. To charac-
terize the location change in a motion event, the
following semantic roles are identified as described
in Table 1: agent, source, path, goal, via, and ori-
entation. Here path refers to the trajectory of the
figure’s movement, while path in Talmy’s theory
includes more information such as source, via, and
goal, which we model separately from path.

4.2 Spatial Constructional Schemas
The correspondence principle introduced in Sec-
tion 3.2 allows us to identify semantic roles by
identifying syntactic constructions of spatial NL
statements. We propose 7 constructional schemas
shown in Table 2 based on a manual analysis of
78 spatial examples of the WSC dataset and 3 fur-
ther ones from analyzing examples provided in
literature (Sondheimer, 1978; Herskovits, 1987)3.
Dynamic and static spatial statements are distin-
guished by the dynamic and stative verb in the
sentence.

Each construction consists of several basic con-
stituents. Noun phrases (NP), verbs (Verb), and
prepositions (Prep) represent grammatical cate-
gories that are refined regarding their role in spa-

3Note that the validation of those constructions has been
performed on an entirely different dataset (see Section 6).
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Type Index Constructional Schema

Dynamic
Schemas

D-1 NPF - MV - Spatial Prep - NPG

D-2 NPF - MV - Spatial Prep
D-3 NPA - CMV - NPF - Spatial Prep - NPG

D-4 NPA - CMV - NPF - Spatial Prep

Static
Schemas

S-1 There be - NPF - Spatial Prep - NPG

S-2 NPF - Spatial Prep - NPG

S-3 NPF - Be - Spatial Prep - NPG

S-4 Spatial Prep - NPG - Be - NPF

S-5 NPF - SV - Spatial Prep - NPG

S-6 Spatial Prep - NPG - SV - NPF

Table 2: List of constructional schemas, where sub-
script “F” stands for figure, “G” stands for ground, and
“A” stands for agent.

tial language. NPs can either represent a figure
(NPF), a ground (NPG), or an agent (NPA). We
select some verbs that can appear in the construc-
tions listed in Table 2, and classify them into three
classes: motion verbs (MV), such as “run”, caused
motion verbs (CMV), such as “sweep”, or stative
verbs (SV), such as “lie”. The reason that we made
such selection is that we try to exclude the non-
spatial expressions in some extent by restricting
the verbs, e.g., if there is no restriction on verbs, “I
cut the meat into pieces” will be misrecognized as
conforming to the constructional schema D-3, but
it is not a motion construction. A caused motion
is triggered by external force, whereas a motion
exists without an external force. To further foster
correct classification we treat occurrences of “to be”
without any other verbs and “there is/are” as stative.
The final constituent of constructional schemas are
prepositions, which in the case of spatial language
per definition are classified as spatial.

A verb can belong to different verb classes: move
belongs to both, the motion verb class and the
caused motion verb class, as the following exam-
ples show: I (NPF) move (MV) into (Prep) the
new house (NPG) shows a dynamic construction
where move functions as a motion verb. Yet, I
(NPA) move (CMV) the box (NPF) into (Prep) the
room (NPG) uses the same verb as a caused mo-
tion verb. The function in the sentence determines
which type of motion is being referred to. Static
constructions, on the other hand, specify the static
relative location of different entities. Based on
these constructions we specify three general prin-
ciples to identify spatial roles: (i) in a nonagentive
clause, the subject and object function as figure
and ground respectively; (ii) in an agentive clause,

Relative Prepositions

above across after against
ahead of along alongside amid
amidst among amongst apart from
around aside at atop
away from back back of before
behind below beneath beside
between betwixt beyond but
by close to down far from
in in back of in between in front of
in line with in place of in the back of in the front of
in the middle of in the midst of inside inside of
left of near near to nearby
next to of on on top of
opposite opposite of outside outside of
over off round throughout
to the left of to the right of to the side of toward
under underneath up upon
within

Dynamic Prepositions

from into off off of
on to onto out out of
past through to via

Table 3: List of Spatial Prepositions

subject, direct object, and indirect object function
as agent, figure, and ground respectively (Talmy,
2000a); (iii) a ground always appears after a spatial
preposition. We empirically validated these prin-
ciples as described below that guide our construc-
tional schemas. The schemas in Table 2 are then
utilized to recognize types and roles in linguistic
expressions. These are uniquely recognized w.r.t.
the syntactic structure of the spatial expression as
exemplified in Section 5 (Step 4).

