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Abstract

This paper details the system description and approach used by our team for the SMM4H 2020
competition, Task 1. Task 1 targets the automatic classification of tweets that mention medica-
tion. We adapted the standard BERT pretrain-then-fine-tune approach to include an intermediate
training stage with a biLSTM architecture neural network acting as a further fine-tuning stage.
We were inspired by the effectiveness of within-task further pre-training and sentence encoders.
We show that this approach works well for a highly imbalanced dataset. In this case, the positive
class is only 0.2% of the entire dataset. Our model performed better in both F1 and precision
scores compared to the mean score for all participants in the competition and had a competitive
recall score.

1 Introduction

Social media is ubiquitous, a continuous part of our daily lives; it offers new ways of communication
and contains important data for various disciplines (Pershad et al., 2018). This is especially crucial for
health related sectors. Twitter posts are now recognised as an important source of patient-generated data,
providing unique insights into population health (Nguyen et al., 2017). However, tweets contain a lot
of noise and are imbalanced in their nature. A fundamental step towards incorporating Twitter data in
pharmacoepidemiologic research is to automatically recognise medication mentions in tweets. Hence
Task 1 in SMM4H 2020 (Ari Z. Klein and Gonzalez-Hernandez, 2020) is proposed based on a similar
task from 2018 (Weissenbacher et al., 2018) to address these challenges. The task is aimed at identifying
if tweets contain information about medications using a highly skewed, imbalanced training dataset in
which only 0.2% contains a positive label.

2 Methodology

2.1 Data
The training data provided by SMM4H 2020 consists of 69,272 training data, out of which only 181
are positive tweets, and 69,091 are negative tweets. I.e., it contains binary labelled unique tweets that
mention a medication or dietary supplement (annotated as ”1”) and tweets that do not (annotated as
”0”). Compared with the same task in 2018, where artificially balanced tweet data was provided, the
current training data consist of highly imbalanced tweets, in which only 0.2% mentioned a medication
(annotated as ”1”), corresponding to a more realistic real-world scenario. The test data provided contains
29,687 examples. Additionally, the previously mentioned artificially balanced tweet dataset used for the
SMM4H 2018 Task 1 (Weissenbacher et al., 2018), was released to participants, containing 2,367 unique
tweets with 1,212 positive and 1,155 negative labels.

2.2 Data Cleaning and Pre-processing
As the distinct way the reference to medication is made is not important in this binary classification
tasks, we applied various standard pre-processing and cleaning methods on the tweets, as follows. Be-
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fore training, we processed the datasets using the Ekphrasis library (Baziotis et al., 2017). The library
provides text preprocessing operations optimised for social media texts. Each tweet was normalised, by
replacing all Twitter usernames and URLs with common tokens, such as <user>and <url>. Hashtags,
emoticons, elongated and repeated words were further annotated with special tokens using the ’Social
Tokenizer’ provided in the above library. As an extra preprocessing step, we used spell correction and
word segmentation tools from the same library to correct misspelled words and split long texts into more
meaningful sub word forms.

2.3 Preliminary Fine-tuning of the Model on a Balanced Task

Before training with the SMM4H 2020 Task 1 training data, we use the artificially balanced data from
2018 to fine-tune our model; here, we apply BERT (Devlin et al., 2018), as the most advanced training
network available currently, with a learning rate of 2e-5. As BERT is not a classifier, following the fine-
tuning process (Devlin et al., 2018; Sun et al., 2019), we use the last layer of BERT and build a linear
layer on top of it, as a classification task. We perform this preliminary fine-tuning as we expect that
the balanced dataset allows the BERT model to better understand and capture the generality of the data
distribution for tweets that mention medications.

2.4 Target Task Training with BERT Feature Information

After the preliminary training of BERT, the model can be considered as containing the contextual infor-
mation of medication tweets data. Inspired by the effectiveness of the within-task further pre-training
and sentence encoder (Phang et al., 2018; Sun et al., 2019), we further experimented with the idea of a
supplementary training phase on a data-rich supervised task. This process involves training BERT using
the output as features in our target task. We experimented with different outputs from the last hidden
states. As recommended in the original BERT paper (Devlin et al., 2018), we experimented with the
feature-based approach using the activations from the last hidden layer, the sum of all 12 hidden layers,
the sum of the last four hidden layers and the concatenation of the last four hidden layers as input into
our classification model.

The model parameters learned from the intermediate task served as contextualised sentence embed-
dings (Phang et al., 2018) to initialise our target task model. We feed these embedding to a bidirectional
LSTM (biLSTM) model (Graves and Schmidhuber, 2005) to classify the tweets. We experimented with
the output of each encoder layer, to see which vector provides the best contextualised embedding. These
experiments showed that the sum of the final four hidden layers of the pre-trained model provides the
best embedding. We then trained the biLSTM model for 5 epochs to reach optimal performance using a
binary cross-entropy loss.

For the intermediate training, we utilise the features generated by BERT as the contextual sentence
embedding, similar to word embedding. We compared the difference in performance by freezing and
unfreezing the feature vectors from BERT. This comparison suggest that unfreezing achieves better per-
formance. This can be considered as a transfer learning phase which results in a boost of performance.

3 Results

As mentioned previously, the information from BERT can be considered as a sentence embedding to
the supplementary BiLSTM model; we have the option to either freeze or unfreeze the BERT model pa-
rameters in the target task training. Freezing the parameters means that we use a fixed prior knowledge
from the balanced dataset as a sentence embedding to the BiLSTM model, while unfreezing the param-
eters allows the parameters in the sentence embedding to update with the new data, similarly to how
the NLP field uses pre-trained word embeddings and then fine-tunes them with new data. The results
from the experiments, when we freeze and unfreeze the BERT part, are presented in Table 1 and Table 2,
respectively. All the results in both tables are calculated based on the unbalanced data. As said, the best
performing model on the imbalanced dataset results from concatenating the final four layers. Our system
achieved an F1 score on the positive (minority) class of 0.7164, with 0.8421 precision and 0.6234 recall
on the test dataset. The mean score for this task was an F1 score on the positive class of 0.6646, with
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0.7007 precision and 0.7039 recall.

4 Conclusion

The results of our experiments suggest that extracting features from language models and using them
for intermediate modelling can provide a good platform to study the automatic classification of medical
tweets, even if the final target dataset is highly imbalanced. Moreover, interestingly, various layers of
features from language models can be used as a sequence in the representation, and this further confirms
that different layers of representation in complex language models, such as BERT, contain various levels
of information semantics.

Layers F1 Precision Recall TP/FP/FN
concatenate last 4 hidden layers 0.78 0.79 0.77 27/7/8

last hidden layer* 0.81 0.84 0.77 27/5/8
sum of last 4 hidden layers 0.75 0.78 0.71 25/7/10
second to last hidden layers 0.81 0.84 0.77 27/5/8

Table 1: Experiments results for freezing parameters of BERT

Layers F1 Precision Recall TP/FP/FN
concatenate last 4 hidden layers* 0.88 0.97 0.80 28/1/7

last hidden layer 0.83 0.81 0.86 30/7/5
sum of last 4 hidden layers 0.85 0.83 0.86 30/6/5
second to last hidden layer 0.84 0.85 0.83 29/5/6

Table 2: Experiments results for not freezing parameters of BERT
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