4.3 Semantic Analysis of Spatial Prepositions

Spatial information is frequently encoded in spatial
prepositions (Section 3.1). This section describes
the contribution of prepositions to spatial role iden-
tification.

Spatial Prepositions: A spatial preposition de-
scribes the location of an entity in relation to other
entities. An advantage of closed-class elements and
in particular prepositions is their rather limited in-
ventory with limited options to increase their num-
ber as opposed to other word classes. We present
a fairly complete list of prepositions in Table 3
that was taken from Landau and Jackendoff (1993);
Quirk et al. (2010); Dittrich et al. (2015).4

Spatial prepositions can be divided into two gen-

4There are some variations in classifications that we do not
consider here: According to Landau and Jackendoff (1993)
adverbs, such as backward and forward, are intransitive prepo-
sitions; Dittrich et al. (2015) classify phrases such as west of
as prepositions.
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eral types depending on the constructions in which
they appear: relative prepositions and dynamic
prepositions. Relative prepositions are the ones
that spatially relate two or more entities, and can be
used in both dynamic and static constructions. Dy-
namic prepositions co-occur with movement and
are frequently used in dynamic constructions.

The reason we made such distinction is to dis-
tinguish Example ( ) from: “I poured water from
the bottle on the table”. In this example, the cor-
responding figure of ‘on the table’ is ‘the bottle’
rather than ‘water’, while the figure of ‘into the
cup’ is ‘water’ rather than ‘the bottle’ in Example
( ). For the example, the first part (i.e., “I poured
water from the bottle”) should be recognized by dy-
namic constructional schema D-3, and the second
part (i.e., “the bottle on the table”) should be rec-
ognized by the static constructional schema S-2 in
Table 2. These two examples mainly differ in their
use of prepositions, namely into and on. Given
a spatial expression, if its first part is recognized
by a dynamic construction, and the preposition
phrase (PP) after the first part describes a move-
ment, namely using dynamic prepositions, then the
figure of this PP is the same as the figure of the first
part, and further roles are determined according to
Table 4. Otherwise, this PP and the NP before it
are recognized by another constructional schema.

Image Schemas and Semantic Analysis: Follow-
ing Section 3.3, we assume that spatial primitives
of image schemas can help understand and classify
spatial prepositions. Figure 2 depicts a number of
spatial primitives to characterize spatial relations
expressed by prepositions. These schemas are uti-
lized to identify corresponding semantic roles of
spatial prepositions, and most of them come from
the previous research on image schema and seman-
tic analysis of prepositions such as Johnson (1987);
Herskovits (1987); Coventry and Garrod (2004).

For instance, the INTO primitive describes the
dynamic spatial relation of an entity in relation to a
CONTAINER. Furthermore, it describes a dynamic
process of an entity moving from the exterior of a
CONTAINER via an opening to the interior of the
CONTAINER. This primitive characterizes the spa-
tial relation expressed by the prepositions “into”,
“in”, and “inside of”. Movement always requires
the change of location, which links it naturally
to a SOURCE PATH GOAL image schema. In Ta-
ble 4, we map the spatial primitives of this schema
– source, via, and goal, which also correspond to

INTO OUT ONTO OFF

ALONG ACROSS THROUGH UP DOWN

BY AROUND TOWARD AWAY FROM FROM TO

Figure 2: Diagrams for spatial primitives of spatial
prepositions

Preposition Source Via Goal

in, into, inside exterior opening interior
out, out of interior opening exterior
on, onto - - surface
off, off of surface - -
from ground - -
to - - ground
across,through one side points(inside) the other side
up, upon lower place - upper place
down higher place - lower place
by - points(near) -

Preposition Path Via Orientation

along line points(inside,
near)

-

around arc points(near) -
toward - - toward
away from - - away from

Table 4: Semantic analysis of spatial prepositions

semantic roles – to the elements of the respective
type of movement indicated by the preposition. For
the CONTAINER the type of movement relates to
its spatial primitives, that is, the exterior, interior,
boundary, and opening. Other image schemas, such
as a more relative SUPPORT schema as in “the bottle
on the table”, can be analyzed utilizing the relative
propositions presented in Table 4.

5 Procedure of ASSA

We describe the procedure of ASSA for our empir-
ical validation of the proposed framework in Sec-
tion 4. Our prototype system is written in Python
and utilizes the Stanford Dependency Parser (Man-
ning et al., 2014). Figure 1 depicts the process,
where the following steps will be detailed here:

1. Preprocessing If the spatial expression con-
tains a verb that encodes path information,
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the verb is substituted by a synonymous
verb+preposition. For instance, “exit” is re-
placed by “get out of” to enable the spatial
preposition analysis. (Section 3.1).

2. Dependency parsing Utilizing the Stanford
Dependency Parser (Chen and Manning,
2014), a parse tree is constructed.

3. Syntactic Unit Minimization Spliting sen-
tence into syntactic units, or merging neigh-
boring words into a syntactic unit.

4. Spatial Construction Recognition Identify-
ing corresponding constructional schema by
fuzzy pattern match, and extracting semantic
roles: agent, figure, ground, and relation.

5. Semantic Analysis of Spatial Preposition
For dynamic spatial language, indentifying
spatial roles by analyzing the spatial preposi-
tions.

As illustration, let us consider the first part of ( ):
“I poured water from the bottle into the cup” ( ).
After Step 1, nothing has changed for , i.e., ’ =

, as no verb that encodes path information appears
in this example.

In Step 2, we generate a dependency tree and
label words with their Part-of-Speech (POS) tags.
The following dependency graph shows the result
of Step 2:

I poured water from the bottle into the cup
PRP VBD NN IN DT NN TO DT NN

nsubj dobj

nmod
nmod

case
det

case
det

In Step 3, we utilize dependency relations, such
as det for determiner, to chunk words into syn-
tactic units, e.g. “the bottle” and “the cup” in ’.
It is worth noting that in the above dependency
tree, the prepositions “from” and “to” are labeled
with different POS tags, namely, “IN” and “TO”
respectively. So in order to maintain consistency of
the annotation of spatial prepositions, we labeled
the prepositions in Table 3 with the POS tag “RP”.
Additionally, each of these prepositions is treated
as a single syntactic unit.

To guide the constructional schema identifica-
tion, a list of verbs from VerbNet (Schuler, 2005)
has been classified by two people into motion verb
(MV), caused-motion verb (CMV), and stative
verb (SV). For these three kinds of verbs, we use
MV, CMV, or SV as their POS tags, replacing

the original tags generated from Stanford depen-
dency parser. The result of Step 3 is as follows:

I poured water from the bottle into the cup
PRP CMV NN RP NN RP NN

In Step 4, we use several fuzzy patterns to recog-
nize the corresponding constructional schemas of
spatial expressions, which are listed in Table 2. In
general, each constructional schema corresponds
to a fuzzy pattern5. For instance, the fuzzy pattern
[[NN, NNS, NNP, NNPS, PRP, WP], [3], [CMV],
[3], [NN, NNS, NNP, NNPS, PRP], [3], [RP], [2],
[NN, NNS, NNP, NNPS, PRP]] is used to recog-
nize the dynamic construction D-3 in Table 2,

NPA - CMV - NPF - Spat Prep - NPG. (Con( ’))

The numbers in the pattern, such as “[3]”, can be
replaced with less than 3 elements of any other
POS tags such as “MD (modal auxiliary)”, “RB
(adverb)”. It is worth mentioning that the fuzzy pat-
terns only captures the syntactic features of the con-
structional schemas. Depending on the syntactic-
semantic correspondence relation shown in con-
structional schemas, we could obtain the semantic
roles agent, figure, ground, and relation.

For the example ’, it’s syntactic feature could
be represented as follows: [[PRP], [CMV], [NN],
[RP], [NN], [RP], [NN]], which has been obtained
in Step 3. It could be matched by the correspond-
ing fuzzy pattern of constructional schema Con( ’).
The match algorithm could be understood as a sim-
pler regular expression match, but it works on the
word level rather than the character level. Accord-
ing to the syntactic-semantic correspondence rela-
tions, “I” and “water” are identified as agent and
figure, respectively, and “the bottle” and “the cup”
as ground.

In Step 5, we extract spatial roles by analyzing
the semantics of spatial prepositions. Given Con( ’),
the spatial prepositions, “from” and “to” in ( )
belong respectively to the FROM and INTO schemas
in Table 4. According to FROM schema, we could
identify the “the bottle” as the source of the figure
“water”. Similarly, we could obtain that source,
via, and goal of the figure “water” are “the exterior
of the cup”, “the opening of the cup”, and “the
interior of the cup” respectively by analyzing INTO

schema. Up to now, we have obtained all spatial
5A full list of constructions and the algorithm can

be found here: https://github.com/chaoxu95/
emnlp2020-code/blob/master/fuzzy_match.
py

https://github.com/chaoxu95/emnlp2020-code/blob/master/fuzzy_match.py
https://github.com/chaoxu95/emnlp2020-code/blob/master/fuzzy_match.py
https://github.com/chaoxu95/emnlp2020-code/blob/master/fuzzy_match.py
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Automated Spatial Semantic Analysis (ASSA) Baseline LIP6 System

Subtask 1 Subtask 2 Subtask 1 Subtask 2 Subtask 1 Subtask 2
SP TR LM Overall Relation SP TR LM Overall Relation SP TR LM Overall Relation

Precision 94.43 71.01 84.52 82.77 60.26 94.76 56.72 72.97 75.36 75.18 97.59 79.29 94.05 89.55 68.33
Recall 83.15 75.40 82.90 80.06 64.43 97.74 69.56 86.21 83.81 45.47 61.13 53.43 60.73 58.03 48.03
F1 88.43 73.14 83.70 81.26 62.28 96.22 62.49 79.04 78.68 56.67 75.17 63.84 73.81 70.41 56.41
LCount 795 874 573 2242 939 - - - - - 795 874 573 2242 939
PCount 700 928 562 2190 1004 - - - - - 498 589 370 1457 660

Table 5: Overview of the performance of ASSA compared to the two state-of-the-art systems.

roles in the example ( ). The implementation of
ASSA can be found at https://github.com/
chaoxu95/emnlp2020-code.

The extracted output after the application of
ASSA on a spatial expression gives us insights
about the expression’s type of verbs, figures and
grounds. We believe that these are necessary in-
gredients for integrating background knowledge
within commonsense (spatial) reasoning systems
to provide cognitively plausible explanations on the
environments’ change. Providing full NL explana-
tions of our system’s decisions based on presented
ingredients is part of our future endeavors.

6 Evaluation

We are not aware of any specific shared task as a
suitable evaluation for the novel approach proposed
here. Spatial role labeling (SpRL), a subtask of
SemEval (Kordjamshidi et al., 2012) seems to be
the closest related task for our purpose.

We use the test data from the SpRL task of
CLEF-2017 to test the coverage of our system. It
has 3 subtasks: (1) label spatial indicators and their
landmark(s)/trajector(s), (2) extract triplets of spa-
tial indicator-trajector-landmark, (3) label relations
with region, direction and distance. Only the first
two are relevant for the evaluation of our frame-
work6. Consider the following example: About
20 kids in traditional clothing and hats waiting on
stairs. For Subtask 1 this means identifying the
trajector kids, spatial indicator on and landmark
as stairs. For Subtask 2 the system should extract
spatial relation(kids, on, stairs).

6.1 Datasets and Results
The training set and test set in the SpRL dataset
has 600 and 613 sentences respectively. As ASSA

6The task description can be found at https:
//www.cs.york.ac.uk/semeval-2012/task3/
index.html and CLEFLabs of the Evaluation Forum:
More information can be found at http://www.cs.
tulane.edu/˜pkordjam/mSpRL_CLEF_lab.htm

is based on linguistic theories and fuzzy matching,
no training is required. However, as our underlying
assumptions for the representation differs from the
test standard in the SpRL task, the training set was
utilized to adapt our prototype to this task.

The main change is representing “on the left”
and “on the right”. In the human-annotated cor-
pus, these two phrases are recognized as the spatial
indicator, whereas, in our system, “on” is recog-
nized as the spatial indicator, while “the right” and
“the left” are recognized as ground. There are 32
such phrases in the training data and 190 in the test
data, which affected the final result. We added a
new construction (S-7), NPF [“on the left”, “on the
right”], to account for these cases.

Two systems were available for comparing the
performance of ASSA, both relied on machine
learning methods: (1) baseline system (Kord-
jamshidi et al., 2017) identified the single roles
and triples by creating classifiers that used lexical,
syntactical, contextual, and relational features, and
(2) LIP6 system (Zablocki et al., 2017), based on a
joint approach allowing for a rich feature set based
on the complete relation.

Table 5 shows that our system outperforms the
others on F1 score in Subtask 1 and 2, and recall
in Subtask 2. SP, TR, LM refer to spatial indicator
(relation), trajector (figure), landmark (ground) and
Overall to a weighted average of these three values.
LCount and PCount refer to the number of labels
in the human-annotated corpus and that in the test
data. Here, Overall represents their sum.

6.2 Discussion

While our approach is computationally simple yet
theoretically well grounded and contributes con-
structional as well as preposition schemas, it still
achieves a competitive performance. However, the
precision of the LIP6 system is ∼ 8% higher than
ASSA. One reason is that the annotation of LIP6
has a higher consistency with the human-annotated

https://github.com/chaoxu95/emnlp2020-code
https://github.com/chaoxu95/emnlp2020-code
https://www.cs.york.ac.uk/semeval-2012/task3/index.html
https://www.cs.york.ac.uk/semeval-2012/task3/index.html
https://www.cs.york.ac.uk/semeval-2012/task3/index.html
http://www.cs.tulane.edu/~pkordjam/mSpRL_CLEF_lab.htm
http://www.cs.tulane.edu/~pkordjam/mSpRL_CLEF_lab.htm
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dataset because of the training data. LIP6 uses the
indicators constructed from training, while we take
general spatial prepositions in Table 3 as indicators.
An important factor that affects the precision is the
treatment for the dressing descriptions. Consider
the following text: “One man in a white T-shirt ,
grey pants and a white cap is holding a shovel”7.
The relations (one man, in, a white t-shirt), (one
man, in, grey pants), (one man, in, a white cap)
are recognized by ASSA, but they do not appear in
the human-annotated dataset. It seems reasonable
to regard them as spatial relations. Another rea-
son for higher precision of LIP6 is that it used the
joint approach in Roberts and Harabagiu (2012),
which allows for a rich feature set to reach higher
precision, but it also causes lower recall. The con-
structions used by ASSA have been developed by
us through an analysis of the Winograd Schema
Challenge dataset and from the literature to recog-
nize spatial structures. Precision and recall might
be improved by adding more constructions.

ASSA has the following advantages w.r.t. the
other systems: (i) for each error, a cognitively plau-
sible explanation of the wrong result can be pro-
vided. Because of its symbolic representation, this
allows us to track, understand and correct the er-
ror. (ii) ASSA can deal with dynamic expressions,
and identify the roles such as source, goal. (iii)
ASSA can provide a statistical distribution of types
of spatial expressions, e.g., 11%, 59.3%, and 23.2%
spatial expressions in the test data are respectively
recognized by schemas S-1, S-2, and S-7 in Table 2.

It is worth mentioning that SpRL task is
insufficient to evaluate the overall performance
of ASSA, as it can not be used to evaluate how
successful is ASSA at identifying the semantic
roles such as source, via, and goal. Up to now,
we have only tested it on a small number of
spatial expressions extracted from WSC. The test
result could be found at https://github.
com/chaoxu95/emnlp2020-code/blob/
master/paper-related/wsc_output

7 Conclusion

Although the extraction of spatial information has
been widely studied, no general and human un-
derstandable approach has been proposed up to
this point. Based on its interdisciplinary nature
by exploiting the developments made in various
areas, our contributions are two-fold: ASSA uni-

7Corresponding image: images/00/116.jpg

fies methods from automated spatial information
extraction with cognitive models on spatial lan-
guage. The constructional schemas developed here
can extract relevant spatial information, and fur-
ther (in case of a dynamic construction) apply them
to image schemas in order to identify correspond-
ing semantic roles. Second, an evaluation of a
prototype system outperforms machine learning
systems. In terms of future work, it would be in-
teresting to apply the prototype to a larger dataset
with more dynamic spatial expressions as well as
test the procedure on different languages. As dis-
cussed above, it would also be interesting to uti-
lize the insights gained from our constructions and
preposition schemas to provide natural language
explanations for system decisions.

Finally, it would be interesting to investigate the
interaction of ASSA with existing resources, such
as FrameNet (Baker et al., 1998) to further improve
on its precision and provide background knowledge
to our framework. It would also be interesting to
formally represent our constructional schemas, e.g.
utilizing Qualitative Trajectory Calculus (Van de
Weghe et al., 2005) and similar formalisms, in order
to benefit from reasoning algorithms for spatial
information extraction.
